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Welcome Message

It is our pleasure to welcome you to the 11th European Conference on Mobile Robots — ECMR 2023,
which is held in Coimbra, Portugal on September 4-7, 2023. ECMR is a biannual European forum,
internationally open, allowing researchers to become acquainted with the latest accomplishments and
innovations in advanced mobile robotics and mobile human-robot systems. ECMR especially seeks
to attract young researchers to present their work to an international audience. The first ECMR
meeting was held in September 2003 in Radziejowice, Poland, followed by ECMR in September 2005,
while previous edition of ECMR was organized virtually in September 2021 in Bonn, Germany due
to unfortunate pandemic circumstances. Now, we are honored to be able to organize ECMR in

person after twenty years of its inception.

Papers submitted to ECMR 2023 were co-authored by 213 authors from 28 countries, and in our
view, this serves as a testimony to the appeal of the conference. Each paper was evaluated by expert
reviewers and 56 of them have been accepted by the Program Committee. These papers are included
in the proceedings and will be presented at the conference. They cover a wide spectrum of research
topics in mobile robotics: 3D perception, navigation, path planning and tracking, SLAM, mapping
and exploration, cooperative multi-robot systems, deep learning, various service applications, etc.
We also appreciate workshops organizers who have enriched the conference program by organizing
the following workshops: "Robotics in Agriculture and Forestry," "Ethical, Legal and User Perspec-
tives on Social and Assistive Robots," "Robotic Perception and Situation Awareness in Real-World

!

Applications," and "Deploying Mobile Robots in Unconstrained Real-World Environments."

We are especially proud to welcome our distinguished keynote speakers: Professor Guido de Croon
from the Delft University of Technology, Netherlands, who will give a talk titled “Autonomous flight
of tiny drones”, Professor Andrew Davison from Imperial College London, United Kingdom, who will
give the talk titled “A Robot Web for Many-Device Localisation and Planning”, and Professor Jan
Peters from the Technical University of Darmstadt, Germany, who will give the talk titled “Inductive
Biases for Robot Reinforcement Learning.” We must thank the IEEE Robotics and Automation
Society, for its technical sponsorship, the Institute of Systems and Robotics, for the logistics support,

and the University of Coimbra, for providing the necessary facilities to host the conference.

Finally, our sincere thanks are due to all people whose hard work made this conference possible.
First and foremost, we would like to thank the members of the Organizing Committee and the
Program Committee for their outstanding work. Our special thanks go to the authors for submitting
their work to ECMR 2023 and to the reviewers for their time and effort in evaluating the submissions.
The results of their joint work are visible in the program of ECMR 2023. It is now up to all of us to
make ECMR 2023 a great success and a memorable event by participating in the technical program

and by enjoying the beauty and history of Coimbra, as well as traditions and culture of Portugal!

Lino Marques
Ivan Markovié
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Keynote speakers

Autonomous flight of tiny drones
Guido de Croon

Tiny drones are promising for many applications, such as search-and-rescue, greenhouse monitor-
ing, or keeping track of stock in warehouses. Since they are small, they can fly in narrow areas.
Moreover, their light weight makes them very safe for flight around humans. However, making such
tiny drones fly completely by themselves is an enormous challenge. Most approaches to Artificial
Intelligence for robotics have been designed with self-driving cars or other large robots in mind —
and these are able to carry many sensors and ample processing. In my talk, I will argue that a
different approach is necessary for achieving autonomous flight with tiny drones. In particular, I
will discuss how we can draw inspiration from flying insects, and endow our drones with similar
intelligence. Examples include the fully autonomous “DelFly Explorer”, a 20-gram flapping wing
drone, and swarms of CrazyFlie quadrotors of 30 grams able to explore unknown environments and
find gas leaks. Moreover, I will discuss the promises of novel neuromorphic sensing and process-
ing technologies, illustrating this with recent experiments from our lab. Finally, I will discuss how
insect-inspired robotics can allow us to gain new insights into nature. I illustrate this with a re-
cent study, in which we proposed a new theory on how flying insects determine the gravity direction.

Guido de Croon received his M.Sc. and Ph.D. in the field of Artificial Intelligence (AI) at Maastricht
University, the Netherlands. His research interest lies with computationally efficient, bio-inspired
algorithms for robot autonomy, with an emphasis on computer vision. Since 2008 he has worked
on algorithms for achieving autonomous flight with small and light-weight flying robots, such as
the DelFly flapping wing MAV. In 2011-2012, he was a research fellow in the Advanced Concepts
Team of the European Space Agency, where he studied topics such as optical flow based control
algorithms for extraterrestrial landing scenarios. After his return at TU Delft, his work has included
fully autonomous flight of a 20-gram DelFly, a new theory on active distance perception with optical
flow, a swarm of tiny drones able to explore unknown environments, and neuromorphic sensing and
processing. Currently, he is Full Professor at TU Delft and scientific lead of the Micro Air Vehicle
lab (MAVLab) of Delft University of Technology.

xi
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A Robot Web for Many-Device Localisation and Planning
Andrew Davison

Safe and useful robots for complex environments must use their on-board sensors and computation
to map, understand and localise within their surroundings, and we can envision a future where many
such devices, with different functions and made by different companies, should operate in the same
space. Is there a more modular way for this to work than all devices needing to use the same unified
cloud-based “maps” system?

I will present and demonstrate our Robot Web proposal for distributed solutions to many robot
localisation and planning based on per-device local computation and storage, and peer-to-peer com-
munication between heterogenous devices via standardised open protocols. Our method uses Gaus-
sian Belief Propagation-based distributed inference on full non-linear factor graph, and is highly
robust and scalable while remaining simple and modular.

Andrew Davison is Professor of Robot Vision and Director of the Dyson Robotics Laboratory at
Imperial College London. His long-term research focus is on SLAM (Simultaneous Localisation and
Mapping) and its evolution towards general ‘Spatial AI’:computer vision algorithms which enable
robots and other artificial devices to map, localize within and ultimately understand and interact
with the 3D spaces around them. With his research group and collaborators he has consistently de-
veloped and demonstrated breakthrough systems, including MonoSLAM, KinectFusion, SLAM++
and CodeSLAM, and recent prizes include Best Paper at ECCV 2016, Best Paper Honourable Men-
tion at CVPR 2018 and the Helmholtz Prize at ICCV 2021. He has also had strong involvement in
taking this technology into real applications, in particular through his work with Dyson on the de-
sign of the visual mapping system inside the Dyson 360 Eye robot vacuum cleaner and as co-founder
of applied SLAM start-up SLAMcore. He was elected Fellow of the Royal Academy of Engineering
in 2017.

xii
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Inductive Biases for Robot Reinforcement Learning
Jan Peters

Autonomous robots that can assist humans in situations of daily life have been a long-standing
vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to
create robots that can learn tasks triggered by environmental context or higher-level instruction.
However, learning techniques have yet to live up to this promise as only few methods manage to
scale to high-dimensional manipulator or humanoid robots. In this talk, we investigate a general
framework suitable for learning motor skills in robotics which is based on the principles behind many
analytical robotics approaches. To accomplish robot reinforcement learning from just few trials, the
learning system can no longer explore all learn-able solutions but has to prioritize one solution over
others — independent of the observed data. Such prioritization requires explicit or implicit assump-
tions, often called ‘induction biases’ in machine learning. Extrapolation to new robot learning tasks
requires induction biases deeply rooted in general principles and domain knowledge from robotics,
physics and control. Empirical evaluations on a several robot systems illustrate the effectiveness
and applicability to learning control on an anthropomorphic robot arm. These robot motor skills
range from toy examples (e.g., paddling a ball, ball-in-a-cup) to playing robot table tennis, juggling
and manipulation of various objects.

Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science
Department of the Technische Universitaet Darmstadt since 2011, and, at the same time, he is the
dept head of the research department on Systems Al for Robot Learning (SAIROL) at the German
Research Center for Artificial Intelligence (Deutsches Forschungszentrum fiir Kiinstliche Intelligenz,
DFKI) since 2022. He is also a founding research faculty member of the Hessian Center for Artificial
Intelligence. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award,
the Robotics: Science & Systems — Early Career Spotlight, the INNS Young Investigator Award,
and the IEEE Robotics & Automation Society’s Early Career Award as well as numerous best paper
awards. In 2015, he received an ERC Starting Grant and in 2019, he was appointed IEEE Fellow, in
2020 ELLIS fellow and in 2021 AATA fellow. Despite being a faculty member at TU Darmstadt only
since 2011, Jan Peters has already nurtured a series of outstanding young researchers into successful
careers. These include new faculty members at leading universities in the USA, Japan, Germany,
Finland and Holland, postdoctoral scholars at top computer science departments (including MIT,
CMU, and Berkeley) and young leaders at top Al companies (including Amazon, Boston Dynamics,
Google and Facebook/Meta). Jan Peters has studied Computer Science, Electrical, Mechanical and
Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of
Singapore (NUS) and the University of Southern California (USC). He has received four Master’s
degrees in these disciplines as well as a Computer Science PhD from USC. Jan Peters has performed
research in Germany at DLR, TU Munich and the Max Planck Institute for Biological Cybernet-
ics (in addition to the institutions above), in Japan at the Advanced Telecommunication Research
Center (ATR), at USC and at both NUS and Siemens Advanced Engineering in Singapore. He has
led research groups on Machine Learning for Robotics at the Max Planck Institutes for Biological
Cybernetics (2007-2010) and Intelligent Systems (2010-2021).

xiii
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Autonomous Navigation in Rows of Trees and High Crops with Deep
Semantic Segmentation

Alessandro Navone!, Mauro Martini!, Andrea Ostuni!, Simone Angaranol and Marcello Chiaberge]

Abstract— Segmentation-based autonomous navigation has
recently been proposed as a promising methodology to guide
robotic platforms through crop rows without requiring precise
GPS localization. However, existing methods are limited to
scenarios where the centre of the row can be identified thanks to
the sharp distinction between the plants and the sky. However,
GPS signal obstruction mainly occurs in the case of tall, dense
vegetation, such as high tree rows and orchards. In this work,
we extend the segmentation-based robotic guidance to those
scenarios where canopies and branches occlude the sky and
hinder the usage of GPS and previous methods, increasing the
overall robustness and adaptability of the control algorithm.
Extensive experimentation on several realistic simulated tree
fields and vineyards demonstrates the competitive advantages
of the proposed solution.

[. INTRODUCTION

In recent years, precision agriculture has pushed the
boundaries of technology to optimize crop production, im-
prove the efficiency of farming operations, and reduce
waste [1]. Modern farming systems must be able to extract
synthetic key information from the environment, take or
suggest optimal decisions based on that information, and
execute them with high precision and timing. Deep learning
techniques have shown great potential in realizing these
systems by analyzing data from multiple sources, allowing
for large-scale, high-resolution monitoring, and providing
detailed insights for both human and robotic agents. The
most recent advancements in deep learning also provide
competitive advantages for real-world applications, such as
model optimization for fast inference on low-power embed-
ded hardware [2], [3] and generalization to unseen data [4],
[5], [6]. At the same time, progress in service robotics has
enabled autonomous mobile agents to embody Al perception
systems and work in synergy with them to accomplish
complex tasks in unstructured environments [7].

In particular, row-based crops are among the most studied
applications (they constitute more than 75% of all planted
acres of cropland across the USA [8]). In this scenario,
research spans localization[9], path planning [10], navigation
[11], monitoring[12], harvesting [13], spraying [14], and
vegetative assessment [15], [16]. A particularly challenging
situation occurs when standard localization methods, like
GPS, fail to reach the desired precision due to unfavorable
weather conditions or line-of-sight obstruction. That is the

1 Department of Electronics and Telecommunications, Politecnico di
Torino, 10129, Torino, Italy. {firstname . lastname}@polito it
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Fig. 1.
guide an autonomous mobile robot through a dense tree row solely using
an RGB-D camera. A pear crop row in Gazebo is shown in the picture.

The proposed SegMin and SegMinD algorithms allow to precisely

case, for example, of dense tree canopies, as shown in a
simulated pear orchard in Figure 1.

Previous works have proposed position-agnostic vision-
based navigation algorithms for row-based crops. A first
vision-based approach was proposed in [17] using mean-shift
clustering and the Hough transform to segment RGB images
and generate the optimal central path. Later, [18] achieved
promising results using multispectral images and simply
thresholding and filtering on the green channel. Recently,
deep-learning approaches have been successfully applied to
the task. [19] proposed a classification-based approach in
which a model predicts the discrete action to perform. In
contrast, [20] proposed combining a segmentation model and
a proportional controller to align the robot to the center
of the row. Finally, a different approach was tested in [11]
with an end-to-end controller based on deep reinforcement
learning. Although these systems proved effective in their
testing scenarios, they have only been applied in simple crops
where a full view of the sky favors both GPS receivers [21]
and vision-based algorithms [22].

This work tackles a more challenging scenario in which
dense canopies partially or totally cover the sky, and the GPS
signal is very weak. We design a navigation algorithm based
on semantic segmentation that exploits visual perception to
estimate the center of the crop row and align the robot
trajectory to it. The segmentation masks are predicted by
a deep learning model designed for real-time efficiency
and trained on realistic synthetic images. The proposed
navigation algorithm improves on previous works being
adaptive to different terrains and crops, including dense
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canopies. We conduct extensive experimentation in simulated
environments for multiple crops. We compare our solution
with previous state-of-the-art methodologies, demonstrating
that the proposed navigation system is effective and adaptive
to numerous scenarios.

The main contributions of this work can be summarized
as follows:

e« we present two variants of a novel approach for
segmentation-based autonomous navigation in tall
crops, designed to tackle challenging and previously
uncovered scenarios;

« we test the resulting guidance algorithm on previously
unseen plant rows scenarios such as high trees and
pergola vineyards.

« we compare the new method with state-of-the-art solu-
tions on straight and curved vineyards, demonstrating
an enhanced general and robust behavior.

The next sections are organized as follows: Section II
presents the proposed deep-learning-based control system
for vision-based position-agnostic autonomous navigation
in row-based crops, from the segmentation model to the
controller. Section III describes the experimental setting
and reports the main results for validating the proposed
solution divided by sub-system. Finally, Section IV draws
conclusive comments on the work and suggests interesting
future directions.

II. METHODOLOGY

This work proposes a real-time control algorithm with two
variants to navigate high-vegetation orchards and arboricul-
ture fields and improve the approach presented in [20]. The
proposed system avoids exploiting the GPS signal, which can
lack accuracy due to signal reflection and mitigation due to
vegetation.

The working principle of the proposed control algorithms
is straightforward and exploits only the RGB-D data. Both
the proposed solutions consist of four main steps:

1) Semantic segmentation of the input RGB frame.

2) Processing of the output segmentation mask using
depth frame data.

3) Searching for the direction which leads the mobile
platform towards the end of the row.

4) Generating linear and angular velocity commands to
input the mobile robot.

Nonetheless, the two proposed methods differ only for
steps 2 and 3 in employing the depth frame data and in
the generation of the path which the robot should follow.
In contrast, the segmentation technique 1 and the command
generation 4 are carried out similarly. A schematic represen-
tation of the proposed pipeline is described in Figure 2.

As in [20] a first step, an RGB frame X’rgb € Rhxwxe gnd
a depth map X/, € R are acquired by a camera placed on
the front of the mobile platform at each instant ¢, where 4 and
w are the width of the frame and c is the number of channels.
The received RGB data is then fed to a segmentation neural

network model Hyeg, which outputs a binary segmentation
mask bringing the semantic information of the input frame.

A

theg =H (Xlrgh) (1)

<t . . .
where X, is the estimated segmentation mask. Moreover,

the segmentation masks of the last N time instants {r —

N,...,t} are fused to obtain more robust information.
t ! j
& &
XCumSeg = U Xxeg (2
j=t—N

where XtCumSeg is the cumulative segmentation mask and the
operator |J represent the logical bitwise OR operation over
the last N binary frames.

Additionally, the depth map X/, is now used to consider
the segmented regions between the camera position and a
given depth threshold d;;, to remove useless information
given by far vegetation, which is irrelevant to control the
robot’s movement.

segDepthj:Q AT 1, if XCumSeg(i,j) 'Xd(1'7j) <dy,

) 3)
where Xeepeprn is the resulting intersection between the
cumulative segmentation frame and the depth map cut at a
distance threshold d,y.

Henceforth the proposed algorithm forks in two variants,
SegMin and SegMinD, respectively described in II-A and II-
B.

A. SegMin

The first variant improves the approach proposed in [20].
After processing the segmentation mask, a sum over the col-
umn is performed to obtain a histogram h € R", quantifying
how much vegetation is present on each column. Hereafter, a
moving average on a window of n elements is performed over
the array to smooth the values and make the control more
robust to punctual noise derived from the previous passages.
Ideally, the minimum of this histogram x; corresponds to
the regions where less vegetation is present and, therefore,
identifies the desired central path inside the crop row. If
more global minimum points are present (i.e., there is a
region where no vegetation is detected), the mean of the
considered points is considered to be the global minimum
and, in consequence, the continuation of the row.

B. SegMinD

The second proposed approach consists of a variant of
the previous algorithm, devised for wide rows with tall and
thick canopies, which in the previous case would generate
an ambiguous global minimum due to the constant presence
of vegetation above the robot. This variant multiplies the
previously processed segmentation mask for the normalized
inverted depth datum.

Al ot X!
Xdepthlnv = XsegDepth ﬂ <1 - dtZ) “4)
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Scheme of the overall proposed naVIgatlon pipeline. The RGB image is fed into the segmentation network, thus the predicted segmentation mask
»- The blue arrow refers to the SegMin variant, and red arrows refer to the SegMinD variant to

compute the sum histogram over the mask columns. Images are taken from navigation in the tall trees simulation world.

where )A(;ep,h,,w is the result of the element-wise mul-
t1;t)hcat10n represented by [), between the binary mask
Xegneprn and the depth frame Xd normalized over the depth
threshold dy;. As in the previous case, the sum over the
column is performed to obtain the 1D array h and, later on,
the smoothing through a moving average. The introduced
modification allows the closer elements to exert a greater

influence on identifying the row direction.

C. Segmentation Network

We adopt the same network used in previous works on
real-time crop segmentation [20], [6]. The model consists
of a MobilenetV3 backbone for feature extraction and an
efficient LR-ASPP segmentation head [23]. In particular, the
LR-ASPP leverages effective modules such as depth-wise
convolutions, channel-wise attention, and residual skip con-
nections to provide an effective trade-off between accuracy
and inference speed. The model is trained with a similar
procedure to [6] on the AgriSeg dataset!. Further details on
the training strategy and hyperparameters are provided in
Section III.

D. Robot heading control

The objective of the controller pipeline consists in keeping
the mobile platform at the center of the row, which, in this
work, is considered equivalent to keeping the row center in
the middle of the camera frame. Therefore, as defined in
the previous step, the minimum of the histogram should be
centered in the frame width. The distance d from the center

of the frame and the minimum is defined as:
w
d=x,— = 5
Xn— 5 )
The linear and angular velocities are then generated

through custom functions similarly as in [24].

Vs = Vimax 1<‘;) ©)

'https://picdser.polito.it/AgriSeg

d2

W; = 7/(0)1 * Wz max ﬁ @)

where vy e and @4, are respectively the maximum
achievable linear and angular velocities and kg, is the angular
gain which regulates the speed of the response. In order to
avoid abrupt changes in the robot’s motion, the final veloci-
ties vy and @, commands are smoothed with an Exponential
Moving Average (EMA) as:

RIS P

Z

where ¢ is the time step and A is a chosen weight.

III. EXPERIMENTS AND RESULTS
A. Simulation Environment

The proposed control algorithm was tested through the
use of Gazebo’ simulation software. The software was
selected because of its compatibility with ROS 2 and can
incorporate plugins that simulate sensors, such as cameras. A
Clearpath Jackal model was utilized to assess the algorithm’s
effectiveness. The URDF file, available through Clearpath
Robotics, contains all the necessary information regarding
the mechanical structure and joints of the robot. During the
simulation, an Intel Realsense D435i plugin was utilized,
positioned 20 cm in front of the robot’s center, and tilted
15° upwards. This positioning gave the camera a better view
of the upper branches of trees.

The navigation algorithm was tested in four different cus-
tom simulation environments: a common vineyard, a pergola
vineyard characterized by vine poles and shoots above the
row, a pear field constituted by small size trees, and a high
trees field where canopies of the trees are merged above the
row. Each simulated field adopts a different terrain, miming
the irregularity of uneven terrain. The detailed measurements
of the simulation world are described in Table I.

’https://gazebosim.org
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Fig. 3. Sample outputs of the proposed SegMinD algorithm for High
Trees (a), Pear Trees (b), Pergola Vineyard (c), and Vineyard (d). Predicted
segmentation masks are refined cutting values exceeding a depth threshold.
The sum over mask columns provides the histograms used to identify the
center of the row as its global minimum.

TABLE I
SIZE OF THE DIFFERENT SIMULATED CROPS, REFERRING TO THE
AVERAGE VALUES OF THE DISTANCE BETWEEN ROWS, THE DISTANCE
BETWEEN PLANTS ON THE ROW, AND THE HEIGHTS OF THE PLANTS.

Gazebo worlds Rows distance [m]  Plant distance [m]  Height [m]
Common vineyard 1.8 1.3 2.0
Pergola vineyard 6.0 1.5 2.9
Pear field 2.0 1.0 2.9
High trees field 7.0 5.0 12.5

During the experimental part of this work, we consider
frame dimensions equal to (h,w) = (224,224), which is the
same size as the input and the output of the neural network
model, with the number of channels ¢ = 3. The maximum
linear velocity has been fixed to vy uq = 0.5m/s, and the
maximum angular velocity has been fixed to @, e = 1rad /s.
The angular velocity gain @, g4, has been fixed to 0.01,
and the EMA buffer size has been fixed to 3. The depth
threshold has been changed according to the various crops.
In particular, it has been empirically fixed to 5 m in the case
of vineyards, while it was increased to 8 m for pear trees
and pergola vineyards and 10 m for tall trees according to
the average distance from the rows in the diverse fields.

B. Segmentation Network Training and Evaluation

We train the crop segmentation model using a subset of
the AgriSeg segmentation dataset [6]. In particular, for the
High Tree and Pear crops, we train on Generic Tree splits
1 and 2, and on Pear; for Vineyards, we train on Vineyard

(b)

(© (d)

Fig. 4. Gazebo simulated environments used to test the SegMin approach
in relevant different crops rows: wide rows composed of high trees (a),
a narrow pear tree row (b), a pergola vineyard with asymmetric rows (c),
straight and curved vineyard rows (d). In the last case, the tests were carried
out in the second row from above and the second row from below.

and Pergola Vineyard (note that the testing environments are
different from the ones from which the training samples are
generated). In both cases, the model is trained for 50 epochs
with Adam optimizer and learning rate 3 x 10~*. We apply
data augmentation by randomly applying cropping, flipping,
greyscaling, and random jitter to the images. Our experimen-
tation code is developed in Python 3 using TensorFlow as
the deep learning framework. We train models starting from
ImageNet pretrained weights, so the input size is fixed to
(224 x 224). All the training runs are performed on a single
Nvidia RTX 3090 graphic card.

C. Navigation Results

The overall navigation pipeline of SegMin and its variant
SegMinD are tested in realistic crops fields in simulation
using relevant metrics for visual-based control without pre-
cise localization of the robot, as done in previous works
[20], [11]. The camera frames are published at a frequency
of 30 Hz, while the inference is carried out at 20 Hz, and
the controllers publish the velocity commands at 5 Hz. The
evaluation has been performed using the testing package of
the open-source PIC4rl-gym> in Gazebo [25]. The selected
metrics aim at evaluating the effectiveness of the navigation
(clearance time) as well as the precision, quantitatively
comparing the obtained trajectories with a ground truth one
through Mean Absolute Error (MAE) and Mean Squared Er-
ror (MSE). The ground truth trajectories have been computed
by averaging the curve obtained by interpolating the plants’
poses in the rows. For the asymmetric pergola vineyard case,
the row is intended as the portion of the pergola without
vegetation on top, as shown in Figure 4 (c). The response
of the algorithms to terrain irregularity and rows geometry
is also studied, including in the test significant kinematic
information of the robot. The cumulative heading average
Y[rad] along the path is considered, together with the mean
linear velocity vaug[m/s| and the standard deviation of the
angular velocity ®ggg.v[rad/s] commands predicted to keep

3https://github.com/PIC4SeR/PIC4rl_gym
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TABLE 11
NAVIGATION RESULTS OBTAINED IN DIFFERENT TEST FIELDS WITH THE SEGMIN, SEGMIND, AND PREVIOUS WORK SEGZEROS

SEGMENTATION-BASED ALGORITHMS. THE METRICS TEST THE EFFECTIVENESS OF THE NAVIGATION (CLEARANCE TIME) AND ITS PRECISION WITH

MEAN ABSOLUTE ERROR (MAE) AND MEAN SQUARED ERROR (MSE) BETWEEN OBTAINED AND GROUND TRUTH PATH. THE CUMULATIVE

HEADING AVERAGE Y[rad], THE MEAN LINEAR VELOCITY Vgyg[n/s], AND THE STANDARD DEVIATION OF THE ANGULAR VELOCITY @yaqev|rad /s)
COMMANDS PROVIDE RELEVANT KINEMATIC INFORMATION OF THE ROBOT WHILE NAVIGATING. SEGZEROS IS NOT APPLICABLE IN THE CASE OF

HIGH TREES, PEAR TREES, AND PERGOLA VINEYARDS SINCE THE SKY MAY BE COVERED BY VEGETATION.

Test Field Method Clearance time [s] MAE [m] MSE [m] Cum. Yy, [rad] Vavgm/s] Ogqdev[rad/s|
High Trees SegMin 40.409 = 0.117 0.265 + 0.005  0.084 + 0.003 0.079 + 0.001 0.487 + 0.000  0.054 + 0.002
SegMinD 40.440 £ 0.515 0.174 £ 0.006 0.036 + 0.002 0.048 + 0.002 0.484 + 0.006  0.063 £ 0.019
Pear Trees SegMin 42.058 + 1.228 0.034 £ 0.012  0.002 = 0.001 0.013 + 0.002 0.483 + 0.003  0.108 £ 0.054
SegMinD 42.259 + 1.912 0.031 £ 0.017  0.002 £ 0.002 0.016 + 0.004 0.477 £ 0.009  0.026 £+ 0.004
Pergola Vineyard SegMin 40.859 + 0.386 0.077 £ 0.011  0.011 £ 0.003 0.030 + 0.022 0.479 £ 0.003  0.174 £ 0.021
SegMinD 41.135 £ 0.329 0.097 +£ 0.052 0.015 £ 0.014 0.029 + 0.011 0.475 £ 0.004 0.204 + 0.032
Straight Vineyard SegMin 50.509 = 0.305 0.105 £ 0.003  0.014 = 0.001 0.033 + 0.002 0.487 + 0.000 0.079 £ 0.011
SegMinD 50.629 + 0.282 0.110 £ 0.005 0.018 + 0.003 0.026 + 0.009 0.486 + 0.001 0.088 + 0.005
SegZeros 53.695 + 1.029 0.138 +£ 0.025 0.024 + 0.010 0.027 + 0.004 0.457 +£ 0.008  0.089 + 0.008
Curved Vineyard SegMin 53.321 £ 0.249 0.115 £ 0.008 0.017 + 0.002 0.036 + 0.008 0.487 + 0.001  0.088 + 0.021
SegMinD 51.444 + 1.030 0.093 £ 0.005 0.012 + 0.001 0.015 + 0.004 0.484 + 0.007  0.065 £ 0.008
SegZeros 71.048 £ 27.132 0.108 £ 0.044  0.019 + 0.009 0.045 + 0.008 0.395 £ 0.127 0.114 £ 0.039
RGB SegMin SegMinD

the robot correctly oriented. The mean value of w is always
close to zero due to the consecutive correction of the robot
orientation.

The complete results collection is reported in Table II. For
each metric, an average value and the standard deviation are
indicated since all the experiments have been repeated over
3 runs on a 20 m long track in each crop row. The proposed
method demonstrates to solve the problem of guiding the
robot through tree rows with thick canopies (high trees and
pears) without a localization system, as well as in peculiar
scenarios such as the pergola vineyards. The identification
of plant branches and wooden supports hinders the usage of
previously existing segmentation-based solutions that were
based on the assumption of finding a free passage solely
considering the zeros of the binary segmentation mask [20].
We refer to this previous method as SegZeros in the compari-
son of the results that we tested using the same segmentation
neural network.

The SegMin approach based on histogram minimum
search demonstrates to be a robust solution to guide the
robot through tree rows. The introduction of the depth inverse
values as a weighting function allows SegMinD to further
increase the precision of the algorithm in following the cen-
tral trajectory of the row in complex cases such as wide rows
(high trees) and curved rows (curved vineyard). The different
sum histograms obtained with SegMin and SegMinD are
directly compared in Figure 5, showing the sharper trend and
the global minimum isolation obtained, including the depth
values. Moreover, the novel methods show competitive per-
formance also with standard crop rows where a free passage
to the end of the row can be seen in the mask without the
disturbance of canopies. The histogram minimum approach
significantly reduces the navigation time and the trajectory
precision in vineyard rows (straight and curved) compared
to the previous segmentation-based baseline method. The

Fig. 5. Comparison of the two histograms obtained using the two different
algorithms, given the RGB frame on the right. It can be noticed how
SegMinD offers a narrower and less ambiguous global minimum point.

search of plant-free zero clusters in the map results in being
less robust and efficient, leading the robot to undesired stops
during the navigation and to an overall slower and more
oscillating behavior. Moreover, the standard deviation of the
angular velocity is coherent with the obtained results, being
smaller in the cases when the trajectory is more accurate,
and the cumulative heading shows larger values when the
algorithms are more reactive.

Nonetheless, the trajectories obtained with the SegMin,
SegMinD and SegZeros algorithms are also visually shown in
Figure 6 inside representative scenarios: a cluttered, narrow
row with small pear trees, a wide row with high trees, and
curved vineyards with state-of-the-art method SegZeros.

IV. CONCLUSIONS

In this work, we presented a novel method to guide to
a service-autonomous platform through crop rows where a
precise localization signal is often occluded by the vegeta-
tion. Trees rows represented an open problem in row crop
navigation since previous works based on image segmenta-
tion or processing failed due to the presence of branches and
canopies covering the free passage for the rover in the image.
The proposed pipeline SegMin and SegMinD overcome this
limitation by introducing a global minimum search on the
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A Map-Free LiDAR-Based System for Autonomous Navigation in
Vineyards

Riccardo Bertoglio!, Veronica Carini!, Stefano ArrigoniZ, and Matteo Matteucci

Abstract— Agricultural robots have the potential to increase
production yields and reduce costs by performing repetitive and
time-consuming tasks. However, for robots to be effective, they
must be able to navigate autonomously in fields or orchards
without human intervention. In this paper, we introduce a navi-
gation system that utilizes LIDAR and wheel encoder sensors for
in-row, turn, and end-row navigation in row structured agricul-
tural environments, such as vineyards. Our approach exploits
the simple and precise geometrical structure of plants organized
in parallel rows. We tested our system in both simulated and
real environments, and the results demonstrate the effectiveness
of our approach in achieving accurate and robust navigation.
Our navigation system achieves mean displacement errors from
the center line of 0.049 m and 0.372 m for in-row navigation in
the simulated and real environments, respectively. In addition,
we developed an end-row points detection that allows end-row
navigation in vineyards, a task often ignored by most works.

I. INTRODUCTION

The increasing demand for food in the current climate-
changing environment introduces new challenges, such as
the necessity of increasing production and the sustainability
of crop management while reducing costs [1]. Agricultural
robots can help achieve these goals by performing repetitive
and time-consuming tasks, allowing farmers to improve pro-
duction yields. At the same time, for robots to be effective,
they must be able to navigate autonomously in fields or
orchards without human intervention. Navigation approaches
can be broadly divided into two categories: those with
or without a map of the environment. While map-based
approaches can be helpful in unstructured environments, they
require a more expensive sensor suite and incur increased
computational effort. Additionally, localization on a pre-built
map can fail due to the constantly changing nature of agricul-
tural environments. Nevertheless, agricultural environments
typically have a simple and precise geometrical structure,
with crops organized in parallel rows. This structure can be
exploited for navigation without the need for a map.

Autonomous navigation in agriculture often utilizes GNSS
information for pre-planned routes or as supplementary infor-
mation. Additionally, Differential GNSS technology provides
higher localization accuracy of up to centimeters. However,
the GNSS signal is not always available, especially for
those cultivations with high plants and abundant vegetation.
LiDAR and camera sensors are also utilized for navigation.
LiDARs can be either 2D or 3D sensors, with the latter

1 Department of Electronics, Information and Bioengineering, Politecnico
di Milano, Milan, Italy {name . surname}@polimi.it

2Department of Mechanical Engineering, Politecnico di Milano, Milan,
Italy stefano.arrigoni@polimi.it
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Fig. 1. Our robotic platform navigating a real vineyard.

characterized by multiple scanning planes. LiDAR sensors
provide a geometrical view of the environment, work at a
reasonable frequency (over 10 Hz), and are precise. Cameras,
such as RGB, stereo, or RGB-D, provide a more complex
semantic interpretation of the environment, which is helpful
for tasks like obstacle avoidance. Stereo and RGB-D cam-
eras can also produce 3D renderings of the environment.
Although LiDARSs only provide geometrical data, they are
less susceptible to lighting conditions than cameras, which is
essential in agricultural environments where strong sunlight
and shadows are typical.

The VINBOT project [2] has developed a vineyard naviga-
tion system combining a line detection algorithm and GNSS
navigation for in-row navigation. Two lines representing
vineyard rows were identified using a 2D laser and RANSAC
algorithm. The robot changed the corridor by rotating around
one of two points representing the plant’s end. Localization
relied on IMU, GPS, and wheel odometry data, but tests have
shown that plant holes should be manually managed to avoid
misinterpretation.

The VineSLAM algorithm, described in [3], employed
laser rangefinder data and known parameters to identify
trunks and masts as landmarks for 2D SLAM. RFID tags
were utilized to mark the corridor boundaries for topological
mapping. However, the algorithm’s accuracy relied on the
detection of trunks and masts, and external factors such as
grass and wind introduced substantial noise, compromising
navigation reliability.
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Bernad et al. [4] proposed three straightforward in-row
navigation approaches using only 2D LiDAR data. The most
effective algorithm involved calculating the average distance
from both sides of the crop row and estimating an orientation
correction based on the offset. They achieved an accuracy of
0.041 m=+0.034 m from the center line when testing outdoors
with potted maize plants.

Rovira-Mis et al. [5] presented a multi-sensor navigation
approach for inside-row guidance. The authors used a so-
called Augmented Perception Obstacle Map (APOM) to store
and evaluate readings from a 3D stereo camera, LiDAR, and
ultrasonic sensors. The map is then analyzed to find specific
situations representing the status of row detection. The next
navigation target point is only computed if one or both rows
are found.

Mengoli et al. [6], [7] proposed Hough Transform-based
methods for orchard navigation, including in-row and row-
change maneuvers. The authors enhanced robustness by
incorporating vineyard geometry conditions and using GPS
to identify corridor ends. The detected pivot point in row-
change maneuvers had an RMSE of 0.3429 m in the x
direction and 0.5840 m in the y direction.

Aghi et al. [8] introduced a vineyard in-row navigation
algorithm with two components. The first component uses
an RGB-D camera’s depth map to detect the end of the
row by fitting a rectangular area to the farthest pixels. In
case of failure, a backup algorithm takes over, utilizing a
neural network to identify and correct the robot’s orientation
if needed.

The Field Robot Event (FRE)' is a robotics compe-
tition that focuses on autonomous navigation in agricul-
tural environments. We drew inspiration from the in-row
navigation approach used by the Kamaro team [9] in the
2021 FRE competition for maize fields and adapted it for
vineyard navigation. Our navigation system utilizes a single
LiDAR and wheel encoders to reduce sensor requirements
and costs. Additionally, we developed an end-row naviga-
tion algorithm to facilitate autonomous row changes. We
proposed a straightforward evaluation benchmark for in-
row navigation and end-row point detection, eliminating
the need for external devices like laser tracking or Dif-
ferential GNSS systems. The system was tested in both
real vineyard (see Figure 1) and simulated environments.
The complete algorithm code is available at this GitHub

"https://fieldrobot.nl/event

The general navigation software architecture.

repository: https://github.com/AIRLab-POLIMI/
MFLB-vineyard-navigation.

II. MATERIALS AND METHODS

We developed our navigation algorithm for a skid-steering
mobile robot, although the general structure can also be
adapted to other types of kinematics. The navigation software
was implemented using the Robot Operating System (ROS)
library, specifically the Melodic version on Ubuntu 18.04
LTS. The software architecture is presented in Figure 2.

Initially, the robot is assumed to reach the beginning of a
row; the In-row navigation module guides the robot to follow
the row until the end is detected. Then, the robot performs an
open-loop turn managed by the End-Row navigation module,
which guides the robot along the border of the vineyard until
it reaches a specified row to turn into, where the In-row
navigation module is reactivated. The following gives a more
detailed description of each algorithm component.

A. Input Data

Our algorithm needs very few input data, namely, an
odometry source and 2D laser scans. Since we used a robot
with a skid-steering kinematic, we computed its odometry
with the model presented in [10]. The kinematic relation is

expressed as follows:
v
¢ Vi
v | =4 (Vl) (M

Wy

where v = (v, vy) is the vehicle’s translational velocity with
respect to its local frame, w, is its angular velocity, V; and
V., are the left and right linear tread velocities, and matrix
A is defined by Equation (2). Following the experiments
presented in [10] we have calibrated the matrix A that, in the
case of an ideal symmetrical kinematic, takes the following
form:

o 0 0
A= 3 - |ZrcrR TICR 2
TICR 1 1

where, x;c g is the £ —axis component of the Instantaneous
Center of Rotation (ICR), and « is a correction factor to
account for mechanical issues such as tire inflation conditions
or the transmission belt tension. Both these parameters have
been empirically estimated following the directions provided
in [10].
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Beyond odometry, our navigation system expects 2D laser
scans to perceive the environment. We transformed LiDAR
messages from an Ouster OS1 3D LiDAR sensor into 2D
laser scans through the pointcloud_to_laserscan ROS pack-
age®. We set the sensor at 10 Hz and 1024 points for each
of its 64 planes. We then filtered the laser scan messages
to reduce their size. We first applied radius filtering to
remove points outside a circle centered on the sensor and
then downsampling to reduce the density of points. We also
applied outlier filtering to remove noise from data.

B. In-row navigation

In the in-row navigation stage, the navigation system
makes the robot traverse a corridor created by two lines of
plants by maintaining an equal distance from them as much
as possible. The approach we used for the in-row navigation
has been adapted from that of the Kamaro team® which
participated in the 2021 FRE competition.

The functioning of the In-row navigation module is graph-
ically illustrated in Figure 3. The find_cone method analyzes
the laser scan messages to find an obstacle-free cone in front
of the robot. To do so, a cone centered on the moving robot
direction is gradually grown by enlarging the apex angle
until a certain number of points fall inside the cone. The
two cone sides are moved independently, and they have a
configurable length. Once the cone is found, we compute an
angular offset between the cone center line and the robot
center line. This angular offset is increased by an additional
offset proportional to the distance between the robot and
corridor center. The latter distance is computed by growing
two rectangles on the side of the robot until a certain number
of points fall into them. A graphical representation of the
cone and rectangles is shown in Figure 4.

The final angular offset defines a new line pointing toward
the steering direction. We use a PID controller to steer toward
the point on this line that is 1 m in front of the robot. The
linear speed is set to a constant value, and it is reduced if an
object in front of the robot is detected. The algorithm uses

2https://github.com/ros-perception/pointcloud_to_
laserscan

3https://github.com/Kamaro-Engineering/fre2l_row_
crawl

Fig. 4. The robot navigating inside a row in the simulated environment.
The two thick red lines represent the sides of the cone, while the red square
on the center line represents the new navigation point to follow. The light
green rectangles are used to compute the distances from both sides. The
semi-transparent rectangle in front of the robot is used to check if the end of
the row is reached by counting the number of points inside it. The rectangle
placed in the middle-front part of the robot is used to check an obstacle’s
distance and reduce speed accordingly.

a rectangle in front of the robot to calculate the target speed
based on the distance between the robot and any obstacles.

At each linear and angular speed update, the In-row
module checks if the end of the row has been reached. This
procedure involves a rectangular area (colored light green in
Figure 4) placed in front of the robot, spanning the entire
corridor and part of both row sides. The corridor is over
when the number of points in the rectangle approaches zero.
The last step is to exit the row by a fixed distance measured
through the robot odometry. Since the latter distance is
usually of about 1 m, the odometry guarantees a reasonable
accuracy.

Once the robot has exited a row, it performs an in-place
rotation by a fixed angle (usually 90°). The user needs to
set the direction of the first rotation, left or right. During the
rotation, the odometry is monitored to halt the robot when the
required angle has been performed. Note here that we expect
the robot to skid, and because of this, the effective rotation
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might differ from 90°. However, the algorithm overcomes
this problem by selecting two end points—one positioned in
front and the other at the back of the robot. Subsequently,
it rotates the robot to align its moving direction parallel
to the line segment connecting these two points. It’s also
important to note that the robot does not need to be perfectly
aligned with the row direction when it begins navigating at
the beginning of the row. In both scenarios, the algorithm
compensates for an incomplete rotation up to a specific
angle. The maximum angle that can be recovered depends
on factors such as the width of the row, the robot’s distance
from the row’s starting point, and algorithm parameters like
the length of the cone sides. Once the turn is completed, the
navigation system activates the End-row navigation module.

C. End-row navigation

After completing the turn, the navigation system initiates
the End-row algorithm. A schematic representation of the
End-row navigation algorithm is presented in Figure 5. The
primary objective of this algorithm is to enable the robot
to travel perpendicularly to the field rows until it reaches
the next corridor. The algorithm is specifically designed to
leverage row ends, which typically consist of wooden support
poles in vineyards. We employed the Euclidean Cluster
Extraction technique [11] to identify row ends from the 2D
point cloud data. This simple algorithm is highly effective
in vineyards because the rows are widely separated by open
areas to allow for human operations. Each obtained cluster
represents a row end.

The subsequent task selects a point for each recognized
cluster, representing the row end. We evaluated two policies
to select such end point. The first policy, termed Nearest,
involves selecting the nearest cluster point to the robot center,
which is surrounded by a minimum number of points at
a threshold distance. Therefore, the circular neighborhood’s
radius and the minimum number of points are parameters
that need to be configured. The second policy, called Line
fitting, involves a first step in which the end point is selected
with the Nearest policy, then a line is fitted to the cluster
of points, and finally, the end point is projected onto that
line. We implemented line fitting using the random sample
consensus (RANSAC) algorithm, finding that 100 iterations
and a distance threshold of 0.1m offer a good balance
between speed and accuracy.

After detecting the points representing row ends, we use
them to construct segments that indicate the navigation di-

End-row navigation algorithm.

Fig. 6. A screenshot of the simulation environment with the clustered row
ends. Each cluster is represented with a different color. With red squares
are shown the selected end points according to the Nearest policy. The red
line represents the segments the robot follows to navigate perpendicularly
to row ends.

rection. Indeed, the navigation system keeps a fixed distance
from row ends by maintaining a moving direction parallel
to such fitted segments. Figure 6 displays the clustered row
ends in various colors and the identified end points through
the Nearest policy with red squares. Additionally, the current
direction segment is shown with a red line. Figure 7 shows
the clusters and end points obtained through the Line fitting
policy.

While the robot navigates parallel to end rows, it keeps
track of the number of passed row ends and stops in the
middle of the next corridor to enter. Then it will perform a
90° in-place rotation, and the system will activate the In-row
navigation module again.

III. RESULTS

We conducted experimental tests in both simulated and
real environments. The simulation has been performed on the
Gazebo simulator with vineyard models at different vegeta-
tive stages taken from the BACCHUS project repository* (see
Figure 8). We also performed tests in a real vineyard located
on the Piacenza (Italy) campus of the Universita Cattolica del
Sacro Cuore. The simulated environment consisted of three
vineyard corridors approximately 36 m long and approxi-
mately 2m large, characterized by three different vegetative
stages: low, medium, and high. The results reported for

4https://github.com/LCAS/bacchus_lcas
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Fig. 7. A screenshot of the simulation environment when the robot is
performing end-row navigation. End row points are clustered, and a line is
fitted for each cluster (green lines). Then, each end point (red squares) is
projected onto the line model of its cluster.

Fig. 8. A screenshot that depicts a portion of the simulated vineyard.

the simulated environment are thus an average over the
three vegetative stages. The real environment was a single
vineyard corridor with a length of approximately 40 m and
a width of approximately 2.5 m, which is one of the typical
settings in Italy. The vegetative stage of the real vineyard
was comparable to the high vegetative stage of the simulated
one. During the tests, we reached a maximum linear speed
of 2ms~! in the simulated environment and 1ms~! in the
real environment for both in-row and end-row navigation. We
mounted the Ouster OS1 LiDAR sensor at an approximate
height of 1 m from the ground.

The navigation system ran on an onboard Shuttle XPC
(model DS81L15) equipped with an Intel(R) Core(TM) i7-
4790S CPU and 8 GB of RAM. The LiDAR sensors pro-
duced messages at a frequency of 10 Hz, and the odometry
was published at 50 Hz. All the ROS nodes were capable
of keeping up with the 10Hz frequency of the LiDAR,
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except for the nodes responsible for clustering and end point
detection, which proved to be the bottleneck of the system.
Specifically, the node performing clustering with the Nearest
end point picking policy operated at a minimum frequency
of 9Hz, while the one using the Line fitting policy ran at
a minimum frequency of 5Hz. Nevertheless, the bottleneck
only affected the end-row navigation, which represents a
small part of the total path traversed in a vineyard.

A. In-Row Navigation Evaluation

To evaluate the precision of the In-row navigation module,
we measured the robot’s displacement from the central row
line. This displacement was determined by calculating the
absolute distance between the robot’s center and the central
line of the row. In the simulated environment, we had access
to the true robot position, whereas in the real-world test,
we relied on the side distance measurements of the In-row
algorithm performed via the LiDAR (which has a precision
of £0.01 m). Evaluating navigation accuracy in real agricul-
tural environments is a challenging and ambiguous task cur-
rently addressed by agricultural robotics competitions such
as that described in [12]. Alternatively, one could utilize an
expensive yet highly accurate laser position tracking system,
although determining the optimal target trajectory remains a
nontrivial problem. In our case, we defined a perfectly row-
centered trajectory as the optimal one. However, in both the
simulation and the real vineyard, protruding vegetation and
branches caused the robot to deviate from the central line,
resulting in some average deviation from the center. Table I
presents the outcomes of in-row navigation tests performed
in simulation across three rows at varying vegetation stages
and in two real vineyard rows.

Measurements | Simulation | Real

Mean center displacement 0.049m 0.372m

Max center displacement 0.167m 1.183m

Mean corridor width 1.373m 2.142m

Max corridor width 2.300 m 2.620m

Min corridor width 0.740 m 1.600 m
TABLE 1

IN-ROW NAVIGATION EVALUATION RESULTS.

The mean displacement from the central line was 0.049 m
in the simulated environment, whereas in the real vineyard,
we observed a mean displacement of 0.372m. In both
scenarios, the robot successfully avoided protruding branches
and never collided with the row sides. Table I also presents
the row width measurements computed from LiDAR scans.
The measurements indicate that protruding vegetation causes
row width variations, impacting robot centering. In the real
scenario, the minimum measurable row width of 1.6 m was
reached, as our LiDAR has a minimum scanning distance of
0.8m.

B. Row Ends Detection Evaluation

To estimate the accuracy of the row ends detection, we
computed the Euclidean distance between the true center
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Pole distance | Simulation Real

error | Nearest | Line fitting | Nearest | Line fitting

Mean 0.205 m 0.155m 0.23m 0.26 m

Max 0.540 m 0.363 m 0.30m 0.32m

Min 0.038 m 0.013m 0.15m 0.20m
TABLE II

ROW END POINTS DETECTION EVALUATION.

of row support poles and those detected by our row ends
detection system. It is important to note that the assumption
that the pole center is always the true row end point is not
always valid, as vegetation can cover the pole and protrude
outward. In the simulated environment, we computed the
instantaneous Euclidean distance from the real pole center to
the end point detected by our system during a full turn from
one row to the next. We performed measurements for three
different vegetative stages. In the real environment, obtaining
multiple measurements of the real displacement of the pole
center from the robot is laborious and time-consuming. Fur-
thermore, without any absolute positioning system available,
the only way to measure it was manually, which introduced
measurement errors in the order of centimeters. Therefore,
we statically positioned the robot in the middle of a row to
detect the two side end points and compared them to manual
measurements.

In both the simulated and real scenarios, we compared
the two policies explained in section II-C: Nearest and Line
fitting. Table II shows the mean, max, and min distances
between the true center poles coordinates and those detected
by our system. In the simulated scenario, the Line fitting
policy was more accurate with a mean of 0.155m. The
Nearest policy also showed an acceptable mean distance of
0.205m while being less computationally intensive. In the
real scenario, the accuracy of both policies was comparable
since the difference in the order of centimeters could be at-
tributable to the error of manual measurements. Nonetheless,
our row ends detection system performed accurately in both
scenarios.

IV. CONCLUSIONS

In this paper, we have presented a simple and efficient
map-free LiDAR-based navigation system designed for vine-
yard applications. Our approach relies on the geometrical
structure of the environment and does not require a pre-
built map or GNSS measurements. The navigation system is
capable of in-row, turn, and end-row navigation and has been
tested in both simulated and real vineyards. The results of
our experiments indicate that the proposed navigation system
achieves accurate and reliable navigation performance, even
under challenging vineyard conditions with variations in row
spacing and vegetative stages. The system can effectively
detect protruding vegetation and adjust the trajectory ac-
cordingly, potentially reducing crop damage. The proposed
navigation system is simple and cost-effective, relying only
on odometry and LiDAR as sources of information, requiring
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low computational effort. Future work can explore testing
with a 2D LiDAR to compare the navigation precision and
extend the system’s evaluation to other types of line-arranged
crops. Additionally, the system could be integrated with a
robust semantic obstacle detection algorithm to enhance the
navigation system’s safety.
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Surgical fine-tuning for Grape Bunch Segmentation
under Visual Domain Shifts

Agnese Chiatti', Riccardo Bertogliol, Nico Catalano!, Matteo GattiZ, and Matteo Matteucci®

Abstract— Mobile robots will play a crucial role in the
transition towards sustainable agriculture. To autonomously
and effectively monitor the state of plants, robots ought to be
equipped with visual perception capabilities that are robust to
the rapid changes that characterise agricultural settings. In
this paper, we focus on the challenging task of segmenting
grape bunches from images collected by mobile robots in
vineyards. In this context, we present the first study that applies
surgical fine-tuning to instance segmentation tasks. We show
how selectively tuning only specific model layers can support
the adaptation of pre-trained Deep Learning models to newly-
collected grape images that introduce visual domain shifts, while
also substantially reducing the number of tuned parameters.

I. INTRODUCTION aAND BACKGROUND

The climate change crisis has highlighted the impor-
tance of increasing the sustainability of food production, as
prescribed in the European Commission’s “Farm to Fork”
strategy'. In this regard, digital technologies are playing a
crucial role in reducing the amount of water and chemicals
used in agriculture [1]. One of the key applications of digital
technologies is the deployment of mobile robots, which can
perform a range of tasks such as plant spraying [2], weeding
[3], and harvesting [4]. To carry out these tasks effectively,
robots need the ability to autonomously monitor plant traits
and status, a task also known as plant phenotyping. For
example, in vineyards, a robot must be capable of detecting
plant organs for posing the appropriate cuts during winter
pruning operations [5]. They also ought to accurately identify
the presence of grape bunches, their level of ripeness, and
promptly detect the emergence of any diseases that may
compromise the fruit quality.

Robot’s perception systems deployed in agricultural set-
tings face particular challenges due to the significant weather
and seasonal variations that characterise these environments.
Thus, ensuring the effective reuse of visual patterns and fea-
tures learned under specific environmental conditions (e.g.,
in terms of weather, lighting, and plant diversity) becomes
crucial. This requirement stems from the need to guarantee
accurate plant monitoring, even when the underlying con-
ditions change. For instance, viewpoint changes caused by
different sensor positions and occlusions caused by leaves are
prominent factors that can hinder the accurate monitoring of
fruit [6], [7].

1 Department of Electronics, Information and Bioengineering (DEIB),
Politecnico di Milano, Milan, Italy {name . surname}@polimi.it

2 Department of Sustainable Crop Production, Universita Cattolica del
Sacro Cuore, Piacenza, Italy matteo.gatti@unicatt.it
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The widespread application of Deep Learning (DL) meth-
ods has considerably accelerated the progress in various
visual perception tasks, including plant phenotyping [8].
However, supervised DL methods typically require abundant
training data and are susceptible to changes in the data
distribution. Moreover, training all model parameters on new
data is a costly process in terms of computational power
and memory footprint, especially when working on edge
devices and mobile platforms. To address these issues, one
possible approach is to pre-train the model on a large-
scale source domain and fine-tune the parameters on a few
examples from the target domain. The aim of fine-tuning
is to adapt the model to the target domain while retaining
the information learned during pre-training, particularly in
cases where the source and target distributions significantly
overlap despite the shift. This process is commonly known
as transfer learning. A traditional transfer learning practice
known as linear probing involves fine-tuning only the last
few layers of a Deep Neural Network (DNN) while reusing
features from earlier layers. This approach was based on
initial evidence suggesting that representations in earlier
layers may be more transferable to new data and tasks than
the specialised features learned in higher layers [9].

Recent research [10], [11] has explored effective alterna-
tives to this consolidated fine-tuning practice. Indeed, Lee
et al. [10] discovered that selectively tuning only the earlier,
intermediate, or last layers of a DNN can counteract different
types of distribution shifts and often even outperform cases
where all model parameters are tuned. They have named this
approach surgical fine-tuning (SFT). Their study concerned
transfer learning across different image classification bench-
marks, such as CIFAR and ImageNet. However, the authors’
conclusions have yet to be validated on image segmentation
tasks and data gathered in real-world application scenarios,
e.g., from mobile robots.

This paper focuses on the task of grape bunch seg-
mentation, which is a critical prerequisite for autonomous
plant phenotyping and yield forecast in vineyards [12]-
[14]. Our research investigates whether surgical fine-tuning
can support grape bunch segmentation under visual domain
shifts. To address this research question, we extend the study
of surgical fine-tuning from image classification models to
instance segmentation architectures in the specific case of
viticulture. The work in [12] is most closely related to this
study, because it evaluates the utility of linear probing for
grape segmentation. However, the experiments in [12] did
not examine the option of fine-tuning layers other than the
classification head.

979-8-3503-0704-7/23/$31.00 ©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component p$ this work in other works.
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To facilitate the analysis of different types of visual
domain shifts that characterise vineyards, we introduce the
VINEyard Piacenza Image Collections (VINEPICs) [15],
a comprehensive and novel grape image archive. In [14],
Santos et al. presented the Embrapa Wine Grape Instance
Segmentation Dataset (WGISD), which is a large-scale col-
lection of vineyard images displaying high-resolution in-
stances of grape bunches across five different grapevine
varieties. Our dataset was gathered in a distinct geographic
area and it encompasses different grapevine varieties from
those in the WGISD dataset, including wine and table
grapes. Crucially, the proposed VINEPICs dataset contains
additional variations in terms of camera viewpoint, scene
occlusion, and time of data collection. Moreover, we captured
images using a consumer-grade camera mounted on a mobile
robot, which presents additional challenges due to possible
motion blur from the robot’s movement. As such, the con-
tributed dataset more closely resembles realistic setups in
autonomous vineyard phenotyping compared to the WGISD
benchmark.

Our results from applying the widely-adopted Mask R-
CNN model [16]-[18] to challenging robot-collected images
indicate that adopting a surgical fine-tuning strategy can
significantly outperform both linear probing and full param-
eter tuning when novel samples that introduce distribution
shifts are considered. The paper is structured as follows. In
Section II, we present the reference datasets, ablation study,
technical implementation, and evaluation metrics used in our
experiments. We then discuss the experimental results in
Section III. Concluding remarks and future extensions of this
work are left to Section IV.

II. MATERIALS AND METHODS

To test the performance of applying surgical fine-tuning
to instance segmentation models, we ran a set of layered
experiments. Consistently with [10], we set up the training
in two stages. First, we pre-trained on the largest available set
of examples for the grape segmentation task: namely WGISD
in this case [19]. Then, we considered different target sets
that introduce a distribution shift from the source set. The
goal was evaluating the extent to which transfer learning can
be achieved from source to target, with minimal adjustments,
thanks to surgical fine-tuning. Differently from [10], where
the evaluation set was held out from the same data used for
fine-tuning, we ran inferences on a different dataset, collected
one year after the fine-tuning set. This setup resembles
the real-world challenges of viticulture applications. Indeed,
grape images can be collected only at specific times of the
year and adapting learning models from past years to newly-
collected data becomes essential.

A. Datasets

Embrapa WGISD. The Embrapa Wine Grape Instance
Segmentation Dataset (WGISD) [19] comprises 300 high-
resolution images depicting 2,020 grape bunches from five
Vitis vinifera L. grapevine varieties: Chardonnay, Cabernet
Franc, Cabernet Sauvignon, Sauvignon Blanc, and Syrah.
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TABLE I: Domain shifts from source to target data.

Dataset Changes introduced  Shift types[10] Instances

Source: WGISD - - 2,020
geographic area, natural,

Fine-tuning set:  vineyard, feature-level

VINEPICs21 Red Globe input-level 668
camera setup

Target sets:

VINEPICs22R temporal: input-level 100
different years

VINEPICs22RV  temporal, input-level 112
camera viewpoint

VINEPICs22RF temporal, input-level 105
foliage occlusion

VINEPICs22C temporal, input-level 138
grape variety feature-level
(Cabernet S.: red)

VINEPICs220 temporal, input-level 135

grape variety feature-level

(Ortrugo: white)

The images were captured at the Guaspari Winery (Espirito
Santo do Pinhal, Sdo Paulo, Brazil) in April 2018, with the
exception of images of the Syrah dataset that was collected in
April 2017. Grape bunches were photographed while keeping
the camera principal axis approximately perpendicular to the
vineyard row, using both a Canon EOS REBEL T3i DSLR
camera and a Motorola Z2 Play smartphone and were resized
and stored at a resolution of 2048x1365. At the time of data
collection, no defoliation treatments were applied except for
the routine canopy management for wine production adopted
in the region. In the original data split used in [14], 110
images (accounting for 1612 grape instances) were jointly
devoted to training and validation, whereas 27 images (i.e.,
408 grape instances) were held out for testing. However, the
actual split between training and validation was not provided.
Therefore, we decided to use a 20% validation split stratified
across grape varieties from the original training subset.
VINEPICs. The VINEyard Piacenza Image Collections
(VINEPICs) dataset consists of grape images collected at the
vineyard facility of Universita Cattolica del Sacro Cuore in
Piacenza, Italy. The VINEPICs dataset is publicly available
under CC BY 4.0 (Attribution 4.0 International) license and
accessible at this link https://doi.org/10.5281/
zenodo.7866442. The acronym VINEPICs21 refers to
the first collection of images gathered in the summer of
2021 on Red Globe vines (Vitis vinifera L.) grafted on Se-
lection Oppenheim 4 (SO4), i.e., the vine rootstock, growing
outdoors in 25 L pots. This set includes 73 RGB images
captured on three different dates: 26 images of resolution
480x848 were collected at beginning of grape ripening on
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July 27th, 23 images of resolution 720x1280 on August
23rd when berries were fully coloured, and 24 images of
resolution 720x1080 at harvest on September 9th. An Intel
D435i RGB-D camera was used to capture the data, which
was mounted on a SCOUT 2.0 AgileX robotic platform, a
four-wheeled differential steering mobile robot>. The plants
were arranged along two, vertically shoot-positioned, North-
South oriented rows and hedgerow-trained for a canopy wall
extending about 1.3 m above the main wire. Each vine had a
~1 m cane bearing 10-11 nodes that was raised 80 cm from
the ground. Between fruit-set (BBCH 71) and berry touch
(BBCH 79) [20], the leaves around bunches were gradually
removed for a resulting fully defoliated fruit zone with
reduced incidence of berry sunburns [21]. Before veraison,
eight vines were subjected to crop thinning to control for fruit
occlusions caused by excessive fruit density. Accordingly,
a basal bunch was kept every second shoot for about six
retained bunches/vine; the remaining unthinned vines were
clustered into two groups with about 10 and 4 bunches/vine.
During data collection, the camera principal axis was rotated
to form an angle of approximately 45° with the scanned
plant row. The grape bunch regions were annotated using
polygonal masks through the Computer Vision Annotation
Tool (CVAT)?, and the annotations followed the COCO
annotation format®*.

A second and more extensive dataset, named VINEPICs22,
was collected at the same vineyard facility of Universita
Cattolica del Sacro Cuore in Piacenza, Italy, on two separate
dates in August and September 2022, approximately one
year after the previous set. This dataset comprises 165
annotated images, representative of different types of domain
shifts, including 1464 grape bunch instances. From this
dataset, we extracted subsets of data to control for the
incremental changes we expect from the fine-tuning domain
(VINEPICs21) to the target domain, as detailed in Table
I. Specifically, the VINEPICs22R set includes new images
collected from the same grape variety (Red Globe), by main-
taining the same camera viewpoint, and level of defoliation
as VINEPICs21. VINEPICs22RV introduces a change in the
camera viewpoint (i.e., the camera principal axis is perpen-
dicular to the plant rows), while set VINEPICs22RF was
captured first on non-defoliated canopies. Furthermore, sets
VINEPICs22C and VINEPICs220 maintain the same camera
viewpoint and defoliation level as VINEPICs21 but represent
different grape varieties, namely Cabernet Sauvignon (red
grape) and Ortrugo (white grape), growing in a experimental
vineyard. Table I maps the changes introduced for each
fine-tuning and target set to the taxonomy of shift types
adopted in [10]. The selected target sets cover three shift
types: 1) input-level shifts, which occur due to variations
in the visual appearance of the same environment (e.g.,
observing the same vineyard on different days introduces

2The analyses presented in this paper only concern RGB images, but we
also collected depth data to support a wider range of applications, such as,
e.g., estimating the volume of grape bunches.

3https://github.com/opencv/cvat

“https://cocodataset.org/
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lighting variations); ii) feature-level shifts, where the source-
target shift is caused by different populations of the same
class, in our case, different grape varieties; and iii) natural
shifts, which are due to collecting the source and target
data in different environments, in our case, different growing
conditions (potted vines vs. experimental vineyard). Output-
level shifts do not concern our use-case, since the target
class (grape bunches) remains unchanged throughout the
experiments detailed in this paper.

B. Surgical fine-tuning for instance segmentation

Given the focus on image classification tasks, the experi-
ments described in [10] consider ResNet architectures [22] as
a reference and utilize surgical fine-tuning to manipulate the
different residual blocks. However, in the context of instance
segmentation tasks, supplementary modules are introduced
for detecting and segmenting object regions. Region-based
segmentation architectures such as the widely utilized Mask
R-CNN model [16] merge CNN feature extraction layers
with a Region Proposal Network (RPN) that extracts Regions
of Interest (ROI) from input images. Predicted object regions
are then fed to three network heads that operate in parallel,
generating predictions for the object class, bounding box,
and polygonal mask (Figure 1). A popular implementation of
this generalized architecture uses a combination of ResNets
and Feature Pyramid Networks (FPN) as a backbone for the
feature extraction step [17], [18].

To assess the efficacy of surgical fine-tuning in the context
of region-based segmentation models, we also ought to ex-
amine the impact of selectively fine-tuning the FPN and RPN
components, along with the residual blocks and classification
heads. Hence, we conduct experiments that compare the
following model ablations:

e Tune All: This configuration fine-tunes all model pa-
rameters.

Linear Probing: In this classic configuration, only
parameters in the three ROI heads are updated, while
earlier layer parameters remain fixed at values learned
during pre-training.

Res n: This setup involves fine-tuning only the ResNet
layers, specifically the residual block identified by the
number n. We use the keyword “stem” to refer to the
first residual block, and the notation “res n” for blocks
numbered 2 and higher. This setup follows the rationale
applied in [10].

Joint SFT: Res Block n + FPN at n: This configuration
is a variation of the previous setup, where the selected
residual blocks are fine-tuned simultaneously with the
related Feature Pyramid Network (FPN) operations.
RPN: In this setup, we only apply surgical fine-tuning
to the Region Proposal Network (RPN) in the Mask
R-CNN model.

To the best of our knowledge, this is the first study on the
application of surgical fine-tuning to instance segmentation
tasks.
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ResNet Backbone
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res3
res4

stem

res5

> Region Proposal Network
: RPN)

region proposals

ROI Heads

Object class:

Classification Head ———> grape bunch

Box Head

Mask Head

Feature Pyramid Network (FPN)

Fig. 1: Overview of the Mask R-CNN architecture. The backbone of the architecture is based on ResNet50, and features
from blocks 2 to 5 are extracted and passed through a Feature Pyramid Network (FPN). The Region Proposal Network
(RPN) generates region proposals, which are then combined with the upsampled features and input to three model heads,
which predict object class, bounding box, and polygonal mask in parallel.

TABLE II: Inference results from pre-training baseline instance segmentation models on the WGISD dataset.

Baseline

| APo3 09 | Pos—0.9 | Ro.z—0.9 | Floz—0.0

Mask R-CNN ResNet101 (results from [14])
Mask R-CNN ResNet101 [18]

Mask R-CNN ResNet50 [18]

Mask R-CNN ResNet50 [17]

0.540 0.683 0.649 0.665
0.550 0.789 0.588 0.674
0.571 0.806 0.607 0.693
0.623 0.796 0.663 0.724

TABLE III: Number of fine-tuned parameters in the evalu-
ated ablations.

Ablation | Parameters
tune all ~ 45.3M
linear probing | ~ 17.8M
stem ~ 9.5K
res2 ~ 215K
res2 + FPN ~ 872K
res3 ~ 1.22M
res3 + FPN ~ 1.94M
res4 ~ 7.1M
res4 + FPN ~ 7.95M
resS ~ 14.9M
resS + FPN ~ 16.1M
RPN ~ 594K

C. Implementation details

To apply surgical fine-tuning as described in the previ-
ous section, we customised the Detectron2’ implementation
of the Mask R-CNN architecture. The code for reproduc-
ing these trials is available at https://github.com/
AIRLab-POLIMI/SFT_grape_segmentation.

We augmented our training examples by applying vari-
ous transformations such as Gaussian blur, additive Gaus-
sian noise, random brightness, contrast, and saturation,
pixel dropout, and random flipping transformations. During
pre-training on the source domain, we utilized ResNet50
and ResNetl101 backbones employing Group Normalization

Shttps://github.com/facebookresearch/detectron2
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(GN). We experimented with different weight initializations
following the Detectron2 Mask R-CNN baselines for the
COCO instance segmentation task. In the first configuration,
we used the weights obtained from the method introduced
in [18], where the model was trained from scratch on
COCO with an extended training schedule and an augmented
jittering scale. In the second configuration, we initialized
the model with the weights from the method presented in
[17], where Mask R-CNN was trained on COCO instances
from scratch, i.e., with random weight initialization, rather
than reusing initialization values derived from ImageNet.
All models were trained with a batch size of 2 images,
and we used an early stopping criterion if the validation
loss did not improve for 30 consecutive evaluation checks,
with one evaluation check every 220 minibatch iterations.
We optimized model parameters using stochastic gradient
descent, with a constant learning rate set to 0.01.

D. Evaluation metrics

We evaluate the instance segmentation performance by
measuring the Average Precision (AP) of predicted object
regions, as well as the standard Precision (P), Recall (R),
and F1 score of predicted object instances. The metrics were
averaged over Intersection over Union (IoU) values ranging
from 0.3 to 0.9, to allow for comparison with the results
presented in [14]. Consistently with [14], only predictions
with confidence greater than 0.9 for the grape class are
considered in the evaluation. We prioritize improvements in
terms of F1 over individual P and R scores, as detecting
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all true positives is as important as minimizing the false
positives in the target use-case.

III. RESULTS AND DISCUSSION

Before conducting the ablation study, we pre-trained three
Mask R-CNN models on the WGISD dataset. Table II
demonstrates that on our task, ResNet50 backbones gen-
erally delivered better results than ResNetl01 backbones.
Furthermore, initializing the model with weights obtained
after training from scratch on the COCO dataset [17] yielded
the best combination of segmented object region quality (in
terms of AP) and grape class prediction quality (in terms
of F1), compared to using weights from longer training
schedules and large-scale jittering [18]. Therefore, we have
chosen the “Mask R-CNN ResNet50 [17]” model as the
baseline for fine-tuning on VINEPICs21.

During the fine-tuning stage, we applied the different
ablations presented in Section II-B and evaluated the results
on the five target sets selected from VINEPICs22. The top-
performing methods in each set of trials, together with the
“linear probing” and “tune all” alternatives, are summarised
in Table IV. The complete evaluation results can be found in
the extended version of this paper [23]. We also report the
number of parameters tuned in each configuration in Table
III.

Results on the VINEPICs22R sets approximate scenarios
where the only change introduced is the date and time of
data collection, while considering the same grape variety
(Red Globe), camera viewpoint, and defoliation level as the
fine-tuning set. In this case, fine-tuning the first four CNN
layers individually, excluding the stem, ensured a higher AP
than the scenario when all model parameters are tuned. In
particular, tuning the third ResNet block led to the highest
AP and F1 scores, outperforming linear probing.

Changing camera viewpoint, in VINEPICs22RYV, led to
generally higher scores than the previous set of trials. No-
tably, the AP scores are even higher than the AP achieved on
the VINEPICs21 test set, for the majority of tested ablations.
This result may be due to the fact that a perpendicular camera
viewpoint is more similar to the setup adopted in the WGISD
set, i.e., the source set. Moreover, it is worth noting that the
VINEPICs21 test split comprises nearly twice as many grape
instances as the VINEPICs22RV set. As a result, the average
scores in the VINEPICs21 case provide more conservative
performance figures than VINEPICs22, which accounts for
approximately 100 instances for each subset (Table I). In
this case, tuning the third and fourth ResNet blocks led to the
most marked improvement over the the “tune all” and “linear
probing” performance. In particular, tuning the fourth ResNet
block in combination with its FPN layers led to the highest
results with respect to the AP of region predictions, Recall
and F1 of instance predictions. Interestingly, the top precision
was achieved when tuning the Region Proposal Network in
isolation, albeit generating a higher number of false positives,
as indicated by the lower recall scores.

We then considered grape images captured in the presence
of occluding foliage (VINEPICs22RF), under temporal and
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viewpoint conditions that are comparable to the tuning set.
Similarly to the case of the temporal shifts introduced in
VINEPICs22R, the top performance was achieved by tuning
the third ResNet block. However, in this case, while the
highest AP score was achieved in the “res3” configuration,
the highest F1 was reached by jointly tuning res3 with FPN.

When we shift the target domain towards different grape
varieties, the drop in performance from the fine-tuning set to
the target sets is significant. Indeed, although the source set
(WGISD) already included examples of both red and white
grape bunches, the VINEPICs22C and VINEPICs220 sets
are drastically more challenging than previously examined
sets. First, the number of instances to be detected in each
frame is significantly higher in this case, as exemplified
in Figure 2. Moreover, images in these sets were captured
at a lower resolution than WGISD and in lower lighting
conditions than both the WGISD and the VINEPICs21 sets.
Thus, this setup complicates not only the learning but also the
manual annotation of grape instances. Under these challeng-
ing conditions, selectively tuning the stem and RPN was in-
effective and prevented the model from providing any grape
predictions [23]. Conversely, applying surgical fine-tuning
to intermediate layers resulted in a significant improvement
over the near-zero baseline performance. In the case of the
Cabernet Sauvignon variety (VINEPICs22C) tuning only
the parameters in the fourth ResNet block improved the AP
by 10% and the F1 by 12%, compared to “linear probing”.
In the case of the Ortrugo variety (VINEPICs220), jointly
tuning res4 with FPN outperformed “linear probing” by 8%,
in terms of AP, and by 14%, in terms of F1.

Overall, results from these experiments support the view
that selecting intermediate network layers can outperform
the common practice of only re-training the classification
head of the model, when visual domain shifts are introduced.
In particular, we found that selecting the third block for
fine-tuning best supported temporal changes, as well as
changes in the level of plant defoliation. Selecting the fourth
ResNet block, instead, contributed to mitigating the impact
of viewpoint and grape variety shifts. Importantly, adopting
a surgical fine-tuning approach allowed us to substantially
reduce the number of parameter updates, compared to the
costly alternative of re-training the complete model from
scratch: from over 45M total parameters to nearly 1M and
7M in the res3 and res4 cases (Table III).

IV. CONCLUSIONS

To effectively deploy mobile robots for agricultural ap-
plications, improving the adaptability of visual perception
methods based on Deep Learning to rapidly-changing en-
vironments is essential. In particular, we have considered
the task of autonomously segmenting grape instances from
images collected in real vineyards. In this context, we showed
that pre-training on large-scale, high-resolution training ex-
amples and fine-tuning only selected layers on more chal-
lenging robot-collected data can support knowledge transfer
to newly-collected grape images that introduce changes in the
camera viewpoint, foliage occlusion level, and grape variety.
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(a) (b) (©) (d) (e) ()
VINEPICs21 VINEPICs22R VINEPICs22RV VINEPICs22RF VINEPICs22C VINEPICs220

Fig. 2: Image examples from the VINEPICs sets. Examples from the WGIS set are available in [19].

TABLE IV: Inference results on test sets, after applying surgical fine-tuning on VINEPICs21.

Test set | Ablations | APo3_09 Pos—09 Ros—o09 Flos_oo
VINEPICs21 test | tune all 0.374 0.767 0.404 0.529
tune all 0.254 0.682 0.273 0.390
VINEPICs22R linear probing 0.226 0.689 0.234 0.350
res3 0.395 0.602 0.421 0.496
tune all 0.387 0.634 0.436 0.517
VINEPICs22RV linear probing 0.409 0.660 0.454 0.538
res4 + FPN 0.463 0.595 0.515 0.552
RPN 0.305 0.687 0.325 0.442
tune all 0.342 0.696 0.371 0.484
VINEPICs22RF linear probing 0.290 0.711 0.305 0.426
res3 0.469 0.577 0.512 0.542
res3 + FPN 0.461 0.607 0.503 0.550
tune all 0.007 0.571 0.004 0.008
VINEPICs22C linear probing 0.003 0.286 0.002 0.004
res2 0.013 0.643 0.009 0.018
res4 0.068 0.534 0.073 0.129
res4 + FPN 0.068 0.548 0.071 0.126
tune all 0.022 0.762 0.017 0.033
VINEPICs220 linear probing 0.021 0.449 0.023 0.044
res4 + FPN 0.102 0.625 0.111 0.189

Notably, tuning intermediate network layers improves the  these unexplored research directions.
robustness of the model to input-level and feature-level
shifts. These findings complement the evidence gathered in ACKNOWLEDGMENTS

[IQ] on image classification benchmarks, w}%er.e. input-level This paper is supported by the Ttalian L' Oreal-UNESCO
shifts were best supported by tuning the initial network « . . » .,
program “For Women in Science”, the European Union’s

layers. These results also withstand the popular practice Digital Furope Programme under grant agreement N°
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Our evaluation of the utility of surgical fine-tuning to
support grape segmentation has been limited to methods
derived from the widely-applied Mask R-CNN architecture. [1] R. Bertoglio, C. Corbo, F. M. Renga, and M. Matteucci, “The digital
Thus, future research directions include the study of instance agricultural revolution: A bibliometric analysis literature review,” IEEE
segmentation models that are based on Transformers, such Access, vol. 9, pp. 134762-134782, 2021. )

. . [2] H. Li, C. Guo, Z. Yang, J. Chai, Y. Shi, J. Liu, K. Zhang, D. Liu,
as [24], for instance. Another transfer leamlng approach and Y. Xu, “Design of field real-time target spraying system based on
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of linear probing with the selection of useful features from  [3] R. Bertoglio, A. Mazzucchelli, N. Catalano, and M. Matteucci, “A
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Multi-camera GPS-free Nonlinear Model Predictive Control strategy to
traverse orchards

A. Villemazet’2, A. Durand-Petiteville® and V. Cadenat!2

Abstract—This paper deals with autonomous navigation
through orchards. It proposes a multi-camera GPS-free strategy
relying on a Nonlinear Model Predictive Control (NMPC)
scheme to follow a reference path. This latter, based on a
Voronoi diagram for the row traversals or a spiral model for the
headland maneuvers, is computed as a Non-Uniform Rational
Spline (NURBS) curve making it possible to deal with multiple
orchard layouts. The method has been implemented on our
robot and validated through experimentation conducted in an
orchard.

I. INTRODUCTION

Robotics has been identified as one of the major solutions
to promote truly sustainable agriculture where the necessary
production increase matches environmental concerns [1]. In
this work, we focus on orchard mechanization, and more
specifically on the autonomous navigation system, which is
mandatory to realize some agricultural tasks such as mowing,
spraying, or harvesting. When moving through an orchard,
a robot has to autonomously drive from the entrance of an
alley to its exit, and then move to the next alley by navigating
in the headlands, i.e., the uncultivated area between the edge
of the trees and the orchard boundary used for machinery
maneuvers. It repeats these two steps to cover the whole
area of interest (see Fig. 1(a)).

As the GPS signal is often blocked or perturbed by the
dense canopy or nets protecting the trees [2], the existing
navigation strategies rely on embedded sensors, either vision
systems [3] [4] [5] [6] or LiDAR sensors [7] [8]. These works
propose to compute and then follow a straight line passing
through the middle of the alleys. The obtained line may be
disturbed by the natural environment where branches and
foliage are uneven and lighting conditions significantly vary.
Moreover, these approaches do not allow coping with modern
orchards whose circular layout is specifically designed to
control pests thanks to ecological processes [9] (see Fig.
1(b)). Regarding maneuvers in the headland, the few existing
works on this topic use dead reckoning because of the lack of
sensory information in these zones. In such a case, the exe-
cution robustness and repeatability are significantly reduced
[10]. We may nonetheless mention the following methods
where dead reckoning is coupled with other techniques in
an attempt to overcome this drawback: a slip compensation

1Univ. de Toulouse, CNRS, UPS, Toulouse, France
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{avillemaze, cadenat}[at]laas.fr
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(a) Straight orchard. (b) Gotheron circular or-

chard.

Fig. 1. Example of orchards.

solution [11], automatic detection of the rows extremities
using either a laser [12] or dedicated artificial landmarks
[13]. It then would be interesting to provide a navigation
strategy able to cope with the different types of orchard
layouts, while improving the headland maneuver robustness
and avoiding any environmental instrumentation. Some of
our earlier works have proposed to perform the U-turn using
data provided by a 2d laser rangefinder. We have designed a
sensor-based nonlinear controller following a spiral centered
on the last row tree [14] [15]. This approach was later
extended to unify both in-row and headland navigation in
a unique spiral-based framework [16] in a straight orchard.
Despite promising results regarding the use of a unique
sensor-based framework for both parts of the navigation,
the solution presented oscillation issues, especially when re-
entering the alley. This was due to the idea of modeling the
orchard navigation as a point regulation problem where the
robot had to reach a sequence of waypoints, i.e., without
considering the robot orientation. Moreover, it is necessary
to use a more robust perception method. Indeed, although
allowing to validate the approach in simulation, a 2d laser
rangefinder has a planar field of view, not allowing to detect
trees in a robust way in an orchard.

In this paper, we present a novel sensor-based framework
allowing the robot to navigate through an entire orchard,
i.e., both the alleys and the headlands, without adding any
landmark nor considering a particular layout. First, the robot
has been equipped with a vision system made of four RGB-D
low-cost cameras. On the one hand, it offers a relatively inex-
pensive solution to acquire 3D data, thus increasing the tree
detection capabilities with respect to 2D laser rangefinder-
based solutions. On the other hand, it allows benefiting from
an overall large field of view to perceive trees both in the row
and in the headland, making sensor-based control possible.
Second, instead of defining the orchard navigation in terms
of point regulation, we now state it as a path-following
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problem, to reduce the previous oscillations. The reference
path is a local path iteratively updated using the position
of the trees computed by the vision system. To do so, we
use a Voronoi diagram for row traversals and a spiral model
for the headland maneuvers. Next, a Non-Uniform Rational
Spline (NURBS) curve is computed to unify the different
sections of the path and provides a smooth reference to
follow. This problem formulation presents three advantages:
(1) the in-row and headland navigation are unified during
the path computation and are not merged at the controller
level as in [16]; (ii) it allows dealing with numerous orchard
layouts (and not only rectangle-shaped ones); and (iii) it
offers a more consistent reference than the straight-line
following approach and takes into account the robot orien-
tation. The path following is performed using a Nonlinear
Model Predictive Control (NMPC) scheme coupled with
a Frenet-based formulation of the problem. It provides an
efficient minimization of the error between the computed and
desired paths over the whole prediction horizon while taking
into account specific constraints such as actuator saturation.
Finally, in order to evaluate the relevancy of the proposed
approach, it is first compared with [16] using the Gazebo
simulator, and next implemented on the Hunter 2.0 robotic
platform to navigate in an orchard.

The rest of the paper is organized as follows. We first
present the robotic system before focusing on the proposed
navigation framework. The simulated and experimental re-
sults are then presented to show the approach’s efficiency.

II. MODELLING

ABh
e

FT0,

xft) Xw
(b) The robot model.

(a) The perception system
and the related frames.

Fig. 2. The robotic system models.

The considered platform is the Agilex Hunter 2.0 car-like
robot equipped with a laser rangefinder and four RGB-D
cameras (see Fig. 2(a)). To obtain the necessary wide field
of view, two cameras are placed at the front of the robot and
respectively oriented left forward and right forward, while
the two other ones are placed on the sides of the platform
(see Fig. 2(a)). To model the system, we define F,, =
(Ow,Xw, Yw, Zw) as the world frame, F,. = (O, Xy, ¥r, Zr)
as the robot frame, F; = (Oy,x1,y1,21) as the laser frame,

and F,, = (O ,Xc;,Ye;»%c;) as the frame of the 4"

20

camera, with ¢ € [1,4]. We rely on the Ackermann model
to represent the robot and therefore its pose is given by
x(t) = [z(t),y(t),0(t),v(t)], where x(t) and y(t) are the
coordinates of O, in F,, 6(t) represents the angle from Xy
to X,, and (t) is the angular position of the steering angle
(see Fig. 2(b)). Moreover, we define the control vector by
U(t) = [v(¢),~(t)] where v(t) is the linear velocity along
X,. For such a system, considering L the distance between
the front and rear wheels, the kinematic model is:

i(t) = v(t) cos(6(t))
§(t) = v(t) sin(0())
f(t) = “2 tan(v(t))
III. ORCHARDS TRAVERSAL STRATEGY

(D

To navigate in the orchard, the robot has to cross an alley,
maneuver in the headlands to switch from an alley to the
next one, and repeat these two steps until its navigation is
completed. In this section, we detail the different processes
involved in the proposed navigation framework. We first
present the vision system and data processing. Next, we
introduce our solution to compute the local path to follow
both in the alleys and in the headlands. Finally, our NMPC-
based path-following strategy is detailed.

A. Data processing

of
clouds

(b)
four
expressed in Fj.

(a) Top view of a point cloud con-
taining shadows due to the presence
of trees [6].

Example
point

Fig. 3. Data processing examples.

The presented navigation strategy relies on the position
of the tree trunks in the current robot frame. The positions
are computed using the point clouds provided by the four
onboard RGB-D cameras. To do so, we rely on the algorithm
[6] which estimates the tree trunk positions by detecting
shadows in the point cloud due to the presence of trees (see
Fig. 3(a)). The algorithm processes, therefore, the four point
clouds separately and provides the position of the detected
trees in each camera frame F,.

The tree coordinates must then be expressed in a common
frame, which is the laser frame Fj. Indeed, the laser field
of view overlaps the one of the four cameras, allowing
computing the extrinsic parameters between F; and the four
F¢,. The calibration process between F; and F,, i.e., the
computation of the homogeneous transformation matrix H,
is performed using [17]. An example of the result is shown
in Fig. 3(b).
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B. Path generation

In this section, we present how the tree coordinates in the
current robot frame are used at each iteration to generate
a new path to follow. The proposed path generation is a
two-step process: first, we calculate a set of waypoints,
and next, we compute a path based on these waypoints.
The waypoints computation is done differently for the alley
traversing and the headland navigation. For the alleys, we
generate a Voronoi diagram [18] using the tree coordinates.
The vertices of the diagram, which approximately lie in the
middle of the row, will then be used to compute the path to
follow (see steps 1 and 5 in Fig. 5).

Fig. 4. Several robot frames while describing a spiral.

For the headland maneuver, we propose to compute way-
points lying on a spiral centered on the last tree of the row,
called the pivot point and denoted O, (see step 3 in Fig. 5).
It is used as the origin of the frame F},, whose orientation
is arbitrary. We rely on the spiral model presented in [19]
where O,, the pivot point, is considered as the spiral center,
d(t) is the distance between the robot and the pivot point,
i.e., between O, and O,, and «(t) is the oriented angle from
the x, vector to the O,Oy, one (see Fig. 4). Finally §(¢) is
the angle between x, and O O;. It is shown in [19] that if
both v(t) and a(t) are constant, then O, describes a spiral,
and the following equations hold:

d(t) = —vcosa

d(B) = dyect a(Bo—p)

2
3)

Eq. (2) shows that the type of spiral only depends on
parameter «. Indeed, if « € [—m; 0], then O, turns clockwise
with respect to O, and counter-clockwise if o € [0;7].
Moreover, if o €] —m; —Z[U]5; [, then the spiral is outward

2 1-1g
and inward if o €] — Z;0[U]0; Z[. It becomes a circle if
a = =7

)
o with a radiu2s equal to d. Thus, the design of
the spiral first consists in selecting a value for  and an
initial distance dy. Finally, the set of waypoints belonging
to the spiral is computed over an angular horizon g using
(3). Note, that the frame F}, is readjusted at each iteration
to align the x, and O,O, vectors. This approach allows
maneuvering in the headlands on the sole basis of the current
exteroceptive data and does not require any localization

process.

21

The waypoints having been computed for both alleys and
headlands, it is then necessary to connect them to make the
robot navigate in the orchard. In other words, we have to
connect the spiral to the last vertex of the Voronoi diagram
to make the robot exit the alley and to connect the spiral to
the first vertex of the new diagram when the robot enters a
new alley. First, when the robot exits the alley, dy is defined
as the distance between the pivot point O, and the last vertex
of the diagram in order to connect the two parts of the path.
Moreover, we set up a = :I:% to make the robot follow
a circle of radius dy centered on the pivot point (see step
2 in Fig. 5). This approach initially makes it possible to
safely turn around the pivot point but does not guarantee
that the spiral will connect with the first vertex of the next
alley diagram. Thus, once the next alley is visible and it
is possible to compute the next Voronoi diagram, the spiral
parameters are modified. First, o is adjusted to make the
spiral pass via the vertex (from here the path is no more a
circle, but a spiral), and the angular horizon dz is modified to
make coincide the end of the spiral with the vertex (see step
4 in Fig. 5). Setting up the spiral parameters as described
guarantees the continuity between the different parts of the
path.

[

® ®
& @
® 2 @
gl
o 187 e ®
L] ® L]
L] ® ®
Fig. 5. Examples of path generation. Green circle: tree - Black circle:

pivot point - Orange circle: Voronoi vertex - Dark red circle: Spiral point
- Blue curve: NURBS - Step 1/5: alley crossing - Step 2: path connecting
the alley crossing to the headland maneuver - Step 3: headland maneuver -
Step 4: path connecting the headland maneuver to the alley crossing.

Finally, we propose to use a NURBS (Non-Uniform Ratio-
nal B-Spline) [20] curve to compute a smooth path passing
through the waypoints. To summarize, this particular type
of curve is defined by a set of weighted control points that
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locally influence its curvature. Mathematically, its general
form is given by [20]:

_ Zim Nip@uwiPi
21;1 Nip(w)w;

where n is the number of control points P;, w; are the
corresponding weights and N;, are the B-Spline basis
function of pth degree. More details are available in [20].
In our case, the control points are either the endpoints of
the Voronoi segments (see orange circles in Fig. 5) or the
points belonging to the spiral (see dark red circles in Fig.
5). The NURBS curve was chosen because of its three
properties which are useful in our application: the degree
of the curve which depends on the number of control points,
the knot vector (used by the B-Spline basis function), and
the weighted control points. First, the high degree of the
curve allows for generating a path for both straight and
curved tree rows as well as the circular path for the headland
maneuver. Next, the knot vector ensures that the curve passes
through the first and the last control points allowing to avoid
an abrupt re-alignment of the robot on the reference path.
Finally, the weights allow us to adjust the influence of the
control points on the curve to make a smooth path and thus
obtain a better robot trajectory. We propose to define them as
follows: [1,ws, ..., w,_a, 1]. First, the first and last weights
are set to 1 with respect to the second property. wy, ..., Wp_2
must thus be chosen as a compromise to obtain the most
stable path over the iterations.

C(u) € [0,1] S

C. Path following

Ywh
\/ 9'_
Y
()w X X ' JXL“

Fig. 6. Principle of the path tracking. [21]

We now present our approach for following a given path
using an NMPC controller. As shown in Fig. 6, it consists
in orthogonally projecting the center of the robot O, on
the reference path to define a Frenet frame F) associated
with O,. It is then possible to define 6. as the orientation
error and y,. as the lateral error. The path following is then
performed by minimizing the error vector eps = [y, 0]
over a prediction horizon. This approach does not require
including the linear velocity in the minimization problem as
it is not aiming at reaching a set of points at a given instant
sampled from the path, such as in [16]. The linear velocity

22

can be fixed at a constant value or computed accordingly
to a different criterion, such as terrain traversability. Thus,
in this work, the linear velocity v(t) is considered constant
so that v(t) = v, (v # 0). The only control input is thus
the steering angle . The path following is performed via
an NMPC scheme considering the following optimization
problem:

7 (k) = min( I, (epe(k). 7(K))) )
with
k4N,
T, (epr (k). 7() = 3 &pr(p) ey (1) ©
p=k+1
+ A, (v(p) —v(p - 1))?
subject to
epr(p+1) = f(&p(p),7(p)) (7a)
épr(k) = epe(k) (7b)
CH () <0 (7¢)

It computes an optimal steering angle sequence 5*(k) of
(&), with (k) = [y(k),...,v(k + N,)] which minimizes
the cost function Jyy, over a prediction horizon of N, steps
while taking into account the physical boundaries of the robot
actuators as constraints C(7*(k)). The values of both the
prediction and control horizons are considered equal.

Cost function: Jy, is divided in two parts. The first one is
defined as the sum of the quadratic predicted configuration
&,r, and is intended to track the reference path. The second
one is the sum of the quadratic differences between two
consecutive commands, weighted by the parameter A, which
allows smoothing of the control inputs and limiting velocities
variations between two instants.

Remark: To project the predicted positions onto the reference
path, we discretize the NURBS curve and search for the
closest position belonging to the path for each prediction.
The search relies on the k-d tree structure [22] which
proposes an efficient nearest neighbor search based on a
space-partitioning data structure.

Prediction model: Assuming that the steering angle ~(t1) is
constant between the instant ¢; and ty = t; + 1§, where T}
is the sampling time, the robot predicted pose is computed
by integrating (1) with a Runge-Kutta method of order 4.
Input constraints: The input constraints take into account
the physical limits of the mobile base. They are given by:

)

where i € [1, N,], v and ~,, are respectively the lower and
upper boundaries.

®)

IV. RESULTS

In this section, we present the obtained results, first using
a simulator, then using a robotic platform. In both cases,
the considered robot is the Hunter 2.0 car-like mobile base.
The robot is equipped with a vision system consisting of
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four Intel Realsense RGB-D cameras, two D455 and two
D435, positioned as shown in Fig. 7(b) to enlarge the field of
view as explained earlier. The robot has also been endowed
with Slamtech’s RPLIDAR S1 range-finder for the camera
calibration step. The physical boundaries of the Hunter 2.0
actuators as well as the optimal ranges of the cameras are
shown in Table I.

(a) Side view. (b) Top view.

Fig. 7. Robotic platform.

TABLE I
SYSTEM SPECIFICATIONS.

minimum range  maximum range

Linear velocity —1.5 m/s 1.5 m/s

Steering angle —0.461 rad 0.461 rad
D455 0.6 m 6 m
D435 0.3 m 3m

Furthermore, the robot is equipped with an NVIDIA Jetson
Xavier NX GPU and an Intel Core i7-1165G7 48 GB RAM
CPU. The former is dedicated to data processing while the
latter calculates the control inputs. The implementation relies
on the C++ 14 language and the ROS middleware. The
data processing part uses the OpenCV and PCL libraries
and is partially implemented using the CUDA language.
The NMPC part is based on several libraries allowing to
implement the following features: the clustering method, the
Voronoi diagram, the NURBS curve, the k-d tree structure
and the SQP solver.

A. Simulation

We first compare the proposed approach, the NURBS-
based method, with the one described in [16], the spiral-
based method. We recall that the NURBS-based method
relies on a path following while the spiral-based one consists
in reaching a sequence of positions. The simulations are per-
formed with the straight and circular orchards shown in Fig.
8(a)) and Fig. 8(b)) where the trees’ position and orientation
were randomly modified to obtain a more realistic layout.
The parameters for both methods are listed in Table II. For
the spiral-based method, the set of parameters is similar to
the one used in [16] with the exception of the solver tolerance
values which are slightly modified to increase performance
in the circular orchard. In addition to using a different cost
function, path-following vs. positioning, the methods differ
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in their use of a terminal constraint. Indeed, the spiral-
based method requires a terminal constraint to guarantee the
stability of the positioning process while it is not required for
the path-following approach. Finally, the lower/upper limits
of the input constraints ; and <, in the NURBS-based
method are no longer the physical limits of the steering angle
of the Hunter 2.0 actuators, as in the spiral-based method, but
the maximum positions reachable in T second (& 2 degrees
for the Hunter 2.0). This allows only feasible commands to
be calculated for the robot, thus reducing solver disturbances
between iterations and improving robot behavior.

(a) Simulated straight or-
chard.

(b) Simulated circular or-
chard.

(c) Robot trajectories in the
straight orchard.

Hop|

PoE

‘400

(d) Robot trajectories in the cir-
cular orchard.

¥ (deg)
a

0 100 206 300 500 600
Iteraticn

(e) Computed steering angles in the straight
orchard.

v (deg)
=

[ 0 BOD 1000

200 60
Iteration
(f) Computed steering angles in the circular

orchard.

Fig. 8. Navigation results in simulation. (c-d-e-f) Blue plots: spiral-based
method results - Orange plots: NURBS-based method results - (e-f) Green
vertical lines: Start of the alley crossing for the spiral-based method (dashed
lines) and the NURBS-based one (dotted lines) - Red vertical lines: Start of
the headland maneuver for the spiral-based method (dashed lines) and the
NURBS-based one (dotted lines).

Figure 8 presents the results obtained for both methods
and orchard layouts. In Fig. 8(c) and Fig. 8(d), it can
be seen that the robot successfully achieves the navigation



11*" European Conference on Mobile Robots — ECMR 2023, September 4—7, 2023, Coimbra, Portugal

TABLE II
SIMULATION PARAMETERS.

Approach v Ts N, Maximum time*  Absolute tolerance® ¢zpc b Number of points NURBS w; Ay
Spiral 1 02 12 0.16 10-3 10—4 N/A N/A  N/A
NURBS I 01 20 0.09 10=° N/A 3000 10=2 10

2Stopping criterion of the SQP solver.
bZero terminal equality constraint tolerance.

task in the straight and curved orchards relying on both
the spiral-based and the NURBS-based methods. Indeed, it
successfully drives through the three alleys and maneuvers
in the headlands to switch from one alley to the next one
performing a 126 meters long path in the straight orchard
and a 187 meters long one in the circular one. Thus, from a
task point of view, both approaches are capable of navigating
in different orchard layouts unlike other works focusing on
straight lines. However, from a control perspective, it can
be noticed that the spiral-based method tends to generate
oscillations when the path is curved (entrance of a new
alley or in the alleys of the circular orchard). This is due
to the fact that it is a positioning approach not taking into
account the robot’s orientation. Thus, as long as the robot
is oriented toward the next goal point, it navigates without
oscillating, e.g., when crossing the straight alleys. However,
when it is not initially oriented toward the point to reach,
it has a tendency to oscillate e.g., when entering a new
alley or driving through a curved alley. On the contrary,
the NURBS-based method presented in this paper does not
lead to such oscillations. Indeed, using a path-following
formulation of the problem allows for taking into account
the robot’s orientation. Thus, the quality of the robot path
is consistent when navigating in a straight or curved alley
or when maneuvering in the headlands. This analysis is
supported by the evolution of the steering angles shown in
Fig. 8(e) and 8(f). Indeed it can be seen that the value of
the steering angle varies more for the spiral-based approach
than for the NURBS-based one, for both orchard layouts.
Thus, despite the interest in the spiral-based method, the
NURBS-based method significantly improves the quality of
the navigation system.

B. Experimentation

To show the efficiency of the NURBS-based method, we
conducted an experiment at the agricultural high school' in
Auzeville-Tolosane, France. The considered orchard has 40
meters long by 4 meters wide tree rows with a space of
1 meter between two consecutive trees. At the time of the
experiments, only four tree rows were usable. The following
parameters were chosen: v = 0.5m/s, Ts = 0.1s, N, =
20, which corresponds roughly to a prediction window of 1
meter, and A\, = 5. The other parameters remain identical to
the simulation.

The orchard navigation is presented in the attached video.
Some additional snapshots, completed with an RVIZ view
of the detected trees and the computed path, display the

1”Lycée Général et Technologique Agricole des Sciences Vertes”
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(b) Beginning of the clockwise headland ma-
neuver.

(e) Entering the next alley.

Fig. 9. Navigation snapshots - left: robot centered RVIZ data visualization
(green circle: detected trees - blue circle: selected pivot point - orange circle:
NURBS control points - blue curve: NURBS) - right: video screenshots.

main key steps of the navigation in Fig. 9. As shown in
the video, the navigation task is correctly achieved. The
robot successfully moves along the three alleys twice and
performs two clockwise and two counter-clockwise U-turn
maneuvers in the headlands. It has thus realized a 222 meters
long path in 480 seconds. Now, let us go into further details
and analyze the main steps of the navigation: the sequence
of row followings and U-turn maneuvers. First, the system
successfully computes a path based on the tree positions
allowing to drive through the alley (see Fig. 9(a)). The path
computing/following process is repeated at each iteration
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until the row crossing is achieved. Once the robot gets closer
to the end of the alley, one of the last trees is selected as
the pivot point and the generated path is composed of both
a row crossing section and a spiral one (see in Fig. 9(b)).
The pivot point is chosen so that the robot makes a loop
in the orchard and thus sequences the four U-turns. Next,
the robot performs the clockwise/counter-clockwise headland
maneuver following a spiral computed on the sole basis of
the pivot point as seen in Fig. 9(c) and 9(d). Finally, in Fig.
9(e) the robot is about to reach the next alley. The spiral
parameters are adjusted to connect the spiral section of the
computed path to the row-crossing section. By doing so, the
robot manages to enter the next alley and then restart the
crossing step.

205

¥ ldeg)
E=]

=20 |

—40 | B
0 1000

4000

3000 5000

2000
lteration

Fig. 10.  Computed and applied steering angles. Blue line: computed
steering angles - Orange line: Applied steering angles - Green vertical
dashed line: beginning of the alley crossing - Red vertical dashed line:
beginning of the headland maneuver.

Finally, the computed and applied commands are displayed
in Fig. 10. As shown in this figure, the computed steering
angle tends towards O degrees during the alley crossings and
towards & 18 degrees during the headland maneuvers, which
is consistent with the orchard layout. The variations are
mainly due to the variations of the computed tree coordinates.
Indeed, these latter are computed on the sole basis of the
current data and the results may differ from one iteration to
the other. As the command frequency rate is higher than the
steering angle capabilities, the robot path is not impacted by
these oscillations. This leads to appropriate overall behavior
and thus validates the control strategy.

V. CONCLUSION

This paper presents a novel multi-camera-based NMPC
strategy allowing autonomously navigating through vari-
ous shaped orchards without instrumentation. The proposed
method relies on an original fully vision-based computation
and update of the reference path and does not require any
map. The path following problem is expressed using the
NMPC framework, making easier the transition between in-
row and headland navigation and the constraints handling.
The approach has been implemented and validated through
an experimental campaign conducted in an orchard. The
obtained results show the relevance and efficiency of the
approach. Regarding future works, we plan to increase the
perception system robustness by adding a particle filter able
to track the trees and coupling the point processing to
an image-based tree detection. We also aim at integrating
new constraints in NMPC to avoid obstacles and to reduce
undesired vibrations due to rough terrains.
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Learned Long-Term Stability Scan Filtering for
Robust Robot Localisation in Continuously
Changing Environments

Ibrahim Hroob*, Sergi Molina, Riccardo Polvara, Grzegorz Cielniak and Marc Hanheide

Abstract—TIn field robotics, particularly in the agricultural sec-
tor, precise localization presents a challenge due to the constantly
changing nature of the environment. Simultaneous Localization
and Mapping algorithms can provide an effective estimation
of a robot’s position, but their long-term performance may
be impacted by false data associations. Additionally, alternative
strategies such as the use of RTK-GPS can also have limitations,
such as dependence on external infrastructure. To address these
challenges, this paper introduces a novel stability scan filter.
This filter can learn and infer the motion status of objects in
the environment, allowing it to identify the most stable objects
and use them as landmarks for robust robot localization in
a continuously changing environment. The proposed method
involves an unsupervised point-wise labelling of LiDAR frames
by utilizing temporal observations of the environment, as well as
a regression network called Long-Term Stability Network (LTS-
NET) to learn and infer 3D LiDAR points long-term motion
status. Experiments demonstrate the ability of the stability scan
filter to infer the motion stability of objects on a real agricultural
long-term dataset. Results show that by only utilizing points
belonging to long-term stable objects, the localization system
exhibits reliable and robust localization performance for long-
term missions compared to using the entire LiDAR frame points.

I. INTRODUCTION

Accurate and reliable localization is essential for the au-
tonomous navigation of robots and self-driving vehicles, par-
ticularly in environments that undergo significant changes [1],
such as agricultural fields (Fig. 1). The Real-Time Kinematic
Global Positioning System (RTK-GPS) is a widely used lo-
calization technique in field robotics, where high precision is
required. RTK-GPS can provide localization accuracy of up
to a few centimeters by using a combination of satellite-based
positioning and ground-based reference stations [2]. However,
RTK-GPS systems come with certain limitations such as high
cost, reliance on subscriptions and external infrastructure,
susceptibility to environmental factors and weather conditions,
which can lead to degraded performance and reliability.

As an alternative, localization methods based on map build-
ing from onboard sensors, such as cameras [3] or LiDAR
[4], may offer more robust and accurate solutions at a lower
cost. LIDAR sensors, in particular, provide precise range in-
formation and has been found to be more robust than camera-
based localization, as it is immune to changes in illumination
and can provide accurate range information even in low-
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Fig. 1: The images show a visual comparison of the significant
changes in an outdoor agricultural orchard throughout the
season. The image on the left represents the initial stage of
the environment when deploying the robot in March, and the
right image represents the fully grown stage in June [5].

light conditions [6]. In this work, we focus on LiDAR-based
localization and its potential as a more reliable for autonomous
navigation in continuously changing environments such as
agricultural fields.

In agricultural environments or outdoor fields in general,
map-based localization systems often fail to perform reliable
localization for long-term missions over extended periods of
time (such as months or even years) due to constant changes
in the environment [7], resulting in the initial map becoming
quickly outdated. Simultaneous Localization and Mapping
(SLAM) algorithms have demonstrated robust performance
in estimating the robot pose in dynamic environments [8].
However, they are often prone to failure when used for long-
term operations due to false positives in data association be-
tween localization sessions. False positive cases occur when an
incorrect match is made between an object in the environment
and a sensor measurement, which is due to significant changes
between the map and the measurements. This problem has
been well documented in literature, for example in [9].

Despite the changes that could occur in the environment,
some parts of it remain static, which could be used as a
landmark for achieving accurate and reliable long-term lo-
calization. We hypothesise that a learned filter, capable of
distinguishing between static and dynamic parts of a scene,
will significantly enhance long-term localization accuracy by
reducing the impact of dynamic objects. To achieve this,
we propose an unsupervised scan filter learning for robust
robot localisation in long-term changing environments. This
method leverages previous observations to recognize objects
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Fig. 2: The BLT-Dataset was used to create a LiDAR scan visualization. The left image shows an aerial view of the scan
location, highlighting the stable structures in the environment. The middle image is the raw scan. The right image displays the
predicted spatial-temporal stability labels from LTS-NET, with points inferred into these categories: (a) fast-moving objects
such as humans, (b) visual appearance changing objects like seasonal vegetation changes, (c) ground plane points, and (d)

long-term stable points like those belonging to a building.

that maintain stability over time and generates training data for
a deep learning model. This model can then be used on future
scans to directly identify stable objects within 3D LiDAR
frames as illustrated in Fig. 2, allowing us to filter out dynamic
points and rely on stable structures for extended localization.

Our key contributions in this paper include: (1) an auto-
mated point-wise labelling method for LiDAR scans. (2) The
Long-Term Stability Network (LTS-NET), a regression net-
work designed to infer LiDAR points spatiotemporal stability.
(3) An analysis of a real-world long-term vineyard dataset
shows that using filtered scans enhances the accuracy and
robustness of 3D LiDAR localization algorithms that use scan
matching techniques, compared to using raw scans. (4) We
show that the trained regression model can directly predict
objects’ stability in a new environment without the need for
a prior sequence of temporal observations. The code of this
paper as well as our pre-trained model is available as a docker
image at https://github.com/LCAS/lts_filter.

II. RELATED WORK

There have been numerous approaches proposed for long-
term localization, ranging from traditional methods based
on odometry and map-based approaches to more recent ap-
proaches that utilize deep learning techniques.

One common approach to long-term localization is to use
a pre-built map of the environment and match current sensor
readings to the map to determine the robot’s position. This
approach can be effective in environments with stable, distinct
features, but can be less reliable in environments with more
dynamic or changing features. To address this limitation,
some studies have explored the use of additional structural
information in the initial map to increase robustness, such
as Gaussian Mixture probabilistic maps [10]. Others have
extracted pole-like landmarks for long-term localization [11].

In some approaches to long-term localization, the map is up-
dated to reflect changes in the environment. Researchers have
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addressed this in several ways. For instance, some studies have
accumulated visual experience of the same place over time
and used it for localization [12], [13]. This approach has been
shown to handle some level of environmental change, but can
lead to very large map sizes. Other solutions have employed
mathematical models to predict changes in the environment
[14], [15]. For example, FreMEn [14] is a frequency map
enhancement approach that considers regular feature points
in visual SLAM as a combination of harmonic functions. This
method has been shown to improve robot localization in indoor
and outdoor environments.

Another approach to long-term localization is the use of
temporal mapping, which involves building a temporary map
when global matching is unreliable and merging it with a pre-
built map for use in later localization runs [16]. However, this
approach may not be suitable for continuously changing envi-
ronments as the appearance can change dramatically, requiring
the method to enter the mapping phase repeatedly.

Recent advancements in long-term localization rely on the
utilization of deep learning models for extracting long-term
stable features, which could be either from 3D point cloud
data [17], [18] or visual data [19], [20]. The models can be
trained to identify stable features in the environment, such
as tree trunks or light posts, and use them as landmarks
for achieving long-term localization. However, these methods
primarily target urban structures and require manual annotation
of data for model training. The agricultural domain has seen
the development of visual localization and mapping techniques
to identify specific environmental features such as tree trunks
[21], [22]. These methods facilitate long-term operations but
are limited by the need for manual data annotation which is
prone to human error and time-consuming [23]. Additionally,
visual data is vulnerable to changes in lighting conditions [6].

In this paper, our method differs from existing state of
the art methods by eliminating the need for costly manual
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annotation in labelling LiDAR frames. Our approach is data-
driven and capable of adapting to any environment. It leverages
the temporal characteristics of the environment’s history to
train a deep learning model, enabling it to learn about the
long-term stability of objects directly from LiDAR frames.

III. PROPOSED METHOD

We propose a generic learnable stability scan filter to learn
and extract the inherent stable structure (i.e. landmarks) of a
given environment from 3D LiDAR scans, then filter other
objects to achieve robust localization over extended periods
of time. To accomplish this, we utilize a temporal sequence
of 3D point cloud maps My, and their associated LiDAR
frames {S}o.x. Our framework consists of an algorithm for
assigning spatiotemporal features for My with respect to
previous observations Mjy.;_1, then projecting those features
back to their associated LIDAR frames {S}. Second, a neural
network, f(.), that learns the spatiotemporal features (i.e.
stability score) from the labelled LiDAR frames to predict
the spatiotemporal features of the next session {S}x41.

A. Automated labelling of 3D LiDAR frames

Manual labelling of 3D LiDAR frames can be a challenging
and time-consuming task, especially when dealing with large
volumes of data [23]. It requires a significant amount of
human effort, and there is always the risk of human error.
Moreover, the type of labels applied to the point cloud of
LiDAR frames varies depending on the targeted application.
For instance, semantic segmentation tasks may benefit from
full class segmentation, while tasks such as distinguishing
moving from stable objects may only require binary labels. In
this work, we investigate the utilization of continuous labels
to represent the spatiotemporal stability of the point cloud.

The continuous labels are assigned based on the points of
a spatiotemporal dependency across multiple time slices of
the environment. The spatiotemporal information can capture
objects’ long-term motion status. To label the LiDAR frames,
we first build a point cloud for all the observations, perform
the labelling on them, then we project the labels back to the
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frames. The pipeline is summarized in Fig. 3, here the process
in more detail.

Maps labelling To accurately label points in the map based
on their long-term stability, our approach requires at least two
observations of the environment. Given the LiDAR frames
S : {So,...,Sn} (n is the number of the frames) and IMU
data for each observation, we first build a point cloud map
using mapping system (such as FAST-LIO [8]), and we save
the transformation matrix T(}/Kf € R* for each LiDAR frame,
where Wy, is the world frame of the point cloud map k.

Second, while building the point cloud map, we also con-
struct an occupancy probability map using OctoMap [24]. This
step allows for the representation of uncertainty about the
state of the environment, which is useful when calculating
the points’ features at later stages. The resulted point cloud
map with its occupancy probability is represented as follows:

My ={P1,Ps,...,P,},
ey
p(P) = p(P|Ox),

where P; = (x;,9;.2;), P; € R3 is the 3D coordinate of the
i-th point, m is the total number of points, Oy is the octree
data structure that represents the 3D occupancy grid and p(P)
is the probability of a point location exists in a given state
(occupied, free or unknown) based on Oy, where unknown in
this context means that the location of the point was either not
scanned or occluded by other objects.

Then we segment the ground plane using the Cloth Simula-
tion Filter (CSF) [25], where M{Y M¢ = CSF(Mj) that is
Off-Ground and Ground maps respectively. We assign a value
of 0 to all ground points to ensures the points are labelled with
the same value (the labelled ground is denoted as Mg’L), and
segmenting MkG increases the disparity when calculating the
points’ features at later stages for the off ground maps.

To ensure robust data association between the temporal
observations, we geometrically align all the off-ground point
cloud maps w.r.t the initial off-ground map. To achieve that
we utilize the Iterative Closest Point (ICP) [26] algorithm to
perform the registration (i.e. alignment) process. The resulting
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transformation matrix TAA;[QTE , where MO¢ and MPY denote
the off-ground point cloud maps of the k-th and initial point
cloud map respectively, is then used to transform the nodes
of the associated octomap Oy and the labelled ground plane
Mf’L to the new coordinates of the transformed map.

In the next step, we extract the stability features, referred to
as labels, from the off-ground point cloud maps. The process
of feature extraction, also known as labelling, is outlined in
Algorithm. 1. Initially, we select a map to be labelled (M{%).
For each point P € MgG, we first find the occupancy
probability p(P) of the point location in occupancy grid O;
of the query map MY, if the location is not occluded we
find the closest point g using k-Nearest Neighbors (KX NN)
algorithm, then we compute the spatial distance (d) between
P and g and append it to the distance vector d = [d, d]. On
the other hand, if the point location was occluded, we append
—1 to the distance vector d = [d, —1]. After querying all other
maps, the point label [ of P is set using the maximum spatial
distance of d as a feature, then we map the value using the
cumulative distribution function of an exponential function as
follows:

Pl=1-¢ max(@d) )

where the final label value is a score bounded between 0 and
1 indicating the point spatiotemporal stability.

At the end of the labelling process, the labeled map may
contain some noise due to occlusion or mislabeled points. To
fix this, we introduce a Voting Median Filter (VMF) based on
the labels of nearest neighbors points:

fmea(i) = median{l; | j € NNi(kn)}, 3)

fmed (%) is the filtered label for the point P;, [; is the label of
the point P, NN;(kn) is the set of kn nearest neighbors of
point P;, and median is the median function that returns the
middle value of a set of values. An illustration of the impact
of applying VMF on the labelled map is presented in Fig. 4.

Fig. 4: The impact of applying the VMF on the raw spatiotem-
poral feature map can be seen on the right, resulting from the
input on the left which depicts part of a building.

Finally, the filtered labeled off-ground map will be com-
bined with the corresponding ground point cloud map Mf’L,
to form the final labelled map M} = M{“"* UMS"", which
will be used for labelling the LiDAR frames. In summary our
approach for labelling the points is based on the assumption
that long-term stable objects should appear in the same ge-
ometrical location across all temporal observations, thus the
associated label value should be smaller compared to dynamic
objects.
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Algorithm 1: Unsupervised point-wise labelling algo-
rithm

inputs: A set of filtered and aligned maps M

output: A labeled map MF

foreach P € M{¢ do
Initialize closest distance vector: d = {}
foreach MO¢ € M9J¢ | do

if p(P|0;) # Unknown then

q + KNN(M9C, P)

V(g —pi)?)
else

L d.append(—1)
| Point label: P.l =1 — ¢~ max(d)

Filter MgG’L using median filter Eq. 3
ME = M{CFuMEF

d.append(

> P is occluded in M9¢

LiDAR frames labelling: To propagate the features/labels
from the labelled map ML back to its LiDAR frames S :
{So,...,8n}, we first transform the frame S; coordinate to
its associated map Mﬁ coordinate using the transformation

oG

matrix Tj\‘jgc
k . . .
we use nearest-neighbour interpolation to propagate the labels
back to the frame. Finally, we transform the frame back to its

original coordinates.

TV*, where i € n is the frame number. Then,

B. LTS-NET

We present the Long-Term Stability NETwork (LTS-NET)
Fig. 5, a regression network that is capable of learning
the spatiotemporal labels from the auto labelling algorithm
directly on point cloud data. LTS-NET utilize the PointNet++
architecture [27], which has been shown to be effective in
processing point cloud data directly. The input to the LTS-
NET is a 3D LiDAR frame, represented as sets of 3D point
coordinates S; : {(%0,%0,20) ;- (Tnn, Ynn, Znn)}, Where
nn is the number of points in the frame (we only utilize the
points coordinates as a features).

LTS-NET Encoder: In the encoder component, we employ
4 abstraction layers (down-sampling and feature concatenation
layers) to aggregate local features from the previous layer into
a global feature representation for each point set. To maintain
consistent abstraction across layers and prevent information
loss or distortion due to varying levels of down-sampling, we
use equal numbers of input points in the first two layers (2048
points) and in the last two layers (1024 points). The features
sampling radius for each input point across the layers is set to
0.2, 0.4, 0.8, and 1 m, respectively, to facilitate the learning
of local geometry and its spatiotemporal stability

LTS-NET Decoder: In the decoder, we use 4 feature prop-
agation layers (up-sampling layers) to restore point features
from a down-sampled point cloud to its original form. This
layer takes the global features from the previous layer and
updates the features of each point by considering its local
neighborhood.
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Fig. 5: The LTS-NET is a point-wise network designed to
infer spatiotemporal stability of 3D LiDAR frames. The input
frames S; are processed by SDL, which divides the frame
into a predefined number of slices, N, as expressed in Eq. 5.
The SDL passes each slice, s;, to the network for processing.
The slices are then merged at the output of the network to
form the original frame. This allows the network to infer the
spatiotemporal stability of each point in the frame accurately.

The final output layer uses a Sigmoid function to bound
the output values between 0 and 1. To supervise the training
process, we used the Root Mean Square Error as a cost
function, given by:

“)

here N is the number of points that goes into the first layer of
LTS-NET multiplied by the training batch size, [; and ; are
the true and predicted stability values of the i-th point.

LiDAR frames data loader: to process the LiDAR frame
effectively by the network, we introduce the Slices Data
Loader (SDL). The SDL divides the LiDAR frame into N
slices, with a slice angle of ¢ = 27/N, where N' > 1.
The slice points are found by using the azimuthal angle 6
of the spherical coordinates of the LiDAR frame, which is
calculated as 6 = arctan2(y,x), where y and x are the
Cartesian coordinates of the frame points. The slice points
s; are then obtained using the following equation:

sj = (SI(0 = 6(4)) N (0 < 2(4))), 5

where j € N is the slice number, S is the LiDAR frame
and ¢(j) = j x ¢ and ®(j) = (j + 1) x 1. Using the SDL
enables the network to effectively learn regression by capturing
most frame features. It prevents sub-sampling issues in the
initial layer and avoids enlarging model layers, making it less
resource-intensive and easier to train on mobile platforms.

IV. EXPERIMENTS
A. Dataset

To demonstrate the effectiveness of our system in learning
stable objects and achieving robust localization in a season-
ally changing environment, we conducted experiments using
the Bacchus Long-Term (BLT) dataset [S]. This dataset was
collected in a semi-structured agricultural setting, specifically
a vineyard, and includes data captured over a period of several
months. During this time, the robot traversed a set of paths
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that intersected with each other, making it an ideal testbed
for evaluating long-term localization algorithms. The traversed
paths in the dataset are presented as a topological map in
Fig. 6. The environment in the dataset includes a variety of
objects that change at different rates, including static objects
like buildings and other structures, slow dynamic objects
such as vegetation, and fast dynamic objects like people who
accompanied the robot during the data collection sessions.
The mobile robot in the BLT dataset is equipped with
various sensors, including an RTK-GPS and an OS1-16 Li-
DAR sensor. The full list of sensors can be found in [5].
During the experiments, the RTK-GPS was used as the ground
truth signal for the robot’s pose, while data from the OSI1-
16 LiDAR sensor was used to test algorithms. The test path
is B—+ G — H — (C as shown in Fig. 6, which have a
total length of 105 m. The experiments were conducted on
six different sessions in 2022: April 6th, April 20th, June Ist,
June 8th, June 29th, and July 13th. We use April 6th data to
create the base map for localizing in the subsequent session.

Fig. 6: The topological map for the traversed paths in BLT-
Dataset. The traversed path that we used for our experiments
is highlighted in red.

The data labelling is performed as explained in Sec. III-A,
then the labelled data is used to train a deep regression model
to be used later to infer the stable points of the data (LiDAR
frames) of the upcoming session. For instance, the labelled
data of June Ist is labelled w.r.t previous two sessions that are
April 6th and April 20th, then we train the network, in which
we call LTS-JUNE-1 (based on the training data), to infer the
long term stable objects of the next session June 8th LiDAR
frames.

To evaluate the performance of the network, we used two
metrics: root mean squared error loss (£) and the coefficient of
determination, also known as R-Squared (R?), which is often
considered a more meaningful metric for evaluating regression
models [28]:

N

Zi:l (L —1 )2
HRUSTIE
here IV represents the number of labels, /; is the label value for
the i-th point, l; is the predicted label value from the network,
and [ is the mean of the ground truth labels.

LTS-NET training: To train the network, we split the
LiDAR frames of the sessions into 80% training and 20%

validation data. The training was conducted on a workstation
with an Intel Core 17-6850K CPU, 64GB of RAM, and two

R?2 =

(6)
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NVidia GTX 1080ti GPUs with 12GB of RAM each. The
model was implemented using the PyTorch framework. We
used an initial learning rate of 0.001, momentum of 0.9, and
trained the model for 90 epochs for each network. The training
time for the models was approximately 40 hours. The training
results are summarized in Tab. L.

TABLE I: Networks training performance on different ses-
sions. The metrics represent the average value.

Network Training session L R?
LTS-APRIL-20 April 20th 0.124 0.784
LTS-JUNE-1 June Ist 0.127  0.897
LTS-JUNE-8 June 8th 0.131  0.888
LTS-JUNE-29 June 29th 0.114 0916

LTS-NET inference: Table II summarizes the network’s
inference performance on different sessions. As shown, LTS-
APRIL-20 network had a poor performance with a negative
R-Squared value, indicating that it was unable to accurately
explain the data from June Ist. This may be due to the
significant time gap between April 20th and June Ist, which
resulted in a significant change in the appearance of the
environment due to plant growth. However, the performance
improved for the subsequent sessions as the appearance of the
environment remained similar.

TABLE II: Networks inference performance on different ses-
sions. The metrics represent the average value.

Network Inferred session L R?
LTS-APRIL-20 June 1st 0.427  -0.200
LTS-JUNE-1 June 8th 0.238 0.618
LTS-JUNE-8 June 29th 0.231 0.642
LTS-JUNE-29 July 13th 0.221 0.680

B. Evaluating localization performance

To evaluate the effect of filtering dynamics from LiDAR
scans on long-term localization performance, we compare the
localization performance of the filtered scans with that of the
raw scans. All localization experiments were performed on
an off-ground static map from April 6th as a base/reference
map. The off-ground map used because the ground plane
does not provide unique features for achieving long-term
localization and can potentially lead to incorrect convergence
of the localization package due to its size compared to the rest
of the map. Therefore, we filter it out of the base map.

For localization, we use the HDL localization package 1
which is a 3D localizer based on the Normal Distribution
Transform (NDT) [29] method. The filtered scans were ob-
tained by thresholding the network predictions. During our
experiments, we found that a threshold of €; = 0.9 is sufficient
to filter out slow and fast dynamic points.

To evaluate the performance of the localizer, we use the
Mean and the Root Mean Square Error (RMSE) of the Ab-
solute Trajectory Error (ATE), which measures the difference

Thttps://github.com/koide3/hd]_localization
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between a device’s true and estimated trajectories in a global
coordinate system [30]. The true (ground truth) position in
our setup is the pose from RTK GPS. Table III summarize the
localization performance.

The metrics presented in Table III provide information on
the accuracy of the system, but do not reflect its robustness.
To evaluate the robustness of the system, we use the empir-
ical Cumulative Distribution Function (CDF). This metric is
commonly used to assess the registration accuracy between
a reference scan and an input scan, as explained in [31].
However, it can also be used to assess the robustness of a
localization system, as demonstrated in [32]. The CDF plots
for the translational and rotational errors are presented in
Fig. 7.

COF Position Transformation Error COF Rotation Transformation Error

Cumulative Probability

0 15
Error [m}

4
Emor [degrees]

Fig. 7: The CDF plot is comparing the localization translation
and rotational error of raw scans to the localization translation
error of filtered scans for different sessions.

C. Results discussion

The localization performance for the April 20th session was
evaluated using raw scans only as it was the second session,
and there were not enough observations to train a network
to infer April 20th scans. The localization performance was
still the best among all sessions because the appearance of
the environment did not change much between April 20th
and April 6th. For the reset of the sessions the filtered scans
resulted in improved robustness and performance for the
localizer, as presented in Tab. III and in figure 7. However,
on June Ist the localization performance was similar for both
raw and filtered scans due to the failure of the LTS-APRIL-20
network to infer dynamic points in the LiDAR scans of June
1st, with identical CDF plots for both scans types. We attribute
this to the lack of examples of dynamic objects/structures in
the April data, as the vineyard was only in the early stages of
vegetation at that time.

For the June 8th localization session, the LTS-JUNE-1
model demonstrated slight improvement in localization ro-
bustness and accuracy, with a mean error of 0.216 m for the
entire estimated trajectory compared to 0.228 m for the raw
scans. The raw scans showed good performance, which can
be explained by a trimming process that occurred between
June Ist and June 8th, resulting in fewer dynamic objects
in the environment as shown in Figure 8. On June 29th,
the filtered scans demonstrated superior performance and
robustness compared to the raw scans. For example, the mean
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TABLE III: Localization performance for robot position (pos) estimation of the raw scans compared the filtered scans. The
metrics used are RMSE, Mean and std of the ATE, the units are all in m.

Session RMSE Raw Mean Network RMSEFlltered Mean
ATERM ATEMean (sid) ATERM ATEMean (sud)
April 20th 0.186 0.179 (0.048) — — —
June Ist 1.206 0.743 (0.951) LTS-APRIL-20 1.176 0.731 (0.921)
June 8th 0.300 0.228 (0.195) LTS-JUNE-1 0.239 0.216 (0.103)
June 29th 2.994 1.250 (2.721) LTS-JUNE-8 0.890 0.395 (0.795)
July 13th 2.199 0.903 (2.005) LTS-JUNE-29 0.295 0.234 (0.179)

localization error for the entire trajectory was less than 0.4 m
for the filtered scans, while it was 1.25 m for the raw scans.
Similar results were observed on July 13th, indicating that the
LTS-NET was able to successfully identify and filter in the
long-term stable objects.

(a) Vine rows for June Ist (b) Vine rows for June-8th
Fig. 8: Comparison between the orchard rows in June Ist and Static I __mmm Dynamic
June-8th indicating that a pruning process occurred between Point-wise stability score

the two sessions, which resulted in fewer dynamic elements. Fig. 9: Using the regression model learned from the BLT

dataset in a new vineyard setting. (a) The image of the new

Despite the fact that the translational error was smaller for  fapq. (b) Displays a LiDAR frame with its predicted points
the filtered scans, the rotation error was similar for both types stability labels. (c) A zoomed-in photo highlights some of the
of scans, as illustrated in Fig. 7. This can be attributed to the ;,forred features. (d) The individual accompanying the robot
robot’s movement pattern, which consisted of traversing in ¢ congidered dynamic based on inference. (e) The poles in the

Stfalght lines within the rows of vines and only performing  e;vironment are considered stable objects through inference.
rotations at the end of the rows where stable structures

were more pronounced. This enabled the localizer to robustly
estimate the robot’s heading angle for both types of scans. V. CONCLUSION

In this paper, we have proposed a novel spatiotemporal
data-driven point-wise filter for learning long-term stability

The motivation behind this experiment is to evaluate the landmarks for robust localization in a continuously changing
performance of LTS-NET which has been trained on the environment. The system utilizes an unsupervised labelling
temporal stack data from the BLT dataset in a completely new algorithm for 3D LiDAR scans to generate spatiotemporal
vineyard environment. The aim is to demonstrate that once point-wise stability scores based on multiple observations
the LTS-NET has learned long-term spatiotemporal stability, of the environment, and a point-wise regression network
it can be applied directly in a new environment that lacks prior ~called LTS-NET to infer the stability of objects from 3D
observations. To this end, data were collected in an initial-state LiDAR frames. Through experimental evaluation, we have
vineyard (as shown in Fig. 9), over two sessions, primarily —demonstrated the effectiveness of our approach in filtering
to generate labels for evaluating the LTS-NET’s inference dynamic elements from the scans and achieving robust, long-
performance. The results show that the network exhibits an term localization performance. Furthermore, LTS-NET showed
acceptable evaluation loss (£ = 0.245) and coefficient of good performance when inferring object stability on LiDAR
determination (R? = 0.216) in this new environment. This data from a completely new environment.
suggests that the model is capable of providing plausible While the system demonstrated the ability to learn long-
estimates of object stability, as demonstrated in Fig. 9-d, where term stable features and use them to achieve robust local-
the model correctly identifies the human as a dynamic object ization over time, there are still some limitations that could
and the poles in Fig. 9-e as static/stable objects. potentially compromise the overall system. These limitations

D. Evaluating LTS-NET inference in a new environment

32
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can be summarized as follows: (1) Our unsupervised labelling
algorithm relies on the accuracy of ICP map alignment; thus
if this step fails, incorrect features may be associated with the
points, which will impact the learning and filtering process.
This issue could be addressed by introducing some manual
intervention by a human operator. (2) The LiDAR resolution
is another factor that affects the robustness of the system.
A higher resolution allows the system to extract and learn
more stable features, resulting in increased robustness. (3) The
current implementation of LTS-NET has an inference time of
approximately 2 frames per second.

As for future work, we aim to optimize the LTS-NET net-
work architecture and code to enable real-time performance.
In addition to that, further qualitative analysis is required to
verify the transferability of the model to different domains,
particularly with regard to seasonal changes, as the necessary
data is currently unavailable.
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Abstract—Rigid registration of point clouds is a fundamental
problem in computer vision with many applications from 3D
scene reconstruction to geometry capture and robotics. If a
suitable initial registration is available, conventional methods like
ICP and its many variants can provide adequate solutions. In
absence of a suitable initialization and in the presence of a high
outlier rate or in the case of small overlap though the task of rigid
registration still presents great challenges. The advent of deep
learning in computer vision has brought new drive to research
on this topic, since it provides the possibility to learn expressive
feature-representations and provide one-shot estimates instead of
depending on time-consuming iterations of conventional robust
methods. Yet, the rotation and permutation invariant nature of
point clouds poses its own challenges to deep learning, resulting
in loss of performance and low generalization capability due to
sensitivity to outliers and characteristics of 3D scans not present
during network training.

In this work, we present a novel fast and light-weight network
architecture using the attention mechanism to augment point
descriptors at inference time to optimally suit the registration
task of the specific point clouds it is presented with. Employing
a fully-connected graph both within and between point clouds
lets the network reason about the importance and reliability of
points for registration, making our approach robust to outliers,
low overlap and unseen data. We test the performance of our
registration algorithm on different registration and generaliza-
tion tasks and provide information on runtime and resource
consumption. The code and trained weights are available at
https://github.com/mordecaimalignatius/GAFAR/.

I. INTRODUCTION

Rigid registration of point clouds is the task of simultane-
ously inferring both pose and correspondences between two
sets of points [1]. As soon as either pose or correspondences
are known, estimation of the respective other is straight
forward, yet doing both simultaneously is posing challenges
in computer vision and robotics. Its importance in tasks such
as pose estimation [2], [3], map-building and SLAM [4],
[5] as well as localization tasks geared towards autonomous
driving [6] fuel the research interest in registration algorithms.

ICP and its many variants [7], [8], while able to provide
exceptional results for good initializations, tend to get stuck
in local minima if the initialization is insufficient, in the
presence of high outlier rates, or in cases with low overlap.
Attempts to resolve this range from methods using branch-
and-bound to infer a globally optimal solution [9], methods
based on feature matching between key-points followed by

979-8-3503-0704-7/23/$31.00 © 2023 IEEE
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Fig. 1. Registration example on high quality real world scans captured with a
handheld 3D scanner (left) and examples of the (meshed and textured) object
scans available in the custom dataset used for testing generalization ability
(right).

robust matching strategies [10], [11] and in recent years
deep neural networks for learning feature descriptors and
matching [12], [13], [14], [15]. Yet both, branch-and-bound as
well as robust matching, suffer from speed and accuracy issues
in real-life application due to the high number of iterations
necessary in cases of high outlier ratios. Deep-learning based
methods usually fare better with regard to outliers, yet still
struggle due to the contradiction between low distinctiveness
of local point-features caused by topological similarities and
low match recall of global features in low-overlap cases. A
further drawback of algorithms using deep neural networks
often is their high requirements concerning compute resources,
limiting their use in mobile applications.

To tackle these challenges, we propose GAFAR: Graph-
Attention Feature-Augmentation for Registration, which em-
ploys deep-learning techniques not only for extraction of
meaningful local features from point sets, but also for learning
an adaptive augmentation network for online transformation
of local features for robust matching. We achieve this by
exploiting structural information from between point sets as
well as from within a single one thorough an architecture of
interleaved self- and cross-attention layers [16], [17]. While
achieving state-of-the-art registration performance, our method
is light-weight and fast.

We demonstrate this in a series of experiments, testing not
only registration performance on the dataset used for training,
but also robustness and generalization ability in two further
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experiments on vastly different datasets of real world scans,
one captured with a handheld 3D scanner producing precise
scans, the other being the Kitti Odometry Dataset [18] showing
street scenes captured by a LiDAR scanner. Furthermore, we
provide insight into runtime and resource needs. The main
contributions of our method are:

o We demonstrate the use of transformer networks and the
attention mechanism to build a fast and light-weight, yet
accurate registration algorithm.

« We present an online feature augmentation strategy in
registration which proves to be superior in terms of
robustness to partial overlap and geometries not seen
during training.

« We show how certain design-choices enable us to esti-
mate the registration success without knowledge of the
true transformation, enabling its use in applications that
require fail-safes.

o We demonstrate state-of-the art performance and superior
generalization capability in a light-weight package.

II. RELATED WORK

One of the oldest, yet still relevant methods for registration
of point clouds is ICP [19]. Starting from an initial align-
ment, ICP iteratively updates the registration parameters by
establishing point correspondences using Euclidean distance,
rejecting far away point pairs. Due to this design it is prone
to get stuck in local minima, the final registration accuracy
heavily depends on the initialization. Many variants have been
proposed over the years [7] to mitigate these issues, yet the
dependence on the initialization has remained.

Several registration algorithms trying to solve the depen-
dence on initialization have been proposed [9], [20], alongside
of handcrafted feature descriptors trying to capture local ge-
ometry of point clouds in a meaningful way, such as PPF [21]
and FPFH [22], among others [23]. Yet, they never managed to
reach the performance and robustness of their 2D counterparts.

Recent advances in deep-learning extend deep neural net-
works to 3D point clouds and have resulted in methods
for learned local feature descriptors like PointNet [24], [25],
FCGF [12], Graphite [26] and DGCNN [27], learned filtering
of putative point matches [28] and complete learned registra-
tion pipelines. 3DSmoothNet [29] extracts a local reference
frame and voxelizes the point cloud around key points, yet
reference frame estimation is susceptible to outliers, voxeliza-
tion tends to loose information due to spatial discretization.
PointNetLK [14] estimates registration parameters to match
the deep representations from PointNet of complete point
clouds, DCP [15] uses DGCNN to extract point features and
the attention mechanism [16] to predict soft correspondences,
restricting their application to registration of point clouds with
high overlap. Research into Pillar-Networks [6], [30] is driven
mainly by automotive applications for processing of LiDAR
point clouds from mobile mapping systems, assuming the
input point clouds to share a common z=up orientation. They
extract cylindrical point pillars along the z-axis around key
point locations for further processing, and are therefor not
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applicable to general registration problems or when the as-
sumption of z-axis alignment can not be guaranteed. Keypoint
based methods like [31] aim at detecting repeatable keypoints
across scans, and registering them using powerful descriptors.
In contrast [32] uses a detection-free approach with a local-
to-global detection strategy using superpoints. IDAM [33]
tackles inaccuracies arising from inner product norms for
feature matching with an iterative distance-aware similarity
formulation. DeepGMR [34] recovers registration parameters
from Gaussian Mixture Models, parameterized using pose-
invariant correspondences. RPM-Net [35] predicts annealing
parameters and predicts correspondences with annealing in
feature matching and the Sinkhorn Algorithm [36] as solver for
linear assignment, predicting soft correspondences. RGM [37]
explicitly builds and matches graphs within point clouds to
resolve ambiguity issues between locally similar patches and
predicts hard correspondences using the Hungarian Algorithm.

In contrast to [37], we use graph matching for feature aug-
mentation before matching, but do not match graphs extracted
from point clouds explicitly. Similarity between the internal
point cloud structures is handled by our method implicitly
using cross-attention modules. Our method predicts hard cor-
respondences by thresholding of the assignment matrix after
running sinkhorn iterations, interpreting the correspondence
estimation as optimal transport problem of the feature corre-
lation matrix.

III. PROBLEM FORMULATION

Rigid registration of two 3D point sets is the task of finding
a transformation consisting of a rotation matrix R € SO® and
a translation vector t € R? aligning input point set Pg
{p; € R3|i =1,..., M} to the reference point set Pr = {p; €
R3|j =1,...,N}. Here M and N denote the respective sizes
of the point sets.

The underlying assumption is, that both point sets are
sampled on the same surface or the same object and share at
least some common support (i.e., the physical location where
the object has been sampled does actually overlap). In the most
general case, point sets Ps and Pr may not have any true
correspondences between them, may suffer from outliers and
additive noise and they may only share parts of their support,
resulting in only partial overlap.

Given a set of corresponding points between two point sets,
the rigid transformation aligning both sets can be recovered
using SVD. This approach relaxes the task of estimating a
rigid transformation to that of finding pairs of corresponding
points between both sets. Since the transformation obtained
using SVD aligns the point pairs in a least-squares sense, this
formulation directly lends itself to the case where no exact
matches exist.

Hence, the task of rigid point set registration can be formu-
lated mathematically as:

N M

C" = argmin (Z > cijlRepi + te —pj||2>’ (1)

Vi (3
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where C € {0,1}M-V is a permutation matrix subject to row
and column constraints 3" C; = 1V and Z;V C; = 1M,
associating the points between both point sets. The transforma-
tion parameters R and t¢ refer to those recovered by SVD
using the point pairs designated by permutation matrix C. To
handle the case of partial overlap, the permutation matrix is
augmented by a row and column to C € {0,1}MFLN+1
while relaxing the constraints on rows and columns of C to

M N
Soi<aV, Y o<t
i ;

In practice, this formulation can be solved by augmenting
an initial full point feature correlation matrix with an addi-
tional row and column and solving the relaxed optimization
problem as the optimal transport problem [38], [39], using the
Sinkhorn Algorithm as differentiable implementation of the
linear assignment problem [36], [17].

IV. THE MAKING OF GAFAR

The key idea behind our network architecture is to adapt
initial local per-point feature descriptors Fg of a source point
set Pg for correspondence matching in an online fashion
by injecting information of the reference point set Pgr. The
reasoning behind this is, that for successful point matching
neither only local geometric structure (which may be repetitive
or non-distinctive) nor fully-global information (which in case
of partial overlap may encode information of areas which
are not shared) is sufficient. The relevant information for
successful point matching lies solely within the topology of
the overlapping area as well as the relative position of points
within this area. Our architecture takes two point sets Pg
and Ppg, represented as point locations in Euclidean coordi-
nates together with their respective point normals, as input.
Internally, the network architecture consists of a feature head
generating per-point features for both point sets independently,
as well as an augmentation stage inspired by [17], consisting
of interleaved self- and cross-attention layers. This allows the
network to reason jointly over both sets of feature descriptors,
adapting them iteratively into representations optimally suited
for finding high-quality correspondences between those two
specific point sets. Matching is done by calculating the dot-
product similarity between all possible pairings of the resulting
feature descriptors Fg and Fg, relaxing the match matrix by
adding a slack row and slack column and running the Sinkhorn
Algorithm a predefined number of iterations, as in [17], [35].
The network weights are shared between the two branches
processing Pg and Pg, turning the architecture into a fully-
siamese network [40]. Figure 2a depicts an overview of the
architecture, the different building blocks are explained in
greater detail in the following subsections.

2

A. Local Feature Descriptor Head

Our feature head, depicted in Figure 2b, consists of two
main building blocks, a local feature encoder with a neigh-
bourhood size N and a point-wise location encoder Multi-
Layer Perceptron (MLP). Both take point locations within the
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unit-circle and their respective normal vectors as input. As
point-feature network we employ an architecture derived from
DGCNN [27], extended by an MLP functioning as a bottleneck
to reduce the feature dimensionality to a more suitable size. A
basic layer of this architecture embeds the lower-dimensional
representation into a higher dimensional local representation
with a nonlinear transformation by applying a MLP on point
patches consisting of the N nearest neighbours of each point
pi, followed by max-pooling over the patch and normalization.
Information is aggregated via multiple layers and concatena-
tion until a high-dimensional internal representation F; € R?
of the local point neighbourhood is reached. Our point-wise
location encoder is implemented as a pure point-wise MLP,
for each point p in point set P embedding its position in
Euclidean space into a high-dimensional feature space, again
of size R, The output of both, the feature encoder and the
position encoder, are then concatenated and projected back to
R? by a small point-wise MLP.

B. Graph-Attention Feature-Augmentation Network

The purpose of the graph attention network for feature
augmentation is to optimize the feature representations Fg
of the input point set Pg at inference time for correspondence
search by infusing knowledge of the reference point set Pg,
and vice versa. To this end, we build the feature augmentation
sub-network as a stack of alternating self- and cross-attention
layers, interleaved with normalization layers. The architecture
of the attention layers is depicted in Figure 2c, implementing
a residual block with message passing for feature update. We
set the feature-augmentation network up as a stack of fully-
connected graph-attention layers, thereby letting the network
learn which connections are relevant for the current point
feature from all possible connections and to only attend to
those via Multi-Head Softmax-Attention. This allows to embed
information of the relevant topology from both within and
between point-sets in an iterative fashion into the feature
descriptors, resulting in two sets Fg: {fieRi=1,... M}
and Fr : {fj € R%j 1,...,N} of point features for
matching.

C. Feature Matching

After feature augmentation, matching is done by calculating
the similarity score matrix S € RN between the point
feature descriptors Fg' and Fg' of all possible point pairs
Pi,; = {pi € Ps,pj € Pr} using dot-product similarity:

{fis fj) - 3)

Since we are interested in finding point-correspondences,
we interpret the optimization problem of equation (1) in terms
of the optimal transport problem [39], using the similarity
score S as its cost. We find an approximate solution C* by
adding a row and column of slack variables to S as detailed
in equation 2 and applying a few iterations of the Sinkhorn-
Algorithm as a differentiable approximation to the Hungarian
Algorithm for the solution of optimal transport [36], [38], [41].
Finally, we threshold the resulting approximate permutation

S: Si,j
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Fig. 2. Architectural details of GAFAR. Figure (2a) shows an overview of the network architecture, sub-figures (2b) and (2c) the structure of the feature
head and the attention layers, respectively. Q) denotes matrix multiplication, € concatenation.

matrix C* by threshold ¢,, € [0,1] and take mutual row- and
column-wise maxima as point correspondences for calculation
of the rigid transformation {R, t} aligning the point sets using
SVD.

D. Loss

As loss for network training we employ the binary cross
entropy loss between the predicted permutation matrix C* and
the ground truth correspondence matrix Gg;:

Lpcp == gijlogéi;+ (1= gi;) log(l—é;). (4
(]
V. EXPERIMENTS

In order to evaluate the performance of our proposed
registration method, we perform two experiments. The first
experiment V-A tests the performance on synthetic data of
ModelNet40 [42] for different settings of noise and overlap.
The second experiment described in section V-B tests the
generalization ability using LiDAR point clouds of the Kitti
Odometry Benchmark [18] and custom high-quality real-world
object scans, using only models trained on synthetic data in
the experiment of section V-A.

Throughout the experiments, we have chosen the following
parameters for our network: The feature dimension is chosen
as d = 128, the number of layers and layer dimensions
in the feature encoder of the feature head follows the pa-
rameterization of DGCNN [27] with a neighbourhood size
of N' = 20. The location encoder is chosen as a 4 layer
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MLP with layer dimensions [16,32,64,128]. Our feature-
augmentation graph-attention network consists of 9 stacks of
consecutive self- and cross-attention layers with 2 attention
heads. For normalization, batch-norm is chosen throughout the
network. The number of Sinkhorn-iterations is set to 10 for
both, training and inference. We train the network on a single
registration iteration per example, testing is done with a second
iteration, feeding the source point cloud aligned by the result
of the first iteration again through the network.

Model training usually converges after training for two days
using AdamW optimizer with learning rate 1le~* on a Nvidia
GeForce RTX3090 (between 800 and 1000 epochs).

A. Experiments on ModelNet40

ModelNet40 consists of 12,311 meshed CAD models in 40
object categories, spanning a vast array of scales from chairs
to airplanes. Consistent with previous work, we use the pre-
sampled point clouds provided by Shapenet [43], consisting
of 2048 points per model to conduct the experiments. For
easy comparison we follow the setup of [37] and perform the
same experiments. All experiments with exemption of subsec-
tion V-A4 follow the official training and testing split, with an
additional 80:20 split of the official training set for training
and validation. The experiment described in subsection V-A4
uses the first 20 object classes of the training set for training,
the first 20 object classes of the test set for validation and
the remaining 20 classes for testing. The point clouds already
come scaled to fit within the unit circle, therefor all measures
related to point distance are given in a normalized scale. As
in [37], we sample 1024 points at random from the point
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clouds and apply random rotations within [0°,80°] around
a random axis and random translations within [—0.5,0.5] in
normalized units.

Registration performance in measured using the same met-
rics as [37], that is residual transformation errors of {R, t} as
mean isotropic errors (MIE) as proposed by [35], as well as
clipped chamfer distance (CCD) between reference point cloud
Y and transformed source point cloud X after registration:

CODX,Y) = 3 min(min(|[2: ~u;[3).7)
S Yi
e , (5)
+ E min( min ([|2; — y;([2),7),
J;€Y 2ieX

with clip distance 7 = 0.1. Furthermore, we report registration
recall (RR), defined as percentage of registration results with
residual errors MAE(R) < 1° and MAE(t) < 0.1. To keep
consistent with previous research, we also state the residual
transformation errors in terms of mean absolute errors (MAE)
as proposed by [15], which is anisotropic. Errors related to
rotations are given in degrees, errors related to distance are
normalized to object size (since the data in ModelNet40 does
not have a common scale and is normalized to the unit circle).

The design of our registration method provides us directly
with information on the reliability and success of a matching
attempt. Using the value of the matching score s; ; matching
point p; to point p; as well as the number of found matches,
we can reject invalid registrations. To this end, we provide
results for matching thresholds t,, 0.5 and rejecting
registrations with less than 3 correspondences. Evaluation of
registration errors is done on successful registrations only,
stating the percentage of successful registrations in braces
after the method name. Registration recall for our method is
provided with respect to the full number of examples in the
testing set, thereby making it directly comparable. In practical
applications, failed registrations can easily be rectified by ei-
ther performing batched registrations with different samplings
for a single registration task or repeating the registration with
a different subset of points in case of failure. Please note that
the main competing methods do not allow any insight like
this without knowledge of the underlying true registration,
since RPMNet [35] works on soft-correspondences, RGM [37]
only provides hard correspondences without associated score
and returned in our experiments always more than 3 matches.
Results of the comparing methods are reproduced from [37].

1) Full and clean data: The first experiment can be
considered a baseline in registration performance, since the
transformation has to be recovered from a full set of 1024
exact and noise-free correspondences and is mainly reproduced
for completeness. From Table I we can see that basically all
methods are able to almost perfectly register the point clouds
with MAE(R) below or around 1°. Only ICP struggles in
comparison.

2) Additive gaussian noise: In this experiment, source and
reference point sets are sampled independently, so only a few
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TABLE 1
REGISTRATION PERFORMANCE ON CLEAN POINT CLOUDS.
method | MIER) MIE(t) MAE(R) MAE(t) ccD RR
ICP [19] 6.4467  0.05446 3079 0.02442  0.03009 74.19 %
FGR [20] 0.0099  0.00010 0.006  0.00005  0.00019  99.96 %
IDAM [33] 13536 0.02605 0.731 001244 004470 7581 %
DeepGMR [34] | 0.0I156  0.00002 0.001 000001  0.00003 100.00 %
RPMNet [35] 0.2464  0.00112 0.109  0.00050  0.00089  98.14 %
RGM [37] 0.0103  <0.00001  <0.001 <0.00001 <0.00001 100.00 %
Ours (100.00%) | 0.0150  0.00009 0.007  0.00004 000014  99.92 %

perfect correspondences may exist. Additionally, we add gaus-
sian noise sampled from A/(0,0.01) and clipped to the range
[—0.05,0.05] to the point locations independently, thereby
eliminating all perfect correspondences. Point correspondences
and point normals are then re-established, following the proce-
dure of [37], first finding mutual nearest neighbours and then
adding remaining nearest neighbours, all within a maximum
distance of 0.05 between corresponding points.

As can be expected, the performance degrades to a certain
degree. The results listed in Table II show that the learning
based methods still hold up rather well with MAE(R) around
or below 3°. RPMNet, RGM as well as our method still
achieve a RR of more than 90%. Interestingly, the performance
of ICP does not degrade, showing its robustness to outliers.

TABLE II
REGISTRATION PERFORMANCE WITH ADDITIVE GAUSSIAN NOISE.
method MIE(R)  MIE(t) MAER) MAE(®) CcCD RR
ICP [19] 6.5030  0.04944 3127 002256 0.05387 77.59 %
FGR [20] 10.0079  0.07080 5405 0.03386 0.06918 30.75 %
IDAM [33] 34916 0.02915 1.818 001516 0.05436  49.59 %
DeepGMR [34] | 22736  0.01498 1178 0.00716 0.05029  56.32 %
RPMNet [35] 0.5773  0.00532 0.305 0.00253 0.04257  96.68 %
RGM [37] 0.1496  0.00141 0.080  0.00069 0.04185 99.51 %
Ours (98.82%) | 0.8560  0.00635 0.518  0.00296 0.04297  93.64 %

3) Registration of noisy, partially overlapping sets: In this
experiment, in addition to additive gaussian noise, both source
and reference point clouds are independently cropped along a
random plane to 70% of their original size, resulting in variable
overlap of at least 40%. This experimental setup corresponds
closest to general real-world applications. From Table III we
see that, with exception of RPMNet [35], RGM [37] and
ours, the registration performance degrades beyond anything
what can be deemed usable in any applications. Notably,
the registration performance on recovered registrations of
our method is the same as in the previous experiment with
full overlap, albeit losing in successful registrations and in
registration recall. Comparing the registration recall of 77.2%
to the percentage of recovered registrations of 84.3%, we see
the merit of our architecture and the ability to predict whether
a registration attempt was successful.

4) Partial overlap of unseen object categories: The differ-
ence to the experiment outlined in section V-A3 is that now
we only train on the first 20 object categories of ModelNet40,
but evaluate on the remaining 20 categories. Thereby we can
explore to what extent the learned registration networks are
able to generalize to geometries not present in training. An
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TABLE III
REGISTRATION PERFORMANCE WITH ONLY PARTIAL OVERLAP AND
ADDITIVE GAUSSIAN NOISE.

method MIE(R) MIE(t) MAER) MAE(t) CCD  RR [%]
ICP [19] 248777  0.26685 12.456  0.12465  0.11511 6.56 %
FGR [20] 424292 0.30214 23.185 0.14560  0.12118 523 %
IDAM [33] 16.9724  0.19209 8.905 0.09192  0.12393 0.81 %
DeepGMR [34] | 70.9143  0.45705 43.683  0.22479  0.14401 0.08 %
RPMNet [35] 1.6985  0.01763 0.864  0.00834  0.08457  80.59 %
RGM [37] 0.9298  0.00874 0.492  0.00414  0.08238  93.31 %
Ours (84.32%) 0.8854  0.00721 0.484  0.00347 0.08119 77.19 %

interesting fact evident in the results listed in Table IV is
that the performance of all methods except RPM [37] does
not decline much relative to the experiment done on known
categories, whereas RPM almost doubles its residual errors.
Although very powerful in establishing good correspondences,
the neural network architecture in RPM seems to learn geome-
tries by heart, hampering its generalization ability, whereas
our method performs as strong as it did before, outperforming
RGM in all measures. This again exemplifies the merit of
feature augmentation at test time for optimal matching success.
Furthermore we would like to point out that although our
method is not able to successfully register all examples in the
first attempt, using the match threshold ¢,,, and the number of
found matches, we can precisely predict unsuccessful attempts.
In all experiments, RR is close to the number of valid examples
within a margin of about 5%.

TABLE IV
REGISTRATION PERFORMANCE ON UNSEEN CATEGORIES, PARTIAL
OVERLAP AND GAUSSIAN NOISE.

method MIEQR)  MIE(t) MAER) MAE®) CCD RR
ICP [19] 26.6447  0.27774 13326 0.13033 0.11879 671 %
FGR [20] 41.9631  0.29106 23.950  0.14067 0.12370  5.13 %
IDAM [33] 19.3249  0.20729 10.158  0.10063  0.12921  0.95 %
DeepGMR [34] | 71.0677 0.44632 44363 022039 0.14728  0.24 %
RPMNet [35] 1.9826  0.02276 1.041 001067 0.08704 7559 %
RGM [37] 1.5457  0.01418 0.837  0.00674 0.08469  84.28 %
Ours (89.10%) 0.8695  0.00871 0.434  0.00432  0.08299 85.78 %

B. Generalization to real-world 3D scans

For real-world application, the ability of 3D registration
methods to generalize to new and different geometries as well
as capturing modalities is crucial. To this end, we compare
the registration performance of the best performing methods
trained on ModelNet40 as detailed in section V-A on two
datasets, a custom dataset (publication is planned) as well as
the the well known Kitti Dataset [18]. The custom dataset
consist of objects scans of 10 objects taken with an Artec
Leo [44] handheld 3D scanner, for each object up to 10
overlapping partial scans exist, with between 10.000 and
50.000 points each. Figure 1 shows a registration example
of this dataset. Transformations are generated within the
same constraints as in the experiments on ModelNet40. We
report registration accuracy in terms of MIE(R), MIE(t) and
registration recall. Since the objects in this dataset have a
common scale, MIE(t) is reported in millimeters, registration
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recall is defined as percentage of registration results with
residual errors MIE(R) < 1° and MIE(t) < 5mm. Again,
the number of in brackets behind versions of our method
states the respective percentage of valid registrations. For the
experiments on Kitti, we follow the established praxis [32],
[12], [31] of testing on sequences 8-10, testing registration
performance of point cloud pairs at least 10m apart. As
in [32], [12], [31], we use ground truth poses refined by
ICP, MIE(t) is reported in meters, and registration recall
is defined as percentage of registration results with residual
errors MIE(R) < 5° and MIE(t) < 2m. Note that for fairness
we applied an additional data normalization step for RPM-
Net and RGM, scaling the data to fit into the unit circle for
registration, thus making the input points span the same range
as the training data of ModelNet40. From Table V we can see
that our algorithm generalizes well to high quality 3D scans,
the models trained on partial overlapping data outperform
both RGM [37] and RPMNet [35] by a large margin in all
metrics. For registration of large-scale outdoor scenes of Kitti,
a domain-gap for all methods is noticeable. Nonetheless, our
method still performs reasonably well given the circumstances,
with registration recall of around 50% and mean errors of 3.1°
and 3.5m for the best generalizing models trained with only
partial overlap, again showing its robustness to different data
modalities. Furthermore, the strong ability to predict which
registrations were successful is visible from comparing the
number of 51.1% valid registrations to the RR of 49.7%
for the model trained on unseen categories. Again, we can
observe that while a powerful registration method, RGM seems
to overfit on the training modalities, being beaten even by
RPM-Net trained for the experiment on noisy data and unseen
categories, whereas our method is rather robust to changes
in sampling, overlap and geometry. Interestingly, for both,
RGM and RPM-Net, models trained on the harder cases of
only partial overlap often lead to a decrease in generalization
performance, whereas our methods ability to generalize to
different data improves with the difficulty of the training task.

TABLE V
GENERALIZATION TO REAL WORLD OBJECTS SCANNED USING A
HANDHELD 3D SCANNER, USING THE MODELS TRAINED ON
MODELNET40 FROM THE EXPERIMENTS IN SECTION V-A. HERE, THE
NAME IN THE COLUMN experiment REFERS TO THE EXPERIMENT IN WHICH
THE METHOD WAS TRAINED, NO FURTHER DATA AUGMENTATION HAS
BEEN DONE BESIDES RANDOM SUB-SAMPLING. FOR RR, THRESHOLDS
ARE SET AS MIE(R) < 1° AND MIE(t) < 5mm.

method experiment MIE(R) [°] MIE(t) [mm] RR [%]
clean 23.9 88.2 0.8 %
RPMNet [35] | noise 1.8 6.2 62.8 %
unseen 4.4 14.9 65.0 %
clean 6.1 22.8 10.5 %
RGM [37] noise 33 12.3 32.5 %
crop 5.8 24.8 254 %
unseen 7.0 26.6 26.0 %
clean (100.0%) 6.0 22.4 5.0 %
Ours noise (97.6%) 1.2 50 58.6%
crop (99.1%) 0.6 1.9 743 %
unseen (98.7%) 0.6 1.7 76.7 %
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TABLE VI
GENERALIZATION TO DATA FROM KITTI ODOMETRY BENCHMARK, AGAIN
USING THE MODELS TRAINED ON MODELNET40 FROM THE EXPERIMENTS
IN SECTION V-A. FOR RR, THRESHOLDS ARE SET AS MIE(R) < 5° AND

MIE(t) < 2m.
method experiment MIE(R) [°] MIE(t) [m] RR [%]
clean 100.1 9.8 0.0 %
RPMNet [35] | noise 5.6 8.3 0.5 %
unseen 4.7 7.5 0.7 %
clean 6.5 9.4 0.0 %
RGM [37] noise 6.0 8.1 0.2 %
crop 6.7 8.4 0.7 %
unseen 9.2 8.7 0.0 %
clean (100.0%) 7.2 9.6 0.0 %
Ours noise (88.8%) 14.4 10.3 1.6 %
crop (59.1%) 3.4 35 470 %
unseen (51.1%) 3.1 35 497 %

C. Resource Consumption and performance

Registration performance is not the only relevant criterion
for the usability of an algorithm. Execution time as well
as compute resource needs are limited especially in mobile
applications and are therefor a further relevant measure in
algorithm selection. To this end, we compare our algorithm
in terms of complexity and resource needs to the two best
competing methods. Model complexity is measured in the
number of trainable parameters. Compute resource needs are
given in GB of GPU memory use for batch sizes of 20, 5, and
1, as well as registration speed measured in registrations per
second. We can see from Table VII, that our method is both
more light-weight and faster while still providing competitive
results.

TABLE VII
RESOURCE CONSUMPTION OF THE BEST PERFORMING METHODS ON A
NVIDIA GEFORCE RTX3090. MEMORY USE IS PROVIDED FOR BATCH
SIZES 20, 5, AND 1.

method ‘ param [#] mem@20 mem@5 mem@1 rate [#/s]
RPMNet [35] 0.91€ 6.50 GB 3.2 GB 2.2 GB 45.9
RGM [37] 25.0e8 7.20 GB 3.4 GB 2.4 GB 6.6
Ours 4.4¢8 4.47 GB 2.6 GB 2.2 GB 62.0

D. Ablation Study

In order to evaluate the benefit of different parts in our
feature head, we test the following configurations. Networks
are trained on the task of partial overlap, as in section V-A3
using the same random seed, with the following architectural
differences:

« Location encoder: the feature head only uses the location
encoder.

o Feature only: the feature head only uses the local point
feature network.

« additive fusion: the MLP fusing position encoding and
local point feature is replaced by a simple addition of
feature vectors.
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e MLP fusion: this is the full network architecture, con-
sisting of the feature head with location encoder, point
feature network and MLP for feature fusion.

Please note that the networks have not been trained to full
convergence, since only a qualitative difference is required.
For testing, the same modalities as for the experiments in sec-
tion V-A have been employed. From the results in Table VIII
we can see, that each additional structure improves the overall
performance, the method works best if we let the network
learn how to combine both feature vectors.

TABLE VIII
ABLATION STUDY TESTING THE INFLUENCE OF THE DIFFERENT PARTS OF
OUR FEATURE HEAD. THE FULL HEAD WITH BOTH, LOCAL FEATURE
ENCODER AND POSITION ENCODER FUSED BY AN SMALL MLP, PERFORMS
BEST. NOTE THAT THE NEURAL NETWORKS WERE NOT TRAINED TO FULL
CONVERGENCE IN THIS STUDY.

variant ‘ MIER) [°] MIE(t) RR [%]
location encoder 2.90 0.021 72.5 %
feature encoder 1.99 0.016 78.9 %
additive fusion 1.76 0.014 77.0 %
MLP fusion 1.29 0.012  79.0 %

VI. CONCLUSION

In this paper, we presented GAFAR, a novel, light-weight al-
gorithm for point set registration using an end-to-end learnable
deep neural network for feature encoding and correspondence
prediction. Its performance is competitive while being faster
and less demanding on resources compared to other state-of-
the-art methods, which makes it well suited for applications
with constraints on compute resources, power consumption
and runtime. Our method shows very high generalization
capability to different data modalities and exhibits little overfit
to geometry details of the training set. The strong performance
for partial overlap, even for object classes not present in
training, shows the merits of the cross-attention mechanism
for feature augmentation. A further benefit of our method is
its ability to provide an indication on the quality of predicted
correspondences, thereby giving opportunity to tune between
high registration accuracy and high recall as well as to reject
failed or bad registrations without additional knowledge. In
practice, failure cases can be remedied by either performing
multiple registrations with different sub-sampling in parallel
in a batched fashion, or by repeating the registration with a
different sample in case of failure.

In the future, we plan to tackle the limitation to only
small subsets of point clouds by applying the underlying
architectural principles to the registration of large point sets
directly, while still keeping with the paradigm of light-weight
architecture and fast execution.
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Revisiting Distribution-Based Registration Methods

Himanshu Guptal, Henrik Andreasson’, Martin Magnussonl, Simon Julier?, and Achim J. Lilienthal®:?

Abstract— Normal Distribution Transformation (NDT) reg-
istration is a fast, learning-free point cloud registration al-
gorithm that works well in diverse environments. It uses
the compact NDT representation to represent point clouds
or maps as a spatial probability function that models the
occupancy likelihood in an environment. However, because of
the grid discretization in NDT maps, the global minima of the
registration cost function do not always correlate to ground
truth, particularly for rotational alignment. In this study, we
examined the NDT registration cost function in-depth. We
evaluated three modifications (Student-t likelihood function,
inflated covariance/heavily broadened likelihood curve, and
overlapping grid cells) that aim to reduce the negative impact
of discretization in classical NDT registration. The first NDT
modification improves likelihood estimates for matching the
distributions of small population sizes; the second modification
reduces discretization artifacts by broadening the likelihood
tails through covariance inflation; and the third modification
achieves continuity by creating the NDT representations with
overlapping grid cells (without increasing the total number of
cells). We used the Pomerleau Dataset evaluation protocol for
our experiments and found significant improvements compared
to the classic NDT D2D registration approach (27.7% success
rate) using the registration cost functions ‘“heavily broadened
likelihood NDT”” (HBL-NDT) (34.7% success rate) and “over-
lapping grid cells NDT” (OGC-NDT) (33.5% success rate).
However, we could not observe a consistent improvement using
the Student-t likelihood-based registration cost function (22.2%
success rate) over the NDT P2D registration cost function
(23.7% success rate). A comparative analysis with other state-
of-art registration algorithms is also presented in this work.
We found that HBL-NDT worked best for easy initial pose
difficulties scenarios making it suitable for consecutive point
cloud registration in SLAM application.

I. INTRODUCTION

Point cloud registration is used in various computer vision
tasks like point cloud matching, 3D reconstruction, local-
ization and mapping, and odometry estimation [1] [2]. In
literature, several registration algorithms are available such
as iterative closest point (ICP), which utilizes point [3]
and point-normal [4] as features to find the correspondence
between point clouds. Normal distribution transform (NDT)
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registration uses distribution transform maps [5]. Further-
more, coherent point drift (CPD) solves point cloud regis-
tration as a probability density estimation problem where
the point cloud is assumed to be a Gaussian mixture model
(GMM). Several other variants of these registration methods
are available in the literature, and recently the focus is
shifting to using deep learning for registration [2]. NDT
registration is a fast, learning-free method that works well
in diverse environments, which has been used in research
and the industry for more than 15 years and is the main
focus of this work.

NDT registration uses a discrete and compact represen-
tation of point cloud [6] called NDT maps, a collection
of normal distributions (y;, ;) of the points in fixed-size
grid cells. There are two types of NDT registration, NDT
point-to-distribution (NDT-P2D) registration finds the pose
variation between a NDT map and a point cloud, and NDT
distribution-to-distribution (NDT-D2D) registration matches
two NDT maps. The grid discretization in NDT maps can be
seen as the discretization of surface geometry estimation due
to the point cloud’s voxelization. Due to the discretization of
NDT maps, NDT registration has an inherent problem with
the global minima of registration cost function not always
being at the ground truth pose variation between point clouds.
In this work, we present and evaluate three modifications in
the NDT registration cost function to reduce the effect of
discretization of the NDT map, which results in the following
contributions.

o The effect of the normalization term of Gaussian dis-
tribution on the registration cost function, which is
considered a constant.

o Deriving and evaluating registration cost function based
on Student-t likelihood function and NDT maps (Sec-
tion III-A).

e Proposing and evaluating the modification in NDT
registration based on cost function smoothing, HBL-
NDT (Section III-B) and by creating a more continuous
NDT map, OGC-NDT (Section III-C).

o Performance comparison of modified NDT registration
with state-of-art registration methods using the Pomer-
leau dataset (Section IV-B).

II. RELATED WORK

A. NDT Registration

NDT registration finds the transformation between two
point clouds using their NDT map representation. The NDT
map is a collection of NDT cells created by sub-dividing
the point cloud into fixed-size non-overlapping grid cells.



For each grid cell, the points (p; = (z4,vi,2:)7,i = 1..n,)
distribution in the grid cells is estimated using the normal
distribution (M (p,X)). Our experiments used grid cells
where n, > 5 for registration cost calculation and grid cells
with n, < 5 were discarded.

p="13n M

S =S (i — o — )T @)

n—1

K3

Broadly, NDT registration cost functions are of two types,
point-to-distribution (P2D) and distribution-to-distribution
(D2D), which maximize the total likelihood of points in the
NDT map and the similarity between NDT maps, respec-
tively, with respect to the rigid transformation matrix ©. The
NDT P2D registration cost function is the approximation
of the negative log-likelihood of the points in the source
point cloud (&) belonging to the NDT cells of target NDT
map (M). The NDT P2D cost function is represented by (3)
where k1 and ko are regularization parameters described in

[7].

Frza = Y23 Yy —huexp (F2(T(2,0) - 07T (x,0) — )
3)
The NDT D2D registration cost function represents the
similarity between the NDT representation of the source
(M) and target (M,,,) point cloud as the negative sum-
mation of L2 distance between NDT cells.

NMS NMT

faza = Z Z —k1 exp (_Qdeij> “)

i=1 j=1
where,

Hij = T(us,©) — My, 25 = RTZZ'R + X

B. Background

One of the reasons for incorrectness in the NDT regis-
tration is the discretization of NDT maps which is a well
know issue and has been addressed in previous works [6]
[8] [9]. The two main approaches used in previous litera-
ture for tackling this issue are hierarchical registration and
overlapped grid cells. In [8] [10], a hierarchical registration
approach in which registration was done multiple times with
NDT maps of different resolutions (coarse-to-fine cell size)
was used. The result of coarse NDT registration becomes
the initial guess for fine NDT registration for faster con-
vergence. However, this approach takes longer than single-
step registration as registration is done in multiple steps with
NDT maps of different resolutions. The second approach to
rectify the problem of discreteness used in [6] is to create
overlapping grid cells. This approach results in continuous
NDT representation with an increased number of NDT cells,
which results in higher accuracy and significantly increases
computation time.
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Fig. 1. Plot of NDT P2D cost function with (Orange) and without (Blue)
the normalization term of the normal likelihood function. The cost function
minimas are not at the ground truth pose for both conditions.

In [11], a new concept of dynamic scaling factors was
introduced that scales the covariance of the NDT representa-
tion dynamically in each iteration to rectify the issue of NDT
map discreteness and negative correlation of normal likeli-
hood with rotation alignment. The method was evaluated on
consecutive scan registration, and the effect of initial pose
difficulty or point cloud overlap was not investigated.

Recently, several GMM-based registration approaches [12]
[13] have proposed using the Student-t distribution instead of
the Normal distribution in the cost function. The GMM-based
registration method with Student-t distribution methods re-
sults in better convergence than GMM-based registration
with Gaussian distribution due to the robustness against
outliers and noise and better distribution estimation for
small population sizes. However, no work has yet analyzed
Student-t likelihood as a registration cost function for NDT
registration.

In this work, we empirically studied the NDT registration
cost function in detail and introduced three different modifi-
cations to improve the pairwise registration results by either
using a better estimate of point distribution or by reducing the
effect of discreteness. The first modification uses Student-t
likelihood as a registration cost function instead of Gaussian
likelihood registration to better estimate the likelihood of
matching the distributions of small population sizes. The
second modification, a heavily broadened likelihood NDT
(HBL-NDT) registration cost function, was inspired by the
broader-tailed Student-t likelihood function and has shown
improvement in scan registration. In the third approach,
an NDT map with overlapping grid cells (OGC-NDT) is
used without increasing the number of cells; hence, the
computation time of registration does not increase while
registration results improve.

III. PROPOSED MODIFICATIONS

The likelihood of point (z) measured in multivariate
normal distribution (N (1, 3)) with dimension d is calculated
using (5).

L(x) = Lo - )T @ - u)) 5)

1
ey L <_2



Fig. 2. Likelihood plots for 1D Gaussian, and Student-t distribution that
shows broader tail for Student-t distribution.

Both P2D and D2D NDT registration approximate the
negative log-likelihood function with a scaling factor ko,
which can be summarized as the negative summation of
the exponent of the square of Mahalanobis distance (d;;)
as given in (3) and (4) without the normalization term. To
test the normalization term’s effect on registration, we plotted
the NDT P2D registration cost function with and without the
normalization term as shown in Fig. 1. To plot the figure, we
rotated the Stanford dataset’s Dragon point cloud by —15°,
and calculated registration cost by rotating the transformed
point cloud from 0° to 30° at an interval of 0.1°. From Fig.1,
we see that the normalization term of likelihood negatively
impacts the registration cost function with more local minima
in the cost function compared to the cost function without
the regularization term. Also, the ground truth (15°) is not at
the global minimum of the cost function plot for normalized
and unnormalized costs in this case.

A. Student-t (StDT) registration cost functions

The Student-t likelihood of point = being in the distri-
bution (M (u,X)) is calculated using (6). And (7) is the
likelihood of point z being part of the NDT map M which
is expressed as the summation of (6), and the likelihood of
the point cloud & at certain pose © being a part of an NDT
map M can be given as the product of (7) and expressed as

(8).

k 1 — ~(v+p)/2
L) = g |1+ - 0TS e - ) ©®
L(z|M) = Z:’;”l W [1 + %('L _ “i)TZz'_l(x _ Mz)] —(vi+p)/2
@)
L(X,0|M) =[] £(T(x;,0)| M) (8)
j=1

The best pose © that fits the point cloud X to the NDT
map M should maximize the likelihood function (8) or,
equivalently, minimize the negative log-likelihood (9).

~1og(£(X,0lM)) = = 3 [ log(£(T(x;,0)|M))  (9)
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Fig. 3. Likelihood plot for 1D point distribution with heavily broadened
likelihood.

Similar to the NDT P2D registration cost function and
the conclusions from the effect of normalization term on the
registration cost function (Fig. 1), the StDT P2D registration
algorithm will minimize the approximation of the negative
log-likelihood as given in (10), over the space of transfor-
mation parameters ©

v+d
fStDT = Z [1 + %(T(wv 6) - M)Tzil(T(xv 6) - /L)} ?
(10)
where v is the degree of freedom and d is number of spatial
dimension. By increasing the value of v, the Student-t distri-
bution approximates the Normal distribution. By increasing
the value of v, the Student-t distribution approximates the
Normal distribution as shown in Fig. 2. Fig. 2 shows the
likelihood plot of Gaussian and Student-t distribution for 2d
point distribution with v = {5,50,100} and the number of
points is 30. Given that the Student-t likelihood has broader
tails for v = 5 and the NDT cell with n, > 5 was
used during experiments, we report the StDT registration
results with v = 5. Higher values of v were also used for
experiments, but not much difference was observed.

B. Heavily broadened likelihood NDT (HBL-NDT) registra-
tion cost function

The aim of using the Student-t likelihood function was its
robustness and capability of better likelihood estimation for
a small sample size because of broader tails compared to
normal distribution. We have proposed a way to artificially
broaden the likelihood curve of the normal distribution to
smoothen the cost function, reducing discreteness. For a
normal distribution, lowering the value of ke in Equation
(3) and (4) makes the likelihood tail broad. Fig. 3 shows
the effect of ko on tail broadness for normal distribution in
the case of 2D point distribution. This modification can be
interpreted as inflating the covariance matrix with a factor
of s = 1/ks. We experimented with different values of
k2 = {0.05,0.15,0.5} and reported the best result obtained
using ko = 0.15.

C. Overlapping grid cells NDT (OGC-NDT) registration
cost function

The NDT map’s discreteness due to grid cells can be
viewed as discreteness in estimating the surface geometry



(a) (b) c)

Fig. 4. NDT map representation for (b) non-overlapping grid cells and (c)
overlapping grid cells for (a) Bunny point cloud of Stanford Dataset.

using the NDT cell’s covariance matrix. Fig. 4 displays plots
of covariance matrices as ellipsoids representing the approx-
imate surface geometry for NDT map representations. In
previous work, overlapping grid cells were created by adding
an NDT cell at the boundary of two regular NDT cells, which
reduces the discreteness but increases the computation time
dramatically due to an increase in the number of NDT cells.
In our approach, the computation of the mean and covariance
for NDT cells do not change the number of cells; hence the
computation time does not change much. Equations (11) and
(12) show the calculation for distribution’s mean p’ using the
points inside the grid cell and calculation of distribution’s
covariance Y’ using points in a box bigger than the cell
size (a) positioned at the center (c¢) of the cell. In Eq.12,
k is a factor to increase the point search radius parameter
in proportion to cell size for covariance calculation. During
experiments, we used k = 1.2.

1TL
=2 Z-,Vl-: ; — < 2 11
[ n%p pi:lpi —cf <a/ (11)

1 &
— 1 > i — )i — 1) it pi — | <k xa

‘ (12)

Y=

(3

IV. EXPERIMENTS AND RESULTS
A. Datasets and Evaluation

We evaluated the modified NDT registration methods
using the Pomerleau dataset [14] following the protocol
described in [15]. The Pomerleau dataset includes a protocol
file and validation file for each scenario. The protocol file
specifies the scan pair and initial pose to be used, and
the validation file includes information on the initial pose
difficulty, overlap ratio of the scan pair, and ground truth
pose. We uniformly sub-sampled 10% of the scan pairs
from the protocol file for each scenario. Additionally, we
compared our modified NDT methods with several state-of-
the-art registration algorithms, including ICP, NDT, CPD,
TEASER++ [16], and FuzzyPSR [17] registration to provide
a comprehensive analysis of the registration methods.

The success rate of scan registration for rotation and
translation is reported separately and compared for differ-
ent registration algorithms. The registration was considered

45

11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

successful if the translation error (e;) was less than 10cm and
the rotation error (e,.) was less than 2.5°. The translation and
rotation error is calculated using (13) and (14) respectively,
given the ground truth pose variation (AT) between two
scans and estimated pose variation (AT) from registration.

€t = ||5tH (13)

e, = cos ! (;(trace(ég) — 1)) (14)

where,

o1 or Ot
0 =AT AT = { 0 J

For optimization of the registration cost function, we used
the Ceres Solver [18], which uses auto-differentiation; hence,
the derivative of cost functions was not manually derived. In
all cases, the initial guess of the pose (©) for optimization
was the identity matrix. All-to-all correspondence was used
for all NDT and StDT registrations to get the best registration
result. For distribution-based transform registration, the grid
cell size was 0.5m in all experiments.

The evaluation results for different registration algorithms
for difficulty in pose and point cloud overlap are shown in
Fig. 5 and Fig. 6, respectively. The plots show the successful
registration rate (%) vs. different scenarios in the Pomerleau
dataset for various registration algorithms.

B. Results

1) Comparison of NDT P2D and StDT P2D registration
cost function: From Fig. 5 and Fig. 6, we observe that
the overall successful translation registration rate for StDT
P2D registration (22.25%) is close to the successful registra-
tion rate for NDT P2D registration (23.69%) for different
pose difficulty or point cloud overlap. The reason might
be the similarity in the likelihood plots for both Gaussian
and Student-t distributions, as shown in Fig. 2. The StDT
likelihood has a broader likelihood tail, but the broadness is
not enough to curb the discreteness in NDT maps; thus, no
improvement in registration results can be seen.

2) Effect of heavily broaden likelihood: This modifi-
cation involves reducing the value of ko in equations 3
and 4, resulting in a heavily broadened likelihood, which
in turn leads to a smoothened registration cost function.
The smoothening effect due to the modification is similar
to inflating the covariance matrices resulting in increased
continuity in the NDT maps. This continuity can result in
improved registration results, as evidenced by the results
in Fig. 5 and Fig. 6. The successful translation registration
increased from 27.7% to 34.7% by this simple modification.
It is worth noting that the improvement obtained with this
modification was higher in translation alignment compared
to rotation alignment for different pose difficulties and point
cloud overlap. From the results, it can be concluded that the
modification of reducing the value of ko in equations 3 and
4 can lead to improved registration results in the context of
NDT point cloud registration.
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medium (Middle), and hard (Right) pose difficulty. The line graph is used to enhance visibility.
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TABLE 1
OVERALL SUCCESS RATE (%) FOR VARIOUS REGISTRATION METHODS ON THE POMERLEAU DATASET.

apartment eth gazebo plain stairs wood Total

T R T R T R T R T R T R T R
ICP 6.25 0.89 000 1920 089 11.16 0.15 16.82 149 5.95 1.49 4.17 1.71 9.70
NDT P2D 6.55 327 2872 1935 41.07 2158 2991 1771 625 193  29.61 19.64 23.69 1391
StDT P2D 4.61 193 2887 19.64 3943 2083 27.68 17.11 476 1.19 2812 1830 2225 13.17
CPD 2723 2396 2158 9583 59.08 6339 28.12 3497 33.04 37.80 3586 3571 34.15 48.61
NDT D2D 3214 17.11  20.39 16.67 3423 19.64 18.01 1399 26.79 15.18 34.67 2128 2770 17.31
NDT HBL 37.80 18.15 2872 21.73 4554 21.88 2232 16.07 3690 19.79 3690 20.83 3470 19.74
NDT OGC 38.84 1949 22.17 2024 43.01 2128 2277 1503 3750 1920 36.76 20.09 3351 19.22
TEASER++ 7946 78.87 1354 96.88 58.04 59.08 729 11.01 3199 3259 3229 40.62 37.10 53.17
FuzzyPSR 38.10 4122 1756 8274 5387 5432 893 11.61 2574 3125 29.17 29.17 28.89 41.72
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3) Effect of overlapping grid cells: In this modification,
we create overlapping grid cells using the criterion given in
Eq.12, which slightly increases the number of NDT cells
(~1-2%) compared to the classic NDT map. This slight
increase in the number of cells has only a minor effect on
computation time while majorly improving the registration
results compared to NDT D2D registration, as evident from
Fig. 5 and Fig. 6. Interestingly, the OGC-NDT registration
method shows less performance improvement than the HBL-
NDT registration method, OGC-NDT: 33.5% and HBL-
NDT:34.7%. However, the successful rotation registration
rate was slightly higher for OGC-NDT (19.2%) than for
HBL-NDT (17.7%). Overall, these results demonstrate the
effectiveness of the proposed modification in improving the
registration accuracy of NDT point clouds with only a small
increase in NDT cells.

V. DISCUSSION AND CONCLUSION

This study investigated the distribution-based registration
approach to improve the registration results by comparing
several novel variants of NDT-based registration. The first
part of our investigation involved an analysis of the effect
of the normalization term of the Gaussian distribution on
the registration cost function. Adding this term increased
the local minima in the cost function, making optimization
more difficult. We then examined the use of the Student-t
likelihood as an NDT-based registration cost function and
found that better likelihood estimation using Student-t does
not consistently improve the registration results.

Based on the broader likelihood tail concept, we intro-
duced and evaluated the HBL-NDT cost function, which
smoothens the cost function and results in better registra-
tion. We also evaluated the OGC-NDT, which reduces the
discreteness in the NDT map, resulting in successful regis-
tration rates. However, none of the proposed modifications in
NDT showed significant improvements in successful rotation
alignment compared to successful translation alignment, with
cost function smoothening (HBL-NDT) having better results
than overlapping grid cell NDT (OGC-NDT) overall. On the
individual scan pair level, there were a few cases where one
modification in NDT worked better while others did not.
However, it is hard to pinpoint the reason for this.

We also compared various registration algorithms and
found that the feature-based registration method, TEASER++
had the best performance overall regarding the percentage
of successful registration, with consistent results for the
initial pose difficulty and point cloud overlap. The best-
performing registration algorithm for easy and hard pose
difficulties was HBL-NDT and CPD, respectively. For high
and low point cloud overlap, CPD and TEASER++ had
the best performance, respectively. We did not compare
the algorithms based on computation time, but the CPD
algorithm was the most time-consuming as it computed all-
to-all correspondence between points.

The performance of NDT registration was consistent with
the scene complexity and is heavily impacted by the initial
pose difficulty. HBL-NDT has the best performance for easy
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initial pose difficulty cases making it suitable for SLAM
tasks. However, further improvements in data association
techniques can help improve its performance for rotation
alignment.

In conclusion, our study provides insights into the
distribution-based approaches and proposes modifications
to improve registration results. Our findings also provide
a comparative analysis of various registration algorithms,
which can guide researchers in selecting the best algorithm
based on the specific requirements of their application.
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Enhancing Door-Status Detection for Autonomous Mobile Robots
during Environment-Specific Operational Use

Michele Antonazzi, Matteo Luperto, Nicola Basilico, N. Alberto Borghese

Abstract— Door-status detection, namely recognising the
presence of a door and its status (open or closed), can induce a
remarkable impact on a mobile robot’s navigation performance,
especially for dynamic settings where doors can enable or
disable passages, changing the topology of the map. In this
work, we address the problem of building a door—status detector
module for a mobile robot operating in the same environment
for a long time, thus observing the same set of doors from
different points of view. First, we show how to improve the
mainstream approach based on object detection by considering
the constrained perception setup typical of a mobile robot.
Hence, we devise a method to build a dataset of images taken
from a robot’s perspective and we exploit it to obtain a door-
status detector based on deep learning. We then leverage the
typical working conditions of a robot to qualify the model for
boosting its performance in the working environment via fine—
tuning with additional data. Our experimental analysis shows
the effectiveness of this method with results obtained both in
simulation and in the real-world, that also highlights a trade—
off between the costs and benefits of the fine—tuning approach.

I. INTRODUCTION

Autonomous mobile robots are nowadays increasingly
employed for cooperating with humans in a variety of tasks
settled in indoor public, private, and industrial workplaces.
A challenge posed to these service robots is coping with
highly dynamic environments characterised by features that
can rapidly and frequently change, very often due to the
presence of human beings [1]. Consider, as examples, a
domestic setup in an apartment or a workspace with several
offices. In a time span of hours or days, the topology itself of
these environments might frequently change its connectivity,
since doors may be left open or closed, hence modifying
in time the reachability of free spaces. This phenomenon
strongly impacts the capability of robots to efficiently navi-
gate and perform their tasks. At the same time, during their
operational time, robots are often exposed to large amounts
of data about their surroundings that offer an opportunity
to track, model, and predict doors’ statuses (and topology
variations). The relevance of this problem is well-established
in the literature. Different works, such as [2], [3], show how
modelling the status of doors across a long time span and
predicting the changes in the environment topology improves
a robot’s task performance. Intuitively, better paths can be
planned by taking into account whether a room will be
reachable or not upon arriving there.

Central to unlocking such enhanced indoor navigation be-
haviours is what we call in this work door—status detection:

All authors are with the Department of Computer Science, University of
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Fig. 1: A robot, navigating from A to B, can observe the
status (open or closed) of different doors (highlighted in the
top image). In this condition, door—status detection can be a
difficult task as, from the robot’s point of view, doors can be
nested (a—b), doors can be hidden in the wall (c), or instead of
a door sometimes there are just passages (a—c). The bounding
boxes of open (closed) doors, as identified by our method,
are shown in green (red). For the remainder of this work, we
follow the same colour schema.

the robot’s capability to extract, from visual perceptions, the
presence and location of a door and, at the same time, to
recognise its traversability (open or closed status).

In this work, we propose a method to endow a robot with
door—status detection capabilities that can be run during task—
related autonomous navigation.

Door-status detection is particularly challenging for mo-
bile robots operating indoor since clear and well-framed
views of a door are seldom encountered during navigation.
Fig. 1 depicts some typical instances of these challenges.
While navigating, the robot can view nested doors (Fig. 1a,
1b), doors that are partially occluded (Fig. 1b, 1c), or closed



doors difficult to distinguish from their background (Fig. 1c).

To tackle the above problem, our approach starts with the
choice of modelling door—status detection as a variant of
object detection (OD) performed with deep neural networks.
However, we found that OD deep learning methods, despite
their great capabilities, exhibit important shortfalls when
cast into the indoor robot navigation setting. Hence, our
approach proposes a deployment methodology specific for
mobile robots that allows harnessing the potentials of OD
based on deep learning while solving what we recognised as
the two most important limitations of such techniques in this
domain.

First, OD methods are usually trained on large—scale
datasets whose images are acquired from a human point of
view. As a result, training examples follow a distribution that
could be significantly different from the one generating the
data perceived by a mobile robot. We show how popular
datasets employed to train state—of-the—art deep learning
detectors [4], [5], do not properly represent the embodied
perception constraints and uncertainty typically characteris-
ing a mobile robot [6], thus causing generalisation issues.

Second, deep—learning OD modules are commonly trained
with the main objective of obtaining a general detector.
This model is trained once, stored, and is meant to work
in previously unseen environments. These practices are not
optimal when considering the typical working conditions of
an indoor service robot. After an initial deployment phase,
the robot is commonly used in the same environment for
a long time, sometimes even for its entire life cycle. In
such persistent conditions, the robot eventually observes the
same doors multiple times, from different points of view, and
under various environmental conditions. Also, different doors
may present similar visual features (e.g., multiple doors of
the same model). Against this operative background, and
from a practical point of view, the ability to generalise in
new environments becomes less important, while correctly
performing door—status detection in challenging images from
the deployment environment becomes paramount.

To address the first limitation, we devise a method for
acquiring a large visual dataset from multiple photorealistic
simulations taking into account the robot’s perception model
along realistic navigation paths. This allows us to train a
deep general door—status detector with examples following
a distribution compliant with the robot’s perception capa-
bilities. To deal with the second limitation, we exploit the
robot’s operational conditions to tailor our general detector
for a given target environment. We obtain what we call
a qualified detector, whose performance can substantially
improve from the robot’s experience enabling door—status
detection in challenging instances (see the examples of
Fig. 1). Our solution relies on fine—tuning sessions [7]-[9] of
the general detector (which shall be considered as a baseline)
with new examples from the target environment. These data
can be collected and labelled, for example, during the robot
installation phases or while the robot carries out its duties. (A
setting motivated also by our on—the—field experience with
assistive robots [10].)
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We evaluate our approach by assessing its performance,
also in the challenging cases exemplified in Fig. 1, with
an extensive experimental campaign conducted in simulated
settings and in different real-world environments and condi-
tions, as perceived by a mobile robot during its deployment.

II. RELATED WORKS

Detecting a door’s location can be useful for several tasks,
as room segmentation [11], i.e., to divide the map of the
environment into semantically meaningful regions (rooms),
to predict the shape of unobserved rooms [12], or to do
place categorisation [13], [14], which assigns to the rooms
identified within the occupancy map a semantic label (e.g.,
corridor or office) according to their aspect.

Recent studies [2], [3] show how recognising door sta-
tuses can improve the navigation performance of robots in
long—term scenarios. The work of [3] models the periodic
environmental changes of a dynamic environment in a long—
term run, while [2] proposes a navigation system for robots
that operate for a long time in indoor environments with
traversability changes.

Detecting doors in RGB images has been addressed as
an OD task. Classical methods are based on the extraction
of handcrafted features [15]-[17]. Deep learning end—-to—
end methods [18] provide significant improvements thanks to
their capability of automatically learning how to characterise
an object class, robustly to scale, shift, rotation, and exposure
changes. As a significant example, the work of [19] describes
a method for door detection with the goal of supporting and
improving the autonomous navigation task performed by a
mobile robot. A convolutional neural network is trained to
detect doors in an indoor environment and its usage is shown
to help a mobile robot to traverse passages in a more efficient
way. Another approach, proposed in [20], focuses on robustly
identifying doors, cabinets, and their respective handles in
order to allow grasping by a robot. The authors use a deep
architecture based on YOLO [9] to detect the Region Of
Interest (ROI) of doors. This allows to obtain the handle’s
location by focusing only on the area inside the door ROIL.

These works are representative examples of methods
partially addressing the door—status detection problem in
the mobile robotics domain. Indeed they do not explicitly
consider the point of view of a mobile robot or do not take
advantage of the robot’s typical operational conditions. In
this work, we devise an approach to overcome such limits.

IITI. BUILDING A DOORS DATASET FOR MOBILE ROBOTS

One of the key prerequisites to exploit deep learning to
synthesise an effective door—status detector for a mobile
robot is the availability of a dataset consistent with its
challenging perception model (see Fig. 1). The examples
contained in the dataset should follow three main desiderata.
Images (i) should represent different environments with
different features, thus allowing the model to learn how to
generalise; (ii) should contain doors as observed from a point
of view similar to the one of a robot navigating in an indoor



environment; (iii) should be taken from real environments or
with an adequate level of photorealism.

An effective but impractical and time—consuming way to
comply with the above requirements would be to deploy a
robot on the field and having it exploring different environ-
ments while acquiring image samples of doors. The large
overheads of such a procedure are well-known and a popular
alternative is to rely on simulations [21] or publicly available
datasets [4], [22], [23].

Meeting the desiderata (i)-(iii) in simulation is not
straightforward since these are seldom guaranteed by avail-
able frameworks. For example, simulation tools popular in
robotics such as Gazebo [24] or Unreal [25], while providing
accurate physics modelling, fail to represent the realism and
complexity of the perceptions in the real world. At the same
time, public datasets as [4], [22], [23], do not well represent
the point of view of a robot in its working conditions [6]. To
address these issues, we resorted to Gibson [26], a simulator
for embodied agents that focuses on realistic visual percep-
tions, and to the environments from Matterport3D [27], an
RGB-D dataset of 90 real-world scans.

Given a simulated environment, we extract a set of poses
that could describe views compatible with a mobile robot by
applying a set of principles; the key ones include lying in
the reachable free space (feasibility), ensuring a minimum
clearance from obstacles, and being along the shortest paths
between key connecting locations in the environment’s topol-
ogy. We achieve them with an extraction algorithm working
in three phases: grid extraction, navigation graph extraction,
and pose sampling.

The grid extraction phase aims at obtaining a 2D occu-
pancy grid map, similar to those commonly used by mobile
robots for navigation. We start from the environment’s 3D
mesh, and we aggregate obstacles from multiple cross—
sections of the 3D mesh performed with parallel planes. The
result is then manually checked for inaccuracies and artefacts
produced during the procedure.

The navigation graph (shown in Fig. 2a) is a data structure
that we use to represent the topology of the locations on
the grid map that correspond to typical waypoints a robot
occupies while navigating in the environment. We compute it
from a Voronoi tessellation of the grid map by using obstacle
cells as basis points [28], extracting graph edges from those
locations that maintain maximum clearance from obstacles.

We then perform pose sampling on the navigation graph.
The algorithm extracts from the graph a list of positions
keeping a minimum distance D between them (this parameter
controls the number and the granularity of the samples). A
visual example of the algorithm’s results is shown in Fig. 2b.

To build the dataset we acquire an image from the points
of view of a robot’s front—facing camera simulating its
perceptions in the virtual environment from the sampled
poses. Specifically, in each pose on the grid map, we acquire
perceptions at two different height values (0.1m and 0.7m
— to simulate different embodiments of the robots) and at
8 different orientations (from 0° to 315° with a step of
45°). Each acquisition includes the RGB image, the depth
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(b) Sampled poses

(a) Navigation graph

Fig. 2: Different phases of the pose extraction algorithm.

information, and the semantic data from Matterport3D. Since
the semantic annotation of Matterport3D presents some in-
accuracies, data labelling is manually performed by a human
operator who specifies the door bounding boxes and the
door status as open or closed. We considered 10 different
Matterport3D environments (small apartments or large villas
with multiple floors and a heterogeneous furniture style) by
setting D = 1m. The final dataset we obtained is composed
of approx. 5500 examples.

IV. DOOR-STATUS DETECTION FOR MOBILE ROBOTS

In this section, we first detail how we synthesised a Gen-
eral Detector (GD, Section IV-A) using a dataset generated
with the approach of Section III. Subsequently, leveraging
the assumption that the environment e will not change in its
core features (location and visual aspect of doors) during the
robot’s long—term deployment, we introduce our Qualified
Detector for e (QD,) by applying a procedure based on fine—
tuning [7]-[9], [29] of the G D on additional data that, in our
envisioned scenario, can be acquired and labelled during the
first setup of the robot in e.

A. General Door-Status Detector

As previously introduced, we aim at building and deploy-
ing door-status detectors for mobile robots leveraging deep—
learning for object detection. In a preliminary experimental
phase, we evaluated and compared three popular models
suitable for such a task: DETR [29], Faster—RCNN [8],
and a YOLO architecture [30]. We decided to adopt DETR
since, with respect to the other two methods, it turned out
to be easier to deploy in our robotic setting primarily due
to two key features. First, DETR does not require setting
in advance the number and dimension of anchors (i.e., sets
of predefined bounding boxes used to make detections)
according to the image resolution and the objects’ shape,
a task that instead the YOLO architecture requires. Second,
both competitors require a final non—maximum suppression
step to discard multiple detections of the same object.
DETR, instead, matches each bounding box to a different
object by construction. Hence, the methodology we describe
in this paper and the empirical results evaluating it shall
develop around DETR-based detectors. However, we stress
the fact that our methods can be applied to any architecture,
including those mentioned above, and, eventually, to their
improvements.



DETR combines a CNN backbone based on ResNet [7]
to produce a compact representation of an image and a
transformer [31]. We used the pre—trained version of DETR
on the COCO 2017 [4] dataset and, to adjust for door—status
detection, we chose the smallest configuration provided by
the authors.

The model requires setting one hyper—parameter, NV, which
determines the fixed number of bounding boxes predicted
for each image. As a consequence, to filter out the detected
doors, we select the n < N bounding boxes whose confi-
dence is not below a threshold p.. We tuned N to be higher
(but close) to the maximum number of doors in any single
image of our dataset.

To train the general detector, we fixed the first two layers
of the CNN backbone (as in [29]) with the weights of the
pre—trained model. We then re—trained the remaining layers
with images from the dataset of Section III. To achieve data
augmentation, we generated additional samples by applying
a random horizontal flip and resize transformation to a subset
of the images (each training sample is selected for this
procedure with a probability of 0.5).

B. Qualification on a Target Environment

Given a new environment e we use a randomly sampled
subset of the images collected in it to fine—tune the G D,
obtaining the qualified detector Q) D.. To be used in the fine—
tuning procedure, these images need to be labelled specifying
the bounding boxes and the status for each visible door.

In our envisioned scenario, this data acquisition and la-
belling tasks can be carried out by a technician during
the robot’s first installation in e or in a second phase
by uploading the data to a remote server. Such a setup
phase requires to build the map of the environment (either
autonomously or with teleoperation) by observing the en-
tirety of the working environment and is very relevant to
many real-world installations of collaborative robots, as we
recently experienced with extensive on—-the—field testing in
the use case of assistive robotics [10]. This manual labelling
task is quite time—expensive; yet it is required. In princi-
ple, we could use pseudo—labels automatically obtained by
running the GD over the additional samples for incremental
learning. Despite intriguing, we empirically observed that
this is particularly challenging due to the fact that pseudo—
labels are not enough accurate for this process. Recently,
the work of [32] showed how pseudo-labels are particularly
noisy and inaccurate: while they can be used to improve
performance in tasks where precise labels are less important
(like semantic segmentation), they are still too inaccurate to
be used in object detection tasks, like the one investigated in
this work. We observed how fine-tuning a general detector
using pseudo—labels results in a performance degradation of
about 20% when compared with the GD. These challenges
are well-known and the approach we follow in this work is
customary. See, for example, the work of [33], where manual
annotations have been used to label 3D objects to fine—tune
a model employed in long—term localisation. The study of
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methods to ease the burden of this task will be addressed as
a part of our future work.

Finally, note that, while we focus here on a specific GD
based on DETR [29], this method to obtain a qualified detec-
tor @D is general and can be applied to other deep learning—
based models, such as YOLO [30] or Faster—RCNN [8].

V. EVALUATION IN SIMULATION
A. Experimental Setting

We evaluate our method using simulated data D ob-
tained, as described in Section III, from 10 different Mat-
terport3D [27] environments. We test the performance of
our detectors on each environment e independently. First,
we train the general detector GD_. using the dataset D_.,
where D = {D_.,D.}, D. contains all the instances
acquired from poses sampled in environment e, and D_, =
D \ D.. This general detector will be used as a baseline
in most of the evaluations we present. Then, we randomly
partition the first subset as D, = {De 1,Dc2,De3,Dea},
where each D, ; contains the 25% of the examples from e,
randomly selected.

While D, 4 is reserved for testing, the remaining subsets
are used to perform a series of fine—tuning rounds to obtain
the corresponding qualified door—status detectors. Specifi-
cally, we fine—tune GD_. using these three additional data
subsets: {De 1}, {De,De2}, and {De1,De2,Des}. We
denote the obtained qualified detectors as QD?°, Q D3, and
QD75 respectively. The superscript denotes the percentage
of data instances from e that are required to fine—tune
the general door—status detector. Such a percentage can be
interpreted as an indicator of the cost to acquire and label
the examples. To give a rough idea, labelling the 25% of
the dataset (approximately 150 images) took a single human
operator an effort of about 1 hour.

We empirically set the parameters of the door—status de-
tector as N = 10 (number of bounding boxes) and p. = 0.75
(confidence threshold). We conducted an extensive prelimi-
nary experimental campaign spanning different batch sizes
({1,2,4,16,32}) and the number of epochs ({20,40,60})
selecting 1 and 60 for the general detector and 1 and 40 for
the qualified ones, respectively.

We measure performance with the average precision score
(AP) used in the Pascal VOC challenge [5] by adjusting for
a finer interpolation of the precision/recall curve to get a
more conservative (in the pessimistic sense) evaluation. The
AP is a popular evaluation metric widely adopted for object
detection tasks, it represents the shape of the precision/recall
curve as the mean precision over evenly distributed levels of
recall. To accept a true positive, the bounding box computed
by the network must exhibit an Intersection Over Union area
(IOU) with one true bounding box above a threshold p,, that
we empirically set to 50%.

The source code of our simulation framework (Section III),
the door—status detectors (Section IV), and the collected
datasets are maintained in a freely accessible repository!.

https://github.com/aislabunimi/
door-detection-long-term



B. Results

Table I reports the mean AP scores (averaged over the 10
environments) reached by the 4 detectors divided by label
(closed door, and open door), the average increments (with
respect to the detector immediately above in table) obtained
with fine—tuning, and the standard deviation (o). We also
report the AP scores for every environment in Fig. 3. These
results show the trade-off between performance increase (via
fine—tuning) and costs due to data collection and labelling.

Exp. Label AP o Increment o
Closed 34 12 - -

GD—. Open 48 12 - -
QD2 Closed 55 15 70% 58
e Open 60 10 30% 34
QD™ Closed 64 12 21% 21
e Open 68 10 14% 11
QD™ Closed 72 10 14% 9
e Open 72 9 7% 5

TABLE I: Average AP in Matterport3D environments.

Closed doors

100 - GD_,

QD25

- oD wem QD]

AP

€0 (S5} [=3 €3 ey =3 € 27 =3 =]
Open doors

100 . GD.. Wewm QD wem QD wmm OD]°

AP

€y € (=4 =3 2y (=3 g e =3
Environment

€y €

Fig. 3: AP scores in Matterport3D environments.

Results from Table I and Fig. 3 show that the general
detector GD_., thanks to our dataset’s consistency with the
robot’s perception model (see Section III), is able to correctly
detect doors statuses in those cases where they are clearly
visible, as shown in Fig. 4. However, while such a perfor-
mance allows its use on a robot, there is significant room for
improvement in detecting more challenging examples.

More interestingly, qualified detectors achieve a steep
increase in performance. Unsurprisingly, the performance
improves with more data (and data preparation costs) from
QD% to QD7°. However, it can be seen how Q D25, despite
requiring a relatively affordable effort in manual labelling,
obtains the highest performance increase. From a practical
perspective, this shows how the availability of a few labelled
examples from the robot target environment could be a good
compromise between performance and costs to develop an
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Fig. 4: Door-statuses found by the general detector GD_..

environment—specific door—status detector. This suggests that
the number of examples that have to be collected and labelled
on the field can be limited, thus promoting the applicability
of our proposed framework. An example of this is shown in
Fig. 5, where it can be seen how a QD§5 (bottom row) fixes
the mistakes of its corresponding general detector GD_, (top
row) in challenging images with nested or partially observed
doors.

Fig. 5: Door-statuses as identified by GD_, (top row) com-
pared to QD25 (bottom row) in Matterport3D environments.

VI. EVALUATION IN THE REAL WORLD

A. Experimental Settings

In this section, we evaluate the performance of our method
with a real robot by using images collected by a Giraff-X
platform [10] (Fig. 6a) during a teleoperated exploration of 3
single—floor indoor environments with multiple rooms from
two buildings in our campus. Images were extracted from
the robot’s perceptions during navigation at 1 fps. As it
commonly happens with real-world robot data, images are
acquired in noisy environmental conditions with low—quality
cameras, thus making the detection task even more difficult.
In our setting, we used 320x240 RGB images acquired with
an Orbbec Astra RGB-D camera.

First, we consider two general detectors. One is trained
with simulated data D, as in the previous section but with all
the 10 environments. Another one is trained with real-world
images from the publicly available DeepDoors2 dataset
(DD2) [23], which features 3000 images of doors that we re-
labelled to include the ground truth for challenging examples



not originally provided. Comparing these two general detec-
tors, we aim at assessing the advantages of training with a
dataset following the principles we proposed in Section III
instead of relying on mainstream datasets for classical object
detection.

Subsequently, following the same steps of Section V-A,
we qualify both GDs by using the 25, 50, and 75% of data
collected in the three real environments.

B. Evaluation metrics

Analogously to what is done in simulation, we report the
AP scores, but we argue that the real-world evaluation of our
method can be conducted also with additional metrics, which
are more representative of the actual application domain
where door—status detection is meant to be cast.

The AP (as well as other metrics used in computer vision)
presents some limitations when used in our context. Such a
metric considers as false positives multiple bounding boxes
assigned to the same door, as in Fig. 6b. However, a robot can
easily disambiguate this by leveraging additional data such
as its estimated pose and the map of the environment. On
one side, although an erroneous localisation of the bounding
box of a door (Fig. 6¢) penalises the AP, it might have
little effect in practice. On the other side, the AP is very
marginally affected by a wrong detection of the door status
if the bounding box is sufficiently accurate due to the fact
that different labels are treated as two independent object
classes, as the case in Fig. 6b. Conversely, the error of
misleading a closed passage for an open one (and vice versa)
can significantly impact the robot’s performance when the
robot translates such information into actions.

t .

()

Fig. 6: Examples (b—c) of different types of errors made by
a door-status detector mounted on our Giraff-X robot (a).
While the AP considers all these errors in a similar way,
our proposed metric considers them differently, according to
their potential impact on robot performance.

To address this shortcoming and better capture perfor-
mance in our robotic setting, we introduce three additional
metrics. Consider a door 7 in a given image. If multiple
bounding boxes are matched to i, where matching means
10U > p,, the one with the maximum above—threshold (p.)
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confidence is selected. If the status of the door is correctly
identified, we consider it as a true positive (7'P). Otherwise,
we classify it as a False Positive (F'P). All the remaining
bounding boxes matched to ¢ are, as per our previous
considerations, ruled out from the evaluation. Finally, when
a bounding box does not meet the /OU condition with
any door in the image, we count it as a Background False
Detection (BF'D). A False Positive and a Background False
Detection are errors that can play very different roles inside a
robotic use case. While the first is likely to affect the robot’s
decisions, the second one might increase the uncertainty in
the robot world—-model. We scale the above metrics using
the true number of doors in the testing set, denoted as GT,
thus obtaining TPy, = TP/GT, FPy = FP/GT, and
BFDy, = BFD/GT.

C. Results

Table II compares the average AP of the G D trained with
DD2 [23] with that trained with our dataset D. Intuitively, a
model trained with real-world data (such as those featured
in DD2) should have higher performance when used with
real-world images, if compared with a model trained with
simulated data (as D). However, Table II shows how the
GD and Q) Ds trained with D have higher performance than
those trained with DD2. This is because training images of
D, collected from the simulated point of view of a robot,
better represent the actual distribution of robot perceptions,
allowing us to fill, to some extent, the sim-to-real gap.
Moreover, Table II shows that the fine—tuning operation to
qualify general detectors to the target environment works
remarkably well also when used in real-world conditions.
For these reasons, from now on, we present results referring
to the general detector trained with D.

DeepDoors2 (DD2) Simulation dataset (D)

Exp. Label AP o Inc. o AP o Inc. o

Closed 5 3 - - 13 10 - -

GD Open 18 5 — — 31 11 — —
QD2 Closed 33 9 631% 240 53 9 508% 424
€ Open 43 14 134% 20 55 14 83% 19
QD™ Closed 52 7 66% 51 65 8 24% 15
e Open 51 14 18% 7 70 7 29% 22

QD™ Closed 55 8 5% 6 72 8 10% 5

e Open 65 8 32% 18 78 8 13% 1

TABLE II: Average AP in real-world environments when
DD2 dataset and our one (D) are used to train the GD.

The performance of (QDs is similar to that obtained in
the far less challenging dataset of Table I. Most importantly,
the performances of QD?® corroborate our findings from
Section V-A, confirming how few additional examples can
induce a significant increase in performance. Beyond the im-
provements observed in the average scores, QD?® managed
to provide correct door—status detection in very challenging
cases. We report in Fig. 7 some representative examples. As
it can be seen, our detectors correctly recognised cases with
nested doors, partially visible frames, and narrow side views.
Another relevant example is in the second image (top row)
of Fig. 7, where the qualified model succeeds in detecting a



white closed door in the background while, at the same time,
not making a false detection of the white wardrobe doors on
the right.

!

Fig. 7: Challenging door-statuses detected by QD?° in the
real environments e, ez, and e3 (ordered by columns).

Env. | Exp. GT TP (TPy) FP(FPy) BFD (BFDgy)
GD 235 71 (30%) 18 (7%) 51 (21%)
o QD25 235 145 (61%) 10 (4%) 64 (27%)
QD 235 179 (76%) 4 (1%) 44 (18%)
QDI® 235 190 (80%) 4 (1%) 36 (15%)
GD 269 96 (35%) 17 (6%) 56 (20%)
e QD;E’ 269 192 (71%) 11 (4%) 87 (32%)
QD> 269 206 (76%) 6 (2%) 66 (24%)
QD5 269 228 (84%) 7 (2%) 60 (22%)
GD 327 62 (18%) 19 (5%) 108 (33%)
es QD?* 327 183 (55%) 22 (6%) 190 (58%)
QD> 327 230 (70%) 13 (3%) 103 (31%)
QD5 327 248 (75%) 8 (2%) 75 (22%)

TABLE III: Extended results in the real-world environments.

Table III reports the detailed results, for all three envi-
ronments, of the metrics we defined in Section VI-B. The
results show that G D, although it has a low number of
wrong predictions (F'P and BF' D), is capable of detecting
only a few of the G7T doors in the images (TP). On
the contrary, (QDs dramatically improve performance, with
QD2 showing a TPy, of 62% on average.

Among the three environments considered, we argue that
e3 is the more challenging, as it can be seen by the higher
number of BF'D. To cope with this, there are two possible
directions. First, increasing the number of manually labelled
examples reduces BF' D (as can be seen already with Q D3°).
Alternatively, adopting a more conservative selection rule by
increasing the confidence threshold p., at the cost of slightly
reducing the number of T'P. In Fig. 8, we show how T Py,
F Py, and BF Dy, for QD23 change when varying p. in es.
Such an instance confirms how p. = 0.75 is an acceptable
trade—off among T Py, (high) and BF Dq, (low) for such a
detector.

In long—term runs, the illumination conditions of an envi-
ronment might change from those of the initial setup, and this
may affect the performance of the door—status detector. To
test the robustness of our approach to this event, we acquire
(following the same procedure of Section VI-A) data from
environments e; and e during nighttime, when only artificial
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Fig. 8: TPy, FPy, and BF Dy obtained by QD?E for
increasing confidence thresholds.

light is present and some rooms are dark. Then, we use these
images to test the GD and the QQDs fine-tuned with data
acquired during the initial setup time, with daylight.

Exp. Label AP o Increment o

Closed 14 18 - -

GD Open 31 8 - -
o5 | Closed 38 3 781% 1016

@D | Open 45 11 46% 3

o0 | Closed 488 26% 8

@D | Open 53 17 17% 8

Closed 54 8 4% 1

75
@D | Open 56 16 6% 5

TABLE IV: Average AP results in e; and ey tested in
different light conditions with respect to those used to qualify
the detector (day/night time).

Env. | Exp. GT TP (TPy) FP(FPy) BFD (BFDg)
GD 1079 334 (30%) 56 (5%) 150 (13%)
o QDZ 1079 532 (49%) 62 (5%) 306 (28%)
QD3 1079 572 (53%) 65 (6%) 299 (27%)
QD5 1079 634 (58%) 56 (5%) 248 (22%)
GD 1051 335 (31%) 68 (6%) 276 (26%)
e QD25 1051 584 (55%) 55 (5%) 357 (33%)
QD> 1051 690 (65%) 40 (3%) 217 (20%)
QD5 1051 700 (66%) 48 (4%) 236 (22%)

TABLE V: Extended results in e; and ey tested in different
light conditions with respect to those used to qualify the
detector (day/night time).

The average AP obtained with different lighting conditions
is reported in Table IV while the results of our extended
metric (presented in Section VI-B) are shown in Table V.
Comparing them with Tables II and III respectively, we
can see how the performances of the GD are robust to
illumination changes, as they are similar to those obtained
during daytime. More interestingly, it can be seen how the
improvement of (QDs from the fine—tune is maintained also
with different light conditions, with a slight performance de-
crease if compared to the results of Tables II and III. This is
a direct consequence of the fine—tune, which produces QDs
that slightly overfit the illumination conditions seen during
training. Despite this, our method ensures a performance
improvement to the GD when used in long—term scenarios
with illumination changes, enabling the QDs to still solve



challenging examples, as shown in Fig. 9. Once again,
QD?5, albeit using a few examples for fine-tuning, ensures
the best performance improvement also under variable light
conditions. See the video attachment, also linked in the
repository, for additional examples of our method.

"

LN
Fig. 9: Challenging nighttime examples classified by GD

(top row) and QD?® (bottom row). QD?5 is fine-tuned with
examples obtained with daylight.

VII. CONCLUSIONS

In this work, we presented a door—status detection method
for mobile robots. Our method, based on a deep learning
architecture, allows robots to recognise open or closed doors
in challenging situations. To train our model, we built a
dataset of labelled images from photorealistic simulations
taking into account the point of view of a mobile robot.
We then fine-tuned a general model into a qualified one to
increase performance in the robot’s working environment.

Future work will investigate how to quantify and reduce
the effort needed for labelling examples to qualify a general
detector. Furthermore, we will investigate online fine—tuning
methods towards the goal to have a robot that can learn with
experience to better distinguish features in its environment.
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Self-supervised Learning for Fusion of IR and RGB Images in Visual
Teach and Repeat Navigation

Xinyu Liu*!, Zden&k Rozsypalek*? and Tomas Krajnik?

Abstract— With increasing computation power, longer bat-
tery life and lower prices, mobile robots are becoming a viable
option for many applications. When the application requires
long-term autonomy in an uncontrolled environment, it is
necessary to equip the robot with a navigation system robust
to environmental changes. Visual Teach and Repeat (VT&R)
is one such navigation system that is lightweight and easy to
use. Similarly, as other methods rely on camera input, the
performance of VIT&R can be highly influenced by changes
in the scene’s appearance. One way to address this problem is
to use machine learning or/and add redundancy to the sensory
input. However, it is usually complicated to collect long-term
datasets for given sensory input, which can be exploited by
machine learning methods to extract knowledge about possible
changes in the environment from the data. In this paper, we
show that we can use a dataset not containing the environmental
changes to train a model processing infrared images and
improve the robustness of the VI&R framework by fusion
with the classic method based on RGB images. In particular,
our experiments show that the proposed training scheme and
fusion method can alleviate the problems arising from adverse
illumination changes. Our approach can broaden the scope
of possible VI&R applications that require deployment in
environments with significant illumination changes.

I. INTRODUCTION

Navigation is a crucial ability for robots to find a safe
and suitable path from the starting point to the goal point
[1]. Various sensors, including LiDAR and cameras, have
been used for this purpose, leading to different solutions.
Vision has emerged as a popular sensory modality, and visual
navigation for mobile robots has become a widely studied
research area [2]. Visual teach & repeat navigation (VT&R)
is a framework that uses a camera to guide the robot along
a learned trajectory. In the paper, we focus on a particular
type of VT&R, which does not require a precise metric map
and relies on a convergence theorem to repeat the path [3],
[4], [5]. It is simple and reliable, making it suitable for
warehouse logistics and inspection applications. However,
many visual systems tend to perform poorly in uncontrolled
outdoor environments during a long-term deployment [6],
[7]. The degraded performance is usually caused by signif-
icant appearance variations of the scene due to day&night
changes, sun glare or seasonal changes.
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Machine learning methods have proven to be effective in
addressing the challenges posed by environmental changes
[8], [9]. By using pairs of images containing the environment
changes to train neural networks, it is possible to extract
features (or dense representations of the image) invariant to
these changes, which makes them far more effective than
hand-crafted features [10], [11]. As a result, these trained
feature extractors can be deployed for navigation tasks in
uncontrolled outdoor environments with day-to-night and
seasonal changes [12].

The usage of RGB images with the learned features for
the VT&R system can significantly improve the performance
of navigation during long-term deployment [13], but RGB
images are shown to be susceptible to adverse illumination
conditions, such as sun glare and dark nights. In contrast,
infrared images are typically more robust to these distur-
bances and can perform well in many different illumination
conditions [14]. Hence, the incorporation of infrared images
into visual stack can possibly help alleviate the problems
arising from various illumination changes.

In this paper, we propose a method for training a model
to produce a lighting-invariant representation of the image
in the IR domain without having a dataset containing these
variations. Obtaining image pairs containing environmen-
tal changes can be challenging because it usually requires
prolonged data collection. In addition, different IR cameras
can capture different light spectra, which could make the
model bound to usage on a particular device. We show that
using only a limited number of RGB-IR image pairs to
train a model which can produce representations invariant
to environmental changes is possible. This is achieved by
inserting an RGB model robust to appearance variations
into the contrastive learning pipeline to train the IR model.
In addition, we benchmark multiple decision-level fusion
methods, which exploit RGB and IR models.

The paper is structured as follows: Firstly, we review re-
lated work on infrared and RGB image fusion and contrastive
learning. Then, we describe the image-matching pipeline
and fusion methods. Further, we present the experimental
methodology and results. Finally, we discuss the results and
their implications.

II. RELATED WORK

The problems arising from the appearance change of the
environment are widely studied in the robot vision field.
In this section, we provide a brief review of methods used
to address the environmental changes for the navigation of
mobile robots. We also shortly discuss appearance-based



VT&R navigation systems and fusion methods in the field
of IR and RGB image fusion.

Visual Teach and Repeat navigation (VT&R) is a popu-
lar navigation framework that has been deployed on both
autonomous ground vehicles and unmanned aerial vehicles
(UAV) [15]. In the teaching phase, the system typically
stores a map consisting of the action commands and images
captured by the robot’s front camera during the trajectory
traversal. In the repeat phase, the robot replays the velocity
commands and uses the map images to determine its position
and adjust the heading. The corrections in the heading
ensure the robot converges to the original trajectory. The
convergence of this framework was mathematically proven
by [5]. However, the proof assumes that we have an estimator
which can output the correct value of horizontal pixel dis-
placement between the map and live images. The horizontal
displacement between images is easier to estimate compared
to a 6DoF transformation for localization in metric maps.
However, environmental variations can still pose a challenge
even for this simplified task.

Many approaches have been applied to address the chang-
ing environment. One of the ways is that the robot gathers the
experiences during every traversal of a certain path. These
experiences can be exploited to adjust the robot’s behaviour
based on the current state of the environment [16], [17],
[18]. The obvious shortcoming is that the robot first needs to
observe the current state of the environment, and only after
that can it choose the most suitable version of the map to
navigate itself. This can be addressed by using the gathered
experiences to create a model of the environment and predict
its state in given time or conditions [7], [19]. However,
all of these methods require gathering the experiences by
traversing the path multiple times to ensure robust behaviour.
In addition, these experiences are not general and are tied to
specific trajectories.

A different approach is having some prior knowledge of
the world, usually obtained from large-scale datasets. In
general, this knowledge can be used in multiple ways to
improve the robustness of navigation. One of the approaches
is to traverse the path once and try to generate maps of the
same path under different conditions [20]. This reduces the
importance of gathering a large number of experiences but
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choosing the most suitable map to navigate the robot is still
necessary. A more straightforward way to exploit the prior
knowledge is to train a model that can be used to create
a representation of the map, invariant to common changes
present in the real world [21].

It has been shown that contrastive learning is suitable for
training a model that can capture the structure of provided
dataset [22]. The learned representations have better gener-
alization ability and provide more information than features
[23]. A Siamese network, which takes two images containing
the appearance change as input, can capture similarities
and variations in various scenes. The Fully-convolutional
Siamese network has been successfully applied in the VT&R
[12]. Other research also suggests that the pipelines with dual
backbones can be used to transfer some quality of one model
to another in a self-supervised manner [24].

It has been shown that infrared images can be more
robust to ambient illumination and work well in different
lighting conditions [25]. On the other hand, RGB images
are high-resolution and provide a considerable amount of
detail. Fusing these two types of images can provide signif-
icant benefits [14], [26]. Besides, both types of images are
easily acquired, and many cameras used in mobile robotics
come with both types of lenses. Therefore, IR and RGB
image fusion can improve the performance of visual systems
for many applications. Several fusion methods operate at
the pixel or feature level. Most of them use multi-scale
transform [27], [28], sparse representation [29], and neural
network [30], [31] strategies to generate high-quality fused
images. Decision-level fusion is a straightforward strategy
that combines decisions or results made by infrared and RGB
images to produce a final output [32]. It has been used for
face recognition in different illumination conditions, which
shows potential for recognizing places in various illumination
conditions [33].

We propose decision-level fusion methods for infrared and
RGB images using a backbone neural network trained via
self-supervised learning that can improve the performance
of the pixel displacement estimation. Specifically, we obtain
a dense representation of IR and RGB images, which are
then cross-correlated with each other to produce likelihood
histograms. These histograms are then combined in different
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Fig. 1: The architecture of CNNs used in this paper. This particular version is for RGB image since it has 3 input channels.
For the IR images is the architecture similar except the input having only one channel. The architecture tailored for mobile
robots, thus it is simple and lightweight with only few convolutional layers.
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ways to produce the final histogram indicating horizontal
displacement. In our experiments, we used a neural network
presented in [12]. We do not describe in detail how the
CN Nggp was trained, and we treat it as a pretrained model,
which can be further exploited for training models with
different input types without needing to collect long-term
datasets. The architecture of all the CNNs is shown in Figure
1.

III. METHOD DESCRIPTION

This section explores the various fusion methods for
correlating different types of representations and fusing their
corresponding likelihood histograms. Specifically, we will
delve into four methods: a baseline method without fusion
utilizing only RGB images and three fusion methods using
both RGB and IR images.

For our evaluation purposes, we collected pairs of IR and
RGB images which serve as our source images, denoted as
IR and TRGB | respectively, and which comprise our map.
Additionally, we collected other pairs of images taken at
the exact locations but under different lighting conditions,
referred to as target images, denoted as I/ ¥ and 9B, We
aim to use a CNN to produce image representations and cal-
culate their horizontal displacements Ap. We benchmark the
performance of the methods on collected datasets similarly
as in [21], [12]. It has been shown that this methodology is
suitable for evaluating the performance of the displacement
estimator for the VT&R navigation.

A. Non-fusion method with single RGB images

In this method, one public network [12], trained on RGB
images, is used to process two images input. As shown
in Fig. 2, the Siameses-RGB pipeline processes the input
images, 1“8 and IFYE, and outputs corresponding rep-
resentations. The target representation is shifted along the
source representation and calculates the similarity, i.e., likeli-
hood over all possible displacements using cross-correlation.
One histogram, likelihood versus displacement, is generated
based on these data and indicates the most likely displace-
ment. The process can be written as:

L(Ap|IF9P If9P) = C(fras(IF9P)) * fraB(1F9P),

ey
where is the input source RGB image. frgp is
the function of CNN in Siamese-RGB, which outputs the
neural representation of one RGB input. Then, the source
representation is circular pad C' and cross-correlated with
target representation to compute the likelihood histogram L.

RGB
Is

B. Neural network training

The fragp network, as described in [12], is designed to
generate representations invariant to lighting and seasonal en-
vironmental changes. In this paper, we aim to train a second
network that takes a different input of a similar modality
(in our case, an IR image) and produces representations
suitable for decision-level fusion. To achieve this, we utilize
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a contrastive learning pipeline similar to the original method
but with a few modifications.

Firstly, we use two networks in our pipeline - the pre-
trained frep network with fixed weights and a randomly
initialized f;r network that we train in the process. Secondly,
we only use pairs of IR and RGB images obtained simultane-
ously during data gathering in our training set. The training
pipeline is depicted in Fig. 3. The loss function used for
training is binary cross-entropy, and the target is constructed
on the fly based on the position of the random crop of the
IR image.

The main idea behind this approach is that the lighting
invariant representations learned by the frgp network can
be utilized by the second network, frr, for fusion. The
advantage of this method is that it eliminates the need to
collect IR images with different lighting conditions. Instead,
we only require a dataset with corresponding RGB and IR
images. The f;r network can extract the invariant properties
of the representations from the frgp network.

C. Fusion methods

We have two neural networks outputting lighting and
seasonal invariant representations [ of RGB and IR images.
The network frap is taken from [12], and the f7 g is trained
via the pipeline presented in Figure 3.

RRGB

2
3)
In equation 1, only one type of input for map and the live
image was used, but now we can similarly process the IR
image and use it to improve the results. The following sub-
sections present multiple ways to exploit IR representations.

1) IR-IR, RGB-RGB multiplication: First, the representa-
tions of the same input type are cross-correlated:

Lir = L(Ap|I[®, I}7)
ﬁRGB = E(ApufGB,ItRGB).

= frap(I9P)

R = frp(I'™).

(4)
)

The likelihood of all displacements is then calculated as the
element-wise product of the individual histograms:

(6)

2) IR-RGB concatenation: In this method, we concatenate
the representations of RGB and IR images along the channel
dimension and perform cross-correlation using this concate-
nated representation. The method can be written down as
follows:

£fusion2 = C([REGBa RéR]) * [RfGBv RtIR}

Ltusion1 = L1r - LraB-

(N

3) IR-RGB, IR-IR, RGB-RGB cross multiplication: The
last fusion method is similar to the first one but exploits
the similarity between IR and RGB representations. We first
define this cross-domain likelihood:

Ec’r'oss = E(Ap|I£Ra ItRGB) . ‘C(Ap‘]fGB7ItIR) ®)
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Fig. 2: Diagram of the architecture used for displacement estimation. The estimator is a Fully-convolutional Siamese neural
network, which has two images as inputs and outputs histogram corresponding to the likelihoods of possible displacements.
The image shows the method without any fusion - both branches of the network have CNN with the same weights, and the
inputs are only in the RGB domain.
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Fig. 3: Diagram of the training pipeline for the infrared model. The CNNs do not share weights and have different input
types. During training, the existing model CNNgrgp has fixed weights and only the part with the new model CNN;y is
updated. The target vector is constructed on fly based on the known position of random crop during training.e This newly
obtained model is then used for fusion.

Using this notation, the last fusion method can be written as:
dpy = argmax (L), (10)

EfusionS = ﬁIR : ['RGB : ‘Ccross~ &) . .
where L,; denotes the histogram obtained by one of the
This method is computationally more expensive but exploits ~ fusion methods or the original method without fusion.
the most information about the scene in both visible and IR

spectra.

IV. EXPERIMENT

In this section, we first describe the dataset construction,
experimental setup and its details. Then, the results of
comparative experiments are presented to demonstrate the
performance of the proposed methods.

D. Final displacement estimation

The output histograms from these four methods can be
used to find the horizontal displacement directly. We denote

the final displacement between source (map) images and A- Datasets

target (live) images for method M as Jpps. The pixel
displacement is outputted as:
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To show the viability of our method, we use two different
datasets. One dataset is used to train the neural network



processing the IR images, and the second is used to eval-
uate various fusion methods. All the images are resized to
512 x 384 pixels. The training dataset comprises 5000 pairs
of corresponding IR and RGB images captured using Intel
Realsense D435i. We scheduled the data collection to take
the images in various lighting conditions (sun glare, night).
Note that this camera has slightly different placement (a few
centimetres) of RGB and IR sensors, which results in slightly
different pixel positions of close objects. The CNN squeezes
the width by a factor of eight, which makes the embeddings
robust to these minor inaccuracies.

The second dataset was captured by a robot operating at a
parking lot next to the Skoda factory. The robot traverses the
same path many times during the day while collecting the
rosbags. The robot is equipped with the same camera type
as we used to collect the training data. Similarly, the camera
simultaneously captures the IR and RGB images as in the
test data. To emulate the VT&R position uncertainty, only
the odometry of the robot is used to extract images every one
meter. The dataset is constructed from 15 traversals, yielding
1725 pairs of IR and RGB images (920 pairs in normal
daylight conditions, 460 pairs with sun glare, and 345 pairs at
night). Finally, we form pairs from traversals with drastically
different environmental conditions to create quadruples of
IR and RGB images taken at the same locations, resulting
in three datasets - sun glare vs daylight, daylight vs night
and sun glare vs night. Some examples of the quadruples
are shown in Figures 4 and 5.

B. Experimental setup

To evaluate our proposed method, we conducted experi-
ments comparing all the methods using the Skoda dataset.
We tested the ability to find horizontal displacement Ap. The
metrics to evaluate the quality of the estimator are absolute
error (AE) and standard deviation (SD). The AE represents
the absolute difference between the calculated displacement
and the ground truth in pixels. AE is used to evaluate the
methods’ performance, while SD is used to evaluate the sta-
bility of the methods’ performance. In addition, we used the
pairwise T-test to show that the performance improvement of
the fusion method over the non-fusion method is statistically
significant.
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C. Experimental results

Results of the experiments are visualised in Figures 4(a),
4(b) and 4(c). The quantitative evaluation of the methods is
done in Table I. It is visible that without fusion, the sun glare
can significantly reduce the performance of displacement
estimation. We show that all presented fusion methods that
use both the IR and RGB images can reduce the influence
of sun glare on the quality of the estimate. It is also visible
that there is little to no performance decrease for other
challenging scenarios, such as day&night difference. This
is also supported by presented p-values, which show that
for the scenarios with sun glare, there is a statistically
significant difference between expected error, while for the
day&night scenarios, the p-values suggest that the difference
in the performance is rather insignificant. Note that there is
a theoretical limit for the method’s precision (= 4 pixels)
arising from different sizes of CNN’s input and output. Even
though the scenarios are pretty challenging, the results for
the two of them are close to the capabilities of the estimator.
It is also possible that the ground truth annotations contain
inaccuracies in terms of a few pixels because the lenses for
IR and RGB are not precisely in the same position. That is
one of the reasons why we perform statistical tests, which
further support our claims about the performance increase.

Overall, cross multiplication performs best in our ex-
periments and significantly outperforms all the methods in
the sun glare vs night scenario. We believe that in this
particular scenario, the Sun glare and reflections can be
interpreted as bright objects in a night image, and the term
Leroos 1N equation 9 can help to resolve this ambiguity.
However, all the fusion methods help alleviate the issues
arising from sun glare thanks to the additional information
in the IR image. The neural networks used for creating
the representations from the image are relatively shallow
and lightweight for easy deployment on a mobile robot. In
terms of computational requirements, the multiplication and
concatenation are comparable. In contrast, cross multiplica-
tion is the most demanding due to the term L..,ss, Which
requires the calculation of two additional cross-correlations
of the image representations. This overhead is not significant
because most of the computation time (=~ 90%) takes the
forward pass of CNN.

TABLE I: This table shows the performance of methods in three changing illumination conditions. We report the average
error (MAE) in pixels, standard deviation (SD) for all methods and the p-value of pairwise T-test for the presented fusion

methods.

sun glare & daylight

dark night & daylight

sun glare & dark night

Method
MAE SD p-value MAE SD p-value MAE SD p-value
No fusion 557 4 6.06 - 525 4+ 559 - 2039+ 33.39 -
Multiplication 546 4+ 6.58 0.27 708  4+£1077 1078 1987 44591 0.78
Concatenation 453 +£507 10797 557 + 7.81 0.09 1558 43643  0.003
Cross Multiplication ~ 4.84 4 5.68  1072% 5.64 +9.30 0.13 10.11  +£2478 10712
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Fig. 4: Horizontal displacement estimation quality of the compared methods. The mean absolute errors in pixels are in the
top row and standard deviations are in the bottom. The x-axes of the graphs indicate the index of the traversal pair. The
Roman numbers I-VI indicate particularly difficult conditions, shown in Figure 5.

(a) Daylight versus night. These three pairs of sample images correspond to the peaks in Figure 4(b), where the cross
multiplication method shares similar performance with the non-fusion method in displacement estimation.

(b) Sun glare versus night. These three pairs of sample images correspond to the peaks in Figure 4(c), where the fusion
methods significantly improve the displacement estimation.

Fig. 5: Example image pairs captured in particularly difficult conditions indicated by Roman numbers in Figure 4.
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V. DISCUSSION

We hypothesize that the existing model frgp can be
used to train a new neural network using inputs obtained
from different sensors (IR, depth, event-based) with the same
modality (image). One of the contributions of this paper
is the training scheme, which enables the incorporation of
different sensory inputs into the VT&R pipeline without the
necessity of collecting long-term datasets.

The significant advantage of the training scheme is that
the robustness to the environment changes can be translated
from the existing model frgp to the new model, which has a
different type of input. We demonstrate the feasibility of this
process in the domain of IR images. The collected training
dataset only contains information on bridging the RGB and
IR domains. However, the trained network f;p still shows
robustness to significant changes in the scene appearance and
can improve the performance of the displacement estimate.

VI. CONCLUSION

We present a self-supervised learning pipeline to train
a model for infrared images, which is robust to environ-
mental changes, without the necessity of collecting long-
term datasets. Further, we benchmark three methods that
can fuse the IR model with the existing RGB model and
improve the accuracy of horizontal displacement estimation,
which is a crucial subtask of appearance-based VT&R. We
test the performance of presented fusion methods on three
challenging datasets. We show that the fusion method can
outperform the original method without fusion with high
statistical significance. Our method can be applied to improve
the robustness of VT&R frameworks to drastic illumination
changes.

In the future, we will investigate deployment of similar
learning pipelines in scenarios, where miniature bio-hybrid
robots with vision-only sensors operate in environments with
adverse visibility [34]. These scenarios include not only
search and rescue missions [35], but also robot navigation
in and exploration of social insect colonies [36], [37].
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White-box and Black-box Adversarial Attacks to Obstacle
Avoidance in Mobile Robots

Inaki Rafid

Abstract— Advances in artificial intelligence (AI) play a
major role in the adoption of robots for an increasingly broader
range of tasks. However, as recent research has shown, Al
systems, such as deep-learning models, can be vulnerable to
adversarial attacks where small but carefully crafted changes
to a model’s input can severely compromise its performance. In
this paper, we present two methods to find adversarial attacks
against autonomous robots. We focus on external attacks against
obstacle-avoidance behaviour where an attacker — a robot —
actively perturbs the sensor readings of a goal-seeking victim
robot. In the first (white-box) method, we model the interaction
between the victim and attacker as a dynamical system and
generate a series of open-loop control signals for the attacker to
alter the victim’s behaviour. In the second (black-box) method,
the assumption that the attacker has full knowledge of the
system’s dynamics is relaxed, and closed-loop control for the
attacker is learnt through reinforcement learning. We find that
both methods are able to find successful attacks against the
victim robot and thus constitute viable techniques to assess the
robustness of autonomous robot behaviour.

I. INTRODUCTION

The increased use of robots poses a significant challenge
in terms of security and privacy [1], [2]. Security includes
resilience against malicious actors who aim to disrupt the
robots’ operation or perniciously change their behaviour. Ad-
versarial attacks have already been successfully demonstrated
against deep learning models [3], [4] and other learning
mechanism [5]. Significant research efforts are currently
being devoted to hardening such models to make them robust
against adversarial attacks [6]. However, as we show in
this paper, robots relying on well established, non-learned
control can be equally vulnerable to adversarial attacks. We
present two methodologies to generate adversarial attacks
to robot behaviour than can be implemented by a second
physical robot that interferes with the sensors of the first.
We show that it is possible to control the behaviour of a
robot, the victim, by physically interfering with its sensors
through an attacking robot, the attacker. The first method
is an alternative approach to optimal control that uses only
initial conditions instead of boundary conditions, making
the search for an attack simpler. It can generate attacker’s
behaviour fast and provides an empirical way to quickly find
whether an attack is possible, however, its applicability is
limited by the assumptions made. On the other hand, as we
will show, attacks can also be generated using reinforcement

1. Rafi6 is with the Electronics and Computing Dept. of the University
of Santiago de Compostela, Spain, ignacio.rano@usc.es. ALL.
Christensen is with the SDU Biorobotics Unit of the University of Southern
Denmark, Denmark. e-mail: andc@mmmi . sdu . dk.
979-8-3503-0704-7/23/$31.00 ©2023 IEEE.
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learning which leads to more general attacker behaviour at
the expense of longer training time.

In this study, the victim robot implements obstacle avoid-
ance via potential field methods (PFM) [7], a well established
mechanism with well known limitations [8]. Although many
excellent alternatives to obstacle avoidance exist [9], [10],
[11], [12], the mathematical formalisation of the state transi-
tion equation to generate a dynamic model of obstacle avoid-
ance is outside the scope of this work, hence, for simplicity,
we will stick to the PFMs. In our experimental scenarios, the
victim of the attack performs obstacle avoidance in a static
environment trying to reach its predefined goal location. The
attacker robot is situated in the same environment and must
force the victim to a false target area by occupying positions
that affects the victim’s behaviour. In the reminder of this
paper, goal refers to the victim’s predefined goal location,
whereas farget refers to the attacker’s desired destination for
the victim. Our experimental results show that adversarial
attacks to PFM for obstacle avoidance are possible in mobile
robots, and we present two alternatives to generating these
attacks, namely using (i) an open-loop strategy, and (ii) a
closed-loop non-linear controller.

The rest of the paper is organised as follows. Section II
presents the underlying assumptions and the two methodolo-
gies for an attacking robot to learn how to move in order to
change the victim’s trajectory so that it reaches the attacker’s
target. We focus on attacking PFM for obstacle avoidance but
both methodologies can be applied to other behaviours. The
simulated results for the two methodologies are presented
in a series of scenarios in Section III. Finally, Section IV
presents our conclusions and future research directions.

II. ATTACKS TO ROBOT BEHAVIOUR

This section presents two methods to generate adversarial
attacks to robot behaviour. We cast the attack design as an
optimisation problem where the objective of the attacker is
to optimise a function of the trajectory of the victim and the
target. Specifically, the objective of the attacker is to drive
the victim to a predefined target area instead of the victim’s
own goal location. The first is a white-box approach, Section
II-A, which leads to an open-loop control signal for the
attacker, while the second is a black-box approach, Section
II-B, which builds a non-linear controller using an extended
state of the victim-attacker system.

A. White-box open-loop attacks

This section begins with a general formulation of the prob-
lem of attacking robot behaviour modelled as a dynamical



system, and then moves on to instantiate attacks against PFM
for obstacle avoidance. Let us denote the victim’s state as x,,
and assume the evolution of its state is given by a C! class
vector function which includes the state of the attacker as
an independent variable. We denote the attacker’s state by
X, and assume its dynamics can be shaped by a control
signal u(t). We will further assume the attacker has access
to the victim’s state. Under these assumptions the dynamic
behaviour of the victim and the attacker can be stated as:

Xv = Fv(xva Xa)

X, = Fa(xav X, u(t))a

ey

where F,(-) and F,(+) are, respectively, the functions defin-
ing the dynamics of the victim and the attacker. It is
worth noting that the dynamics of the victim must depend
on the state of the attacker so that it can influence the
victim’s dynamics. Furthermore, we will assume the victim
is unaware of the attack so that it takes no countermeasure.
The dynamics of the attacker will depend on its own state
and the state of the victim, which we assumed known to
the attacker. If we consider that the control input wu(t) is
parameterised through a vector ®, i.e. u(t) = u(t, ), and
assume that the attack starts at ¢ = 0 with a horizon ¢y, we
can define the following error function:

1

t,
E(®) = f/ ' [ta — x,(t)|%dt, )
0

2

where t, is the centre of the target area to which the attacker
should drive the victim. The error depends on the parameters
through the system’s dynamics (1) and the problem is to
find ®* = arg m(gn E(®), i.e. the optimal parameters of

the attacker’s input which minimises the error subject to the
constraints defined by the dynamics of the system eq. (1).
Although this can be achieved through optimal control [13],
we approach the problem as a direct minimisation of E(®)
using a gradient descent algorithm. Such an approach can
be also used to learn the dynamics of the victim if F,(-) is
known up to a set of parameters [14]. The gradient of the
error (2) w.r.t. the parameters & is:

Ve E(®) = —/0 f(ta — X, (t))Vax,(t)dt, 3)

where Vg E(®) and Vgx, () are the gradients of the error
and the victim’s state w.r.t. the parameters () of the control
input of the attacker.

The challenge to calculate the gradient, eq. (3), is to obtain
Vo, (t) as the way the victim’s trajectory changes with ®
is not known. However, if we calculate the derivatives of
egs. (1) w.r.t. & we get:

Vaox, = vaFqu>Xv + anFqu>Xa

V<I>Xa = vxg,FaVQXa + vx“FaV(I:'XU + V<I>Faa (4)

where Vi F, and Vx_F, are the Jacobians of the victim’s
dynamics w.r.t. the victim and attacker’s states, Vx F, and
Vx,F, are the Jacobians of the attacker’s dynamics w.r.t. the
attacker and victim’s state, and VgF', is the Jacobian of the
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attacker’s dynamics w.r.t. the parameters of the input u(¢, ®).
If the derivatives of the state variables x, and x, change
smoothly with time (¢) and parameters (P), we can exchange
the order of the gradient and time derivative in eqs. (4). Then
defining the matrices D, = Vgx, and D, = VgXx, We can
rewrite equation (4) as:

D, =Vy,F,D, +V, F,D,

Dy =Vy,FuD, +Vy F,D, + VsF, )

Simultaneously integrating eqs. (1) and (5), we obtain the
gradient Vgx,(t) = D, needed to find V4 E, and hence
optimise the error (2) using gradient descent. In this way,
the dynamic constraints of the system are accounted for
through the integration of (5) with zero initial conditions as
the system’s initial state does not depend on the parameters.

To instantiate the formulation above to a PFM for obstacle
avoidance, in the rest of this section we assume both robots
(attacker and victim) operate in 2D according to a single
integrator model (p = u). Let’s assume the victim starts at
position p, (0) € R2 and has goal t,, € %2 in an environment
containing obstacles, while the attacker starts at position
P.(0) € R2. Obviously these points should not be inside any
obstacle grown with the Minkowski sum of their bodies, nor
should they be so close to one another that the robots’ bodies
overlap. Both robots have to perform obstacle avoidance and,
since both follow the single integrator model, we assume the
dynamics of the system is given by:

pv = Fg(pva pa) + Fg (pv)
pa = FZ(Pa) + Fg(pav p’u) + u((I))’ (6)

where Fo(-) and F¢(-) are the repulsive forces of the
obstacles for the victim and attacker, respectively, F9(-) and
F9(.) are the attractive forces of the goal for the victim and
the attacker, and u(®) is the parametric input to the attacker
dynamics. While the victim has its obstacle avoidance goal,
we can set the goal of the attacker to be the current position
of the victim. In general, if the input u(®) is not bounded,
the attacker can generate large actions attack the victim
potentially leading to collisions with obstacles. However,
one can select a maximum action wup; smaller than the
maximum norm of the contributions of the obstacles making
the trajectories of the attacker obstacle free, i.e. imposing a
constraint on the maximum allowed input u(®). We will rely
on this approach also in our second mechanism to generate
adversarial attacks.

B. Black-box Attacks via Reinforcement Learning

Although the approach presented in Section II-A can
find an input to drive the victim to the attacker’s target,
it entails an assumption unrealistic in practice, namely that
the attacker knows the dynamics of the victim F(-). To
relax this assumption, attacks can be generated through
reinforcement learning (RL) [15] where the additional input
to the attacker’s dynamics u, the policy in this case, depends
on the states of the attacker (x,) and the victim (x,,). For the
obstacle avoidance attacks, we created an RL state s; with



the positions of the victim and the attacker’s target relative
to the attacker’s position and also included the velocity of
the victim, which can be estimated from the sequence of
position p,. The dynamics of the system then becomes:

pv = Fg(pmpa) + Fzg;(pv>
pa = FZ(Pa) + F?L(pav pv) + u(st), @)

where s; = [Py — Pa, ta — Pa, Vo). Although the RL problem
can be defined with a state s; that does not include the
victim’s velocity, our tests showed that including this infor-
mation greatly helped to speed up the learning process, while
using v, does not necessarily imply knowledge about the
victim’s dynamics. Furthermore, the dynamics of the attacker
could be fully learnt, i.e. without superposing the obstacle
avoidance mechanism, but that would entail including some
type of range sensing in the attacker as part of the state (s;).
This in turn means a more complex learning mechanism with
more inputs and more training data since the attacker would
have to learn to avoid obstacles while performing the attack.
Given that the attacker dynamics already includes a term for
obstacle avoidance, the reward function to optimise in the RL
problem was simply defined to be a function of the distance
from the victim to the target position of the attacker:

i — <
r(s)) = { M if |py —ta| <€

. 8
—04|Pv - ta| ]f |pv _ta| > €, ( )

where ¢ defines an area around the attacker’s target, rp; > 0
is a positive reward and « is a scaling factor. This reward
function penalises with a negative reward the distance be-
tween the victim and the attacker’s target and gives a positive
reward when the victim enters a region of radius € centred
at t, which also indicates the end of the RL episode.

III. EXPERIMENTS OF ADVERSARIAL ATTACKS

In this section, we show results of simulated experiments
with the two approaches presented in Section II. The attacker
and the victim run potential field-based obstacle avoidance
with different parameters, specifically the attacker parameters
allow it to move faster and to get closer to obstacles. Both
the victim and the attacker can perceive the locations and
sizes of nearby obstacles.

A. Open-Loop Attacks

This section presents simulations where the attacker com-
putes an open-loop control signal to combine with the PFM
to drive the victim towards a target area using the method-
ology presented in Section II-A. The equations to compute
the gradient of the error (3), i.e. equations (1) and (5) were
integrated simultaneously using Euler’s method with a step
size of At = 0.05. The parameters ¢ used are the discretised
control signal of the attacker u(t) as a piece-wise constant
function, u(tg), which is initially set to zero, i.e. ® = 0
as initial guess for the control commands. Initialising ¢ to a
random vector would likely not bring any benefit, while other
initialisations could improve the optimisation but are difficult
to guess. In all simulations shown in this section, the starting
position of the victim was x,(0) = [0, 8] and its goal was
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t, = [0, —8]. The maximum speed of the victim was set to
1m/s, while the attacker had a maximum speed 20% higher,
which we found experimentally to give the attacker enough
time to approach and drive the victim towards the attacker’s
target.

Figure 1 shows the trajectories of the victim and the
attacker for a configuration where the initial position of the
attacker was x,(0) = [—3,—2] and the target to drive the
victim to is t, = [—3,3]. Figure 1(a) shows the resulting
attack in a scenario without obstacles, where the red and
blue trajectories corresponds to the attacker and the victim,
respectively. The target is represented by a green circle while
the final position of the attacker corresponds to the red
circle. The transparency level of the trajectories represents
the time evolution, i.e. the beginning of the trajectory has
a higher transparency and same level of transparency in the
two trajectories corresponds to same time step. As it can be
seen in the figure, the optimisation process found a temporal
sequence of attacker velocities to drive the victim to the
target area, and the whole trajectory lasted around 9 seconds.
The trajectory (see Figure 1(a)) is just a sequence of straight
lines driving the victim to the attacker’s target.

For the next scenario we placed one obstacle in the at-
tacker’s way. The resulting trajectory is shown in Figure 1(b),
and despite the presence of the obstacle, the attacker is
able to drive the victim to its target, although in this case,
the attacker required 12 seconds to complete the attack.
Figures 1(c) and 1(d) show the result of attacking trajectories
for the scenario with two and three obstacles, respectively,
where obstacles were added in new positions of the arena
to further disturb the trajectories of the attacker and the
victim. While the second obstacle affects the trajectory of
the attacker, the third obstacle only affects the trajectory
of the victim, yet in both cases the attacker successfully
finds appropriate trajectories to drive the victim to its target.
The time it took to complete the attack was 13 and 11
seconds, respectively. All the time horizons for the attacks
were empirically set for each scenario.

B. Attacks with Reinforcement Learning

In this section, we present simulation results for the RL
approach discussed in Section II-B. For all the experiments
shown here the attacker’s policy was represented by a
neural network with two hidden layers (30 x 30 units) with
hyperbolic tangent output, and a linear output layer which
corresponds to the additional input to the attacker’s dynamics
u(s;) in eq. (7). The network architecture was selected
through an empirical evaluation of different network sizes.
The final velocity of the attacker was limited through its
maximum speed of 1.2 m/s. The networks were trained
using the Proximal Policy Optimisation (PPO) algorithm [16]
where the hyper-parameters (batch size and epochs) were
empirically changed from scenario to scenario to optimise
the results for each scenario. A scenario is defined by an
environment with a fixed number and location of obstacles
(no obstacles, one and two obstacles). For each scenario
we experimented with three configurations of the initial
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Fig. 1. Examples of trajectories adversarial attacks as an optimisation
problem in the control input (open-loop) of the attacker (victim’s goal t, =
[07 _8])
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position and target of the attacker: (i) a fixed position for the
attacker’s target with random initial positions of the attacker
inside some area, (ii) a random position for the attacker’s
target inside some area with fixed attacker initial position,
and (iii) random attacker target and initial position. The
starting position of the victim was x, = [0, 8] and its goal
t, = [0, —8].

We trained 15 different policies for each of the three
scenario and three configurations resulting in a total of
15 x 3 x 3 = 135 policies. Once trained, the success rate
of each policy was calculated over 1000 trajectories (with
random positions of the attacker, the target or both depending
on the configuration) and counting the number of trajectories
which drove the victim to the target area. Although some
of the trained policies had a success rate of zero, specially
for the most challenging scenario with two obstacles, the
lowest success rate among the easiest scenario (no obstacle)
was 97% (i.e. 97 out of 100 attacks with that policy were
successful).

Figure 2 shows samples of 50 trajectories of attacks
for each of the three configurations without obstacles (first
scenario), i.e. random position of the attacker (Fig. 2(a)),
random position of the target (Fig. 2(b)), and random attacker
and target (Fig. 2(c)). The blue and red lines correspond
respectively to the victim’s and attacker’s trajectories. The
starting position of the victim is shown with a blue circle and
its goal with a blue ‘4. The initial positions of the attacker
are shown with a red ‘+’. In Figures 2(b) and 2(c), the black
rectangle depicts the area where the random target of the
attacker was selected. As the figures show, the trajectories
of the attacker and victim are highly prototypical, and the
strategy of the attacker is to move towards the right of the
environment to drive the victim towards the target on the
left side. In terms of success rate, the best policies for all
configurations lead to a 100% success, which means that for
all the sample trajectories in the scenario without obstacles,
the attacker drove the victim to the target.

In view of the trajectories shown in Figure 2, we exper-
imented with placing an obstacle along the trajectories of
the attacker, see Figure 3, and trained this new scenario for
the three configurations. Figures 3(a), 3(b) and 3(c) show 50
sample trajectories for these configurations of attacker and
target defined in the scenarios above. Interestingly, in the
first two scenarios (where only the target or attacker’s initial
position are random) the trajectories pass on one side of the
obstacle, while in the last scenario the trajectories pass on the
other side, which could mean there is more than one possible
strategy to perform the attack. The strategy of the attacker
to move towards the right side of the environment is still
present since its target is on the left side, and, in this way, the
attacker drives the victim towards the left. It is worth noting
that the rightmost points of the trajectories of the attacker
are further to the right than in the no obstacle scenario since
the victim moves to the right to avoid the obstacle. As for
the success rates of the policies in these scenario, the best
policies for the three configurations reached between 98%
and 100% success in the 1000 random trials performed.
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Sample trajectories of adversarial attacks using a neural policy for scenarios with one obstacle
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Fig. 4. Sample trajectories of adversarial attacks using a neural policy for scenarios with two obstacles

Figure 4 shows the random test trajectories for the scenario
with two obstacles, where the second obstacle was added
to perturb the trajectories in the configurations shown in
Figures 3(a) and 3(b), forcing the attacker to let the victim
approach its goal and then pushing it back towards the
attacker’s target. As Figures 4(a) and 4(b) show, this strategy
was successfully learnt by the policies, yet interestingly one
of the simulated trajectories in Figure 4(c) drives the victim
between the two obstacles. The success rates of the policies
in this scenario were significantly reduced with one, four and
five policies failing to drive the victim to the attacker’s target
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for the three configurations. The best policies achieved a
success rate between 98% and 100%. From the success rates
achieved by the 15 learnt policies across scenarios one could
infer that the more obstacles in the environment the more
difficult is to learn a successful attacking policy, although
successful policies can be found to create close to perfect
attacks in all the scenarios tested.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes two methodologies to generate adver-
sarial attacks to robot behaviour with PFM-based obstacle
avoidance as a case study. Although this can be seen as



a simplistic example since real robots use combinations of
planning and obstacle avoidance, it might be possible to
find attacks for such behaviours too. Our simulations showed
that attacks to this obstacle avoidance strategy can be found
even though good policies are less frequently found in more
complex environments (environments with more obstacles).
Although the proposed methodologies worked for our case
study, an outstanding open question is how far these attacks
can go, i.e. which other robot behaviours are vulnerable to
attacks? If so, can adversarial attacks to robot behaviour be
avoided or at least detected?

Our next objective is to apply these methodologies to gen-
erate adversarial attacks to other obstacle avoidance methods,
such as those designed for unicycle type robots and deploy
them in real robots, where sensor noise and other effects
might play a key role on the feasibility of the attacks.
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Evaluating Techniques for Accurate 3D Object Model Extraction
through Image-based Deep Learning Object Detection and Point Cloud
Segmentation*

Alicia Mora, Alberto Mendez and Ramon Barber

Abstract— Accurate 3D object model extraction is essential
for a wide range of robotics applications, including grasping and
object mapping, which require precise knowledge of objects’
shape and location to perform optimally. However, high accu-
racy can be challenging to achieve, particularly when working
with real-world data where factors like occlusions, clutter and
noise can greatly influence results. Several techniques can be
found in literature for integrating 2D deep learning and point
cloud segmentation. Nevertheless, comparative studies on these
algorithms are very limited. In contrast, this paper evaluates
methods for obtaining 3D object models using a combination
of deep learning object detection and point cloud segmentation.
We compare a number of existing techniques, some of which
have been improved for performance, on real-world data.
More specifically, the paper examines four methods for 3D
object extraction: two for bounding box object detection, one
for instance segmentation and a fourth method that involves
estimating an object mask in the image inside the bounding box.
We compare these techniques qualitatively and quantitatively
using several criteria, providing insights into their strengths
and limitations.

I. INTRODUCTION

The ability of robots to perceive and comprehend their
environment is gaining importance as applications for them
spread throughout society. One essential aspect for this is the
capacity to extract 3D object models. These models enable
robots to understand the geometry and spatial arrangement of
objects in their surroundings. This information is particularly
important in tasks where precise data about the objects shape
and position is necessary. For instance, it allows to create se-
mantic maps where the precise location of objects determines
the zones at which robots will be capable of interacting with
people [1]. Another example is estimating the 6-DoF grasp
from a partial object view for a gripper [2]. In both cases,
an error in the 3D object model extraction has a direct effect
on the methods results. However, accurately extracting 3D
object models from real-world data is a challenging task,
especially in the presence of factors such as occlusions or
cluttered backgrounds. In this work, we explore the potential
of combining deep learning object detection with point cloud
segmentation to extract accurate 3D object models. This
study’s objective is to assess the performance of various
existing techniques while looking into their applicability to
robotics.

*This work was supported by RoboCity2030 DIH-CM project
(S2018/NMT-4331, RoboCity2030 Madrid Robotics Digital Innovation
Hub)

RoboticsLab, Universidad Carlos III de Madrid, Leganés, Spain. al-
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(a)

(b)

Fig. 1. Visual representation of the presented problem: (a) original point
cloud, (b) segmented point cloud, where the desired object (bottle) is colored
in orange. The box occluding the object is successfully filtered.

Although there are methods that directly detect 3D ob-
jects in point clouds such as [3], they are computationally
expensive and require big amounts of labeled data for train-
ing. Furthermore, since their utilization is not as prevalent
compared to image object detection, there is a scarcity of
pre-trained models readily accessible. Of the few models
that are available, many are designed for autonomous driving
applications, so they are not directly applicable for robotic
applications. That is why the combination of image object
detection and its subsequent projection onto the correspond-
ing point cloud offers great advantages for applications like
navigation, mapping or grasping.

A fundamental task in computer vision is object detec-
tion, and there are several methodologies for spotting and
locating objects in pictures. In this paper, we investigate
two main methodologies: bounding box detection and in-
stance segmentation. While bounding box detection provides
a rectangular bounding box around the detected object,
instance segmentation segments each image pixel separately.
Even though bounding box detection is computationally less
expensive than instance segmentation, it requires more point
cloud segmentation processing to extract 3D object models
accurately, given that the box does not precisely adjust to
the object shape. Instance segmentation, on the other hand,
provides more detailed object localization and segmentation
but it also has some drawbacks, including the need for
larger dataset creation, greater computational requirements
and more challenging training than bounding box detection.

Point cloud segmentation is the second step required
for obtaining precise 3D object models. In this study, we
investigate ways to segment point clouds enhanced by the
prior detection of the object in the corresponding image. To
do this, the point cloud projection onto the image plane is
used to determine which points of the cloud correspond to
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the detected object. Depending on the detection technique, a
different local point cloud will be obtained after projection,
so different filtering techniques will be required for the final
3D model extraction. In the case of bounding box detection,
segmentation techniques will be necessary to remove points
corresponding to background areas or occlusions, since the
box does not fit the exact object shape. In the case of instance
segmentation, special attention will be paid to points on the
mask edge, as they may be outside objects. These approaches
are evaluated and compared in this work to determine their
effectiveness for real-world applications in terms of accuracy
and time. An example is shown in Fig. 1, where a bottle is
detected and segmented successfully despite occlusions.

II. REVIEW: 3D OBJECT MODEL EXTRACTION

In this section, we review several techniques proposed in
literature for integrating image-based object detection and
point cloud segmentation. These works have been divided
according to their application: grasping and mapping. In both
cases, we can find strategies based on the two main object
detection techniques: bounding box and instance segmenta-
tion. Furthermore, they share point cloud segmentation and
filtering techniques. Hence, our objective is to gather their
main features to subsequently test their performance.

A. Grasping Applications

3D object models allow robots to approach and grasp ob-
jects with dexterity and accuracy. Without this information,
a robot may struggle to determine the best approach to grasp
an object, leading to suboptimal performance or even failure.

Several works have proposed to combine bounding box
object detection and point cloud segmentation to solve this
issue. Authors in [4] propose a bin picking solution where
YOLOV2 first recognizes objects and then the point cloud
data is segmented using the bounding box as a mask. Point
cloud data is projected onto the image frame and points
inside the box are selected. The fact of selecting points
within the box that do not belong to the object is not taken
into account. In [5], this fact is considered for grasping
objects with a humanoid robot. Points outside of the robot
manipulation range are removed, as well as the horizontal
plane corresponding to the object supporting plane. However,
other factors such as occlusions are not considered.

Other works propose the use of instance segmentation
instead. Studies on using robots for harvesting like [6], [7]
detect fruits using instance segmentation and apply the re-
sulting mask to extract the corresponding point cloud, which
is then fitted into a sphere model to estimate grasping. Sim-
ilarly, in [8] 3D object models are estimated using instance
segmentation and their point clouds are fitted into either a
plane of a cylinder model. Additionally, ICP is applied for
pose refinement. Authors in [9] apply the same technique
for pick-and-place tasks and include a shape completion
method to obtain a more accurate 3D model. Finally, authors
in [10] use GrabCut to select the foreground object of an
image cutout coming from a bounding box detection, better
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fitting the object shape and approaching the way instance
segmentation works.

B. Mapping Applications

The 3D object model estimation for mapping provides the
opportunity to improve the perception that robots have of
their environment. For instance, it enables the creation of
higher-level maps including semantic information [11]. Some
works like [12] determine object locations using the center
of the estimated bounding box to obtain depth. However,
this point does not always belong to the object itself, so
obtaining a complete 3D model of the object could improve
this estimation.

Several works rely on initially detecting objects using
bounding boxes to segment point clouds accordingly. Au-
thors in [13] propose an object-aware map where 3D object
models are included, fusing information from multiple view
angles as explained in [14]. They first use the bounding box
as a mask to crop the point cloud, which is then segmented
using Locally Convex Connected Patches (LCCP). This algo-
rithm, presented in [15], segments the point cloud into small
blocks through supervoxel segmentation, which are later
clustered into larger objects using a region growth algorithm
based on convex-concave relationships. The biggest cluster
is selected as the desired object. However, this could cause
errors such as choosing areas that do not belong to the object,
such as ground or background regions, in case they occupied
more space. In [16], plane models are extracted from the
cropped point cloud for visual semantic SLAM on a UAV.
Other works like [17], [18] propose to remove ground points
from the cropped point cloud using RANSAC before apply-
ing Euclidean filtering. The main problem of these methods
is how to appropriately select the distance threshold, which
will highly influence the segmentation performance. Authors
in [19] propose to segment the point cloud before cropping
it using the bounding box. Then, clusters are projected into
the image plane. Those containing an area above a certain
threshold inside the bounding box are selected as part of the
detected object. This method has the advantage of merging
multiple clusters belonging to the same object.

Regarding instance segmentation, multiple works make
use of this technique for mapping. In [20], the resulting mask
is used to crop the point cloud. No information regarding
cloud filtering is provided, which could cause errors in
the final object shape estimation. Works presented in [21],
[22], [23] generate object-aware semantic maps based on
SLAM. In all these cases, a filtering step is applied after
cropping the point cloud. In [21], a seeded region growing
algorithm is proposed to remove points in the mask contour
that do not belong to the object. In [22], DBSCAN and a
connected component analysis are combined for the same
purpose. In [23], the point cloud is segmented according to
estimated normals. Other works like [1] apply other filtering
techniques like statistical filtering and Euclidean clustering
to create semantic maps, where object points are projected
onto the map plane. Special attention should be paid to the
performance of these filters, since a small error in the edges
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of the instance mask can cause large errors in the 3D object
shape estimation.

This overview on 3D object model extraction highlights
that the variety of applications has turned out into a va-
riety of algorithms. For a practical comparison of several
approaches, we analyze the performance of four methods:
region growing, LCCP, GrabCut and instance segmentation.

III. IMPLEMENTED 3D OBJECT SEGMENTATION
ALGORITHMS

Of all the reviewed methods, four have been selected to be
compared among each other. All of them start with obtaining
an image and a point cloud from an RGB-D camera. Three
of the methods are based on object detection using bounding
boxes, while the fourth one is based on the mask obtained by
instance segmentation. In all these cases, a relationship must
be established between the 3D point cloud and the 2D image.
Subsequently, the procedure for image object detection, as
well as the projection of 3D points onto the image plane
and the applied segmentation techniques are explained. Code
has been developed using the PCL library in C++ [24] and
Open3D in Python [25].

A. Object Detection

Object detection is performed in the 2D image after the
data capturing stage. In order to achieve this objective, a
convolutional neural network (CNN) that works in real-time
is used in this work: YOLOv5 [26]. This object detection
can be done in two different ways: bounding box detection
and instance segmentation. An example of the outcome from
these two methods is shown in Fig. 2. The main difference
between the two proposals is that bounding boxes delimit
objects using a rectangle, which may lead to imprecise ob-
ject localization. Meanwhile, instance segmentation delimits
objects pixel by pixel, maintaining objects’ shapes [27]. This
has a significant impact during the CNN training. Instance
segmentation requires larger datasets and more training time.
Also, object labeling is more difficult and it takes more time
per object instance. In this research, it is intended to test
different 3D object model extraction algorithms using the
two object detection methods to analyze their impact in 3D
segmentation and to determine when it is recommended to
use bounding box detection or instance segmentation.

(a)

(b)

Fig. 2. Object detection methods: (a) bounding box detection, (b) instance
segmentation.
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B. 2D - 3D Correspondence

In all of the four proposed methods, a correspondence
between 2D image pixels and 3D point cloud points is
required. More specifically, 3D points need to be projected
to the image plane to see whether they correspond to the
object region obtained from the object detector (bounding
box or mask) or not. For that purpose, the pinhole camera
model is used, as shown in Fig. 3.

! p=tx,yy FTYeD)

Fig. 3. Point cloud and image correspondence based on the pinhole camera
model.

For establishing the relationship between a 3D point

P = (XY Zp) and a 2D point p = (X,,Y), the
following equations are used:
W= + Ca, beyZ—b+0y 1

where x;, and y;, are the image coordinates of the point p,
X3, Yy, and Z;, are the point cloud coordinates of the point
P, f. and f, are the focal lengths of the camera in the x and
y directions respectively, and ¢, and c, are the coordinates
of the image center.

C. Point Cloud Segmentation

In this section, the four selected segmentation methods are
explained, three of them based on the output from bounding
box detection and a fourth one based on the mask obtained
from instance segmentation.

1) Region growing Algorithm: The region growing-based
method is inspired by the work presented in [19]. In the
proposed research, the whole point cloud was segmented
using an incremental segmentation algorithm and then a
criterion was set to see which clusters corresponded to the
desired object by checking if they were inside the object
bounding box. This criterion was checked from several points
of view. However, in our research we are only focused on
single view applications, so the method has been modified
to be applicable to these situations. The first step is applying
the region growing algorithm to the global point cloud.
Region growing is a point cloud segmentation technique that
groups neighboring points based on similarity criteria such
as color, intensity, or distance. The output is a set of clusters
corresponding to either objects or object parts. This last
case is mostly found in non-convex objects such as chairs,
which are typically divided into backrest and seat. Then, each
cluster is projected into the image plane using the pinhole
model. For each projected cluster, the ratio of cluster points
inside the bounding box over the total number of cluster
points is calculated. If this value is over 0.9, the cluster
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is selected as part of the object. In this way, background
and occluding objects are filtered, since it is assumed that
their shape cannot be fully or almost fully contained in the
bounding box. An example of region growing segmentation
is shown in Fig. 4. According to the defined criterion, only
the purple cluster would be selected as part of the object.

Fig. 4. Region growing segmentation applied on a point cloud. According
to the proposed criterion, the purple cluster corresponding to the bottle
would be selected. Red points are outliers.

2) LCCP: The LCCP-based method is inspired by the
works presented in [13], [14]. In their research, authors
proposed to crop the point cloud first by selecting the 3D
points inside the object 2D bounding box. Then, the LCCP
algorithm was applied on the local point cloud. The LCCP
algorithm identifies connected regions with locally similar
geometry and appearance, and assigns a unique label to each
region based on its convexity and connectedness properties.
It relies on two main stages: division into small voxels using
supervoxel segmentation and merging voxels by computing
an adjacency graph. An example of these two steps is shown
in Fig. 5.

(a) (b)

Fig. 5. LCCP stages: (a) supervoxel segmentation, (b) supervoxel merging
based on an adjacency graph. The green cluster corresponds to the desired
object.

In order to select the cluster corresponding to the object,
authors assumed it to be at the center of the bounding box
and to occupy most area in the box. However, this assumption
cannot be made, specially for non-convex objects. LCCP
tends to oversegment objects like chairs, since it pays special
attention to convex shapes. Hence, a strategy for selecting
more than one cluster is needed in case the object is divided
into two or more parts. For that reason, we propose to select
clusters assuming that they are at the center of the point
cloud (instead of the center of the bounding box) and that
they are greater than other clusters. In this way, small clusters
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corresponding to occlusions are removed because of their
size and large background clusters are also filtered because
they are too far from the center.

3) GrabCut: The GrabCut-based method is inspired by
the work presented in [10]. The objective is achieving similar
2D object detection results as with the instance segmentation
method but using a CNN that performs bounding box detec-
tion. The proposal consists of two main processes: 2D object
extraction and point cloud segmentation. Object extraction
is performed using OpenCV’s GrabCut [28]. The algorithm
uses a Gaussian Mixture Model (GMM) to model the pixel
color distribution on an image. Then, a graph is built based
on it, where its weights depend on pixel similarity. Finally,
a min-cut algorithm generates the binary mask that delimits
the object using a minimal cost function. This process is
repeated until convergence is achieved. Once an image from
the camera is received, it is cropped using the bounding box.
It is in this crop where GrabCut is applied so that the object
shape is better defined. Then, like in the previous methods,
the points in the point cloud corresponding to that region are
selected. Given that the GrabCut mask is not as precise as the
instance segmentation one and that occlusions may not have
been filtered, an additional step is added to remove unwanted
data. A density-based clustering algorithm, more specifically
DBSCAN [29], segments the point cloud into several clusters
according to a neighborhood distance threshold. Then, for
each cluster the mean distance to the center of the picture
is calculated, and the cluster with the minimum distance
is selected as the final point cloud object. Fig. 6 shows a
representative example of the proposed stages.

(a)

(b)

©

Fig. 6. GrabCut-based method stages: (a) the image is cropped using the
bounding box delimitation, (b) GrabCut is applied to remove backgroud
pixels, (c) 3D points inside the mask are selected and filtered to remove
background and occlusions.

4) Instance Segmentation: The instance segmentation-
based method is the most straight forward proposal. The
pinhole camera model is again applied to see which points
from the 3D point cloud are inside the calculated mask,
which has the shape of the object. However, the output needs
to be filtered in case that the mask does not perfectly fit
the object shape. It could happen that the mask boundary
is outside the object, so points that are far from the object
would be selected, as shown in Fig. 7. For that reason, the
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mask is first eroded using a disk-shaped kernel of radius 3.
Then, an outlier removal filter is applied in order to be sure
that only points corresponding to the object are selected.

(@ (b)

Fig. 7. Instance segmentation errors: (a) general point cloud view, (b)
close-up view. If the segmented cloud is not filtered, boundary points on
the mask could correspond to other objects. In this case, they correspond
to an occluding box.

IV. EVALUATION

For the purpose of testing the accuracy of the proposed
methods, their results are evaluated with several metrics.
First, data is captured from a varied number of objects, cor-
responding to both workspaces for manipulation and larger
objects for navigation and mapping. Then, after applying the
proposed methods, the segmentation quality is assessed by
comparing results against human labeled data. Results are
hereunder presented, both qualitatively and quantitatively.

A. Dataset

In order to test the presented algorithms, a dataset was
required. For that purpose, a set of aligned RGB images and
point clouds have been recorded using an RGB-D camera.
The selected hardware is a RealSense D-435i. Regarding
software, ROS has been chosen as the link between the
hardware and the algorithms. ROS provides a standardized
interface for obtaining and processing data from RGB-D
cameras, simplifying the development of applications that
use this type of sensor data. With respect to the selected
objects, the main intention is to verify how the methods
behave with both small and large objects. The goal is to
observe if there is a differentiation between both, in order
to recommend their application for manipulation, navigation,
or both. Hence, the dataset has been divided into workspace
objects and larger objects. A total of 26 frames were
recorded, with an image resolution of 640 x 480 px and
its corresponding aligned point cloud. A summary of all the
collected samples is shown in Table II. It must be specified
that each sample contains only one object of interest, but

there may be more than one point of view for the same object
in separated samples. The dataset is publicly available!.

TABLE II
DATASET SUMMARY

Workspace objects

Obj. type | # objects | # samples
Knife 1 1
Book 2 4

Monitor 1 2
Bottle 2 5

Larger objects

Obj. type | # objects | # samples
Chair 3 8

Washbasin 1 1

Bag 1 1
Fridge 1 1
Sofa 2 2
Toilet 1 1

B. Quantitative Results

Regarding the quantitative evaluation of the proposed
methods, four different metrics have been applied. The first
one is execution time, with the aim of checking if methods
are valid for real-time applications. The code has been
executed on a 12th Gen Intel(R) Core(TM) 17-12700H CPU.
The second metric is intersection over union (IoU), which
quantifies the overlap between two 3D bounding boxes,
one corresponding to the ground truth point cloud and the
other one to the output from the specified method. For this
purpose, each point cloud is delimited by its corresponding
3D bounding box. It is a unitless value scaled between O
and 1. The third metric is Chamfer distance (CD), another
similarity metric calculated as the sum of the distances
between each point in one cloud and its nearest neighbor
in the other cloud. Finally, the distance between the center
of the ground truth point cloud and the estimated one is
also measured. These metrics were selected to quantify the
performance of each method as they are the most popular
ones in state-of-the-art works. With this we aim to facilitate
further comparisons of our proposals with others. Results

Uhttps://www.kaggle.com/datasets/aliciamorav/object-segmentation-
dataset

TABLE I

PERFORMANCE METRICS FOR THE FOUR PROPOSED METHODS

CD (m)

Distance (m)

4.9550 £ 10.2449
997.7513 + 841.9354

0.0327 £ 0.0426
0.2085 + 0.1225

workspace objects
larger objects

7.7770 £ 10.8200
704.7949 + 522.7520

0.0489 + 0.0872
0.2250 + 0.1773

workspace objects
larger objects

5.0067 £ 2.8707
600.1952 + 490.6789

0.0326 + 0.0373
0.1934 + 0.1631

workspace objects
larger objects

Time (s) ToU

RG 0.0599 4+ 0.0105  0.5808 + 0.2623
0.4415 + 0.2291  0.4512 + 0.2243

LCCP 0.0058 + 0.0044  0.6042 + 0.3363
0.0383 4+ 0.0217  0.4551 4+ 0.2591

GC 1.0789 4+ 0.1589  0.5076 + 0.2330
2.3043 4+ 1.3372  0.4525 £ 0.2566

INST 0.0070 4+ 0.0027  0.5246 + 0.2391

0.0124 + 0.0083

0.4763 + 0.2038

4.4195 + 3.5965
459.2447 + 425.6846

0.0263 + 0.0302
0.2195 + 0.1367

workspace objects
larger objects
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Fig. 8. Methods’ main limitations when challenging conditions appear. Two workspace objects and two larger objects have been selected as representative
examples: (a) thin book placed on a table, (b) bottle occluded by a box, (c) sofa on a cluttered environment, including occlusions, (d) chair with holes on
its back. Results are presented from left to right in the following order: initial colored point cloud, RG, LCCP, GC and INST.

are collected in Table I, where the mean values as well as
standard deviations are provided. Results have been divided
for the two types of selected data: workspace objects and
larger objects. The best value for each metric has been
marked in bold.

By taking a look at time, it can be seen that GrabCut (GC)
takes longer to execute than the rest of the methods for both
object types. This is a key factor for selecting a segmenta-
tion method, since some applications may require real-time
computations. Due to this fact, the most appropriate methods
would be LCCP and instance segmentation (INST), since in
our case all execution times were under the rate at which the
camera captures data (30 fps). Regarding accuracy metrics,
there is a clear differentiation in the methods performance
with respect to the object type. All methods perform better
with workspace objects in comparison to larger objects.
Overall, instance segmentation provides the best results in
both cases. In the case of workspace objetcs, RG and LCCP
provide better results for IoU, but they are worse for CD and
distance. Even so, these are minor differences. In the case
of larger objects, only GC outperforms INST in distance.
Although in this case the differences are also minor in IoU
and distance, according to CD, INST is significantly better
than the other options.

C. Qualitative Results

A visual representation of the methods’ performance is
shown in Fig. 8, where the most common errors for each
method have been selected. Pictures are organized as follows:
each row corresponds to a different object and each column
corresponds to a different method. Column 1 is the initial
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colored point cloud and columns 2, 3, 4 and 5 are the results
from RG, LCCP, GC and INST, respectively. By looking at
the visual output obtained with each method, we can detect
their main limitations.

Regarding workspace elements, Fig. 8(a) shows the exam-
ple of an object that protrudes very little from the surface that
supports it. More specifically, it is a book resting on a table.
The first tested method, RG, is not capable of separating
the object from the background into different clusters, so the
object is defined with every point that is inside the bounding
box. The rest of the methods, LCCP, GC and INST are
able to clearly define the object shape. In the case of Fig.
8(b), a bottle with a box occluding it can be found. In this
case, LCCP and GC have problems separating the different
elements of the scene, since they include box points as part
of the bottle. RG and INST differentiate both elements.

With respect to larger objects, two situations are shown: a
complex-shaped object in a cluttered environment and an ele-
ment with internal holes that allow the capture of background
information through them. Fig. 8(c) shows the first case,
where a sofa is detected. It has multiple elements around
and it is additionally partially occluded by a table. In this
case, the occlusion is correctly filtered by the four methods.
However, the only methods that correctly segment the object
are RG and INST. GC includes a part of another nearby
object and LCCP includes a gib amount of background data.
Finally, Fig. 8(d) shows a chair with holes on its back. RG
and GC are capable of removing background points. The
first one additionally does not include floor points, whereas
GC does. LCCP does not remove floor points and includes
background data. INST is capable of removing floor points
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but background points are included in the model since they
are also part of the object mask.

The described situations directly affect grasping and map-
ping performances. In the case of workspace objects like
Fig. 8(a) and 8(b), grasping points would not be accurate
because the point cloud does not perfectly fit the object
shape. In the case of larger objects such as Fig. 8(c) and 8(d),
their estimated location and dimension would be incorrect,
even leading to conflicts between multiple objects that could
overlap in the final map.

V. CONCLUSIONS

In this work, several 3D object model extraction methods
have been presented. According to our results, instance
segmentation provides the fastest and most accurate results.
Due to its limitation in terms of dataset elaboration and
training time, methods based on bounding box detection
could be chosen. For workspace objects, the most accurate
method is LCCP, while for larger objects, the use of GrabCut
is recommended whenever it is not necessary to work in real
time. Overall, it can be stated that point cloud segmentation
via 2D object detection is a promising approach for obtaining
accurate models.

As future work, we intend to combine the proposed
segmentation strategy using YOLO and the corresponding
point cloud with an object reconstruction strategy that will
allow us to complete the hidden area of the detected objects.
This will facilitate the correct functioning of the inclusion of
real-time models for mapping or grasping tasks, since object
shapes will be more accurate.
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TAICHI algorithm: Human-Like Arm Data Generation applied on
Non-Anthropomorphic Robotic Manipulators for Demonstration™

Blanca Lopezl, Adrian Prados!, Luis Moreno and Ramon Barber

Abstract— In household settings, Learning from Demonstra-
tion techniques can enable end-users to teach their robots new
skills. Furthermore, it may be necessary for the demonstrations
to be accessible through a straightforward setup, such as a
single visual sensor. This study presents a pipeline that uses
a single RGB-D sensor to demonstrate movements taking into
account all the key points of the human arm to control a non-
anthropomorphic arm. To perform this procedure, we present
the TAICHI algorithm (Tracking Algorithm for Imitation of
Complex Human Inputs). This method includes detecting key
points on the human arm and mapping them to the robot,
applying Gaussian filtering to smooth movements and reduce
sensor noise, and utilizing an optimization algorithm to find
the nearest configuration to the human arm while avoiding
collisions with the environment or the robot itself. The novelty
of this method lies in its utilization of key points from the
human arm, specifically the end-effector and elbow, to derive a
similar configuration for a non-anthropomorphic arm. Through
tests encompassing various movements performed at different
speeds, we have validated the efficacy of our method and
confirmed its efficiency in replicating the desired outcomes on
the robot’s end-effector and joints.

I. INTRODUCTION

The use of mobile robotic manipulators in dynamic envi-
ronments, such as domestic scenarios, requires the capacity
to acquire new skills to adapt to the changes of the envi-
ronments in which the robot operates. Techniques such as
Learning from Demonstration (LfD) [1] present a feasible
alternative to traditional programming, allowing end-users to
program the robot without the need of an expert and adapting
it to their environment. One of the most important factors
in this type of method is the generation of demonstrations.
To carry out this process, a large number of techniques
are available, which can be divided into two groups: direct
demonstrations and indirect demonstrations [2].

Direct demonstrations encompass those techniques where
the data collection process requires the use of the robot.
Kinesthetic learning [3] is based on the physical interaction
between the teacher and the robot’s body, allowing a series
of data to be generated directly with the robot’s own sensors.
Another method within direct demonstrations is the use of
teleoperation [4]. The data collection process can be accom-
plished using various devices, such as joysticks, tactile sen-
sors, or wearable devices. These devices enable robot control
and data acquisition through the robot’s internal sensors, but
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Fig. 1.
from human demonstrator, (b) Pose generated by the method in MujoCo
simulation environment, (¢) Pose in the real ADAM robot.

Human demonstrations applying TAICHI algorithm. (a) Pose

without the need for direct physical contact. Indirect demon-
strations [5] encompass those techniques where no contact
with the robot is required and the data collection process can
be performed in a separate environment to that of the robot.
These approaches are highly recommended for teaching
high Degrees of Freedom (DoF) or non-anthropomorphic
robots [1]. Within indirect demonstrations, and focusing
on manipulation tasks, a highly used approach consists of
learning how to replicate human movements. For accurate
tracking of people, research centres often make use of motion
capture systems (MoCap), formed by several cameras or
vision systems [6]. These systems have clear disadvantages,
such as the use of large spaces to mount the camera system
or the need of using body markers as references. This
prevents their direct application in real environments such
as home scenarios. In this kind of setting, the use of simple
visual sensors such as cameras presents a very convenient
alternative, allowing for comfortable working.

By employing these sensors, it becomes possible to extract
essential characteristics of the human body, which will then
be utilized in the imitation process. Once the human move-
ment is observed, it must be translated into suitable robot
motion. However, in the context of non-anthropomorphic
robotic arms, this transfer process is not straightforward.
Typically, what can be demonstrated through human move-
ments is solely the desired trajectory of the end-effector (EE).
These data allow to transform EE motion to joint motions
using Inverse Kinematics (IK) for the specific arm model.
This method is not only used for LfD but is also commonly
used for teleoperation of robotic arms [7]. Relying just on the
end-effector as a tracking system for a non-anthropomorphic
arm poses the risk of collisions with the environment since
the remaining arm joints are not directly controlled. This is
particularly hazardous in redundant arms, where multiple IK
solutions are possible. Moreover, if the recorded trajectory
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contains noise, it adversely affects the robot motion in terms
of tracking accuracy and smoothness.

In this paper, we propose a pipeline for generating motion
demonstration data, considering not only the end-effector
(EE) of the human arm but also identifying the most suitable
elbow configuration for a mobile robot equipped with non-
anthropomorphic arms. To achieve this, our approach focuses
on observing human movements using a single RGB-D sen-
sor, which captures the position of key points on the human
arm (see Fig. 1). We employ a Gaussian filtering method to
reduce noise in the collected data, followed by an algorithm
that utilizes a cost function to optimize the configurations
of the robotic arm. To evaluate the effectiveness of our
method, we conduct various types of movements and assess
the goodness of fit in the relation to the recorded data, as well
as the performance of the robot’s motion on the end-effector.
Our contributions are summarized as follows:

o Detection of relevant points of the human arm (wrist
and elbow) using a single RGB-D camera and gener-
ation of an algorithm that optimises the position and
orientation of a non-anthropomorphic arm to match the
most human-like structure.

o Use of Gaussian filtering to smooth the collected human
movements, considering demonstrations of different
shapes and speeds.

o Implementation of the demonstration pipeline appli-
cable in both MATLAB and Python, which includes
human tracking, smoothing the obtained data and gen-
erating the robot trajectories and movements both in
Matlab and MujoCo based simulators.

o Carrying out simulated and real tests on the ADAM
mobile manipulator robot (see Figure 1c).

II. RELATED WORK

The process of tracking a person using depth sensors is
widely used to capture natural human-related movements.
One of the most common approaches to perform this process
relies on solely tracking the hand palm. This procedure is ap-
plicable to both teleoperation and imitation. In teleoperation
[8], a comparison is presented between human hand tracking
systems based on data gloves and systems based on the use of
optical hand tracking sensors like Leap Motion. In imitation
[9], a 3D tracking of the human palm based on Fuzzy fusion
is applied to estimate the configuration of the rest of the
human arm. Another method based on palm tracking is
presented in [10], where a vision-based data acquisition of
the KUKA IIWA is presented by applying MediaPipe for
hand coordinates extraction to obtain the orientation.

The use of RGB-D sensors for full-body tracking is
also very common to be applied for this purpose. In [11],
an ASUS Xtion PRO and OpenPose are used for body
estimation, enabling movement control for bimanipulation
tasks in the CENTAURO robot. Other approximations are
presented in [12], where a motion capture system and data
post-processing are used for characterization of a full upper
limb robot. A similar idea is presented in [13], where using a
Kinect camera and a skeletonization process of the human are
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used to teleoperate a low-cost arm. Regardless of whether the
whole body tracking is used or not, all of the aforementioned
methods are applied directly to non-redundant anthropomor-
phic manipulators. Consequently, tracking specific critical
points of the human arm, such as the elbow, is not essential as
anthropomorphic arms exhibit similar behavior to the human
arm. Thus, by appropriately processing the end-effector data
alone, satisfactory results can be achieved.

Only few works have been presented regarding the ap-
plication of human data acquisition through sensors such as
cameras directly to non-anthropomorphic manipulators. In
the work presented in [14], the authors propose an initial
solution to address this problem. They utilize an RGB-D
camera along with OpenPose for motion capture, enabling
end-effector processing for data acquisition. This data is
then employed to control a UR3 arm by employing an
analytic inverse kinematics (AIK) process. Other works such
as [15] present a similar idea using BodyPoseNet for body
feature extraction for dual parallel manipulation, taking into
account the position of the opposite arm. Additionally, the
works discussed in [16], [17] also employ an RGB-D system
for data acquisition in the context of an UR3 arm. These
studies focus on applying filtering techniques to refine the
raw data obtained from the camera. By employing these
filtering methods, they successfully generate smoother and
more human-like movements in the robotic arm. However,
none of these methods consider other key points of the
human arm to determine the most appropriate human-like
robotic configuration. Instead, they often rely on default
configurations. Additionally, these methods do not take into
account the layout of the surrounding environment or poten-
tial collisions with it, as the discussed robotic arms are not
mounted on a real mobile robot.

In contrast to the aforementioned methods, our proposed
approach involves extracting key points from the entire hu-
man arm to control a non-anthropomorphic robotic arm using
a single RGB-D camera. Furthermore, we employ Gaussian
filtering techniques to enhance the smoothness and accuracy
of the collected human-like data. To achieve configurations
that closely resemble the human arm, we combine an analytic
inverse kinematics (AIK) method with an optimization pro-
cess for the elbow position. This integrated approach takes
into consideration both the robot’s singularities and potential
collisions with environmental elements, resulting in more
realistic and safe arm configurations.

III. METHOD

The subsequent section introduces our approach, referred
to as TAICHI (Tracking Algorithm for Imitation of Com-
plex Human Inputs). This method is specially developed
for indoor environments, such as residential houses, where
deploying an extensive human tracking system to generate
a training dataset for Learning from Demonstration (LfD)
systems applied to non-anthropomorphic robotic arms may
not be feasible. The general scheme of this algorithm is
shown in Fig 2. The algorithm is divided into four main
stages. The first stage involves extracting essential key points
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Fig. 2. General scheme of the TAICHI algorithm. The pipeline is made
up of four different stages: human position tracking (green), filtering of the
camera data (blue), optimisation of the arm configurations (purple) and the
simulation or sending to the real ADAM robot (red).
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of the human arm while performing a trajectory, specifically
the shoulder, elbow, and wrist positions, as well as several
key points of the hand. To accomplish this, we have de-
veloped a system that utilizes a RealSense D435i RGB-D
camera. By leveraging Mediapipe [18], [19], we can extract
the 2D positions of these significant landmarks of the human
arm, along with their corresponding depth information. This
allows us to accurately determine the 3D location of these
points relative to the user’s shoulder.

Once the data is obtained, it is necessary to filter out
intrinsic noise from the camera and smooth the captured
human movements. For this purpose, we have implemented
a Gaussian filter [20], which acts on the computed position
and orientation of the human elbow and wrist. The filtered
data is then passed to the optimization algorithm, which
aims to determine the most human-like position for each
configuration of the human arm. This algorithm takes into
account both the joint limits of the arm and the physical
constraints of the robot’s body to avoid collisions.

After obtaining the arm configurations, the algorithm
enables the representation of the results in both the simulators
implemented in Matlab and in MuJoCo [21]. Furthermore,
these configurations can be directly transferred to the ADAM
robot [22], which serves as the platform for the application
of this work. The algorithm has been designed in such a
way that anyone can easily modify the code in order to be
applied to other non-anthropomorphic manipulator models
and has been implemented in both Python and Matlab and is
available in https://github.com/AdrianPrados/
TAICHI. Each of the stages are explained in detail below.

A. Human tracking and data extraction

To acquire human data through demonstrations, it is
crucial to capture users’ movements. For this purpose, the
information obtained from the RGB-D camera undergoes
processing using MediaPipe, an open-source framework that
facilitates 2D person detection and extraction of key points
to analyze their movements. Determining depth information
is also essential to obtain 3D positional and orientation data,
and this is accomplished by utilizing the point cloud provided
by the sensor. Once this information is obtained, it becomes
necessary to shift the reference frame from the camera to
that of the robotic arm base. This process involves breaking
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down human tracking into three stages: 2D pose estimation,
3D correspondence, and reference frame transformation.
The first stage consists on detecting people and estimating
their pose in the 2D plane corresponding to the RGB image.
MediaPipe estimates the user’s pose via 33 markers. These
markers are then analyzed in conjunction with the depth
information to extract the estimated pose of each marker.
In this particular case, we are interested in extracting the
poses of the left arm. Therefore, we focus on and save three
markers: the shoulder, elbow, and wrist, along with a fourth
marker (right shoulder) for reference. The shoulder points
are used to estimate the central point of the person and to
correct the orientation of the human body, ensuring that the
body is always facing the camera. In this research, the robot
is thought to employ a gripper to manipulate objects. Conse-
quently, the orientation of the end-effector is determined by
the hand plane formed by three additional specific marker
points: wrist point W, index finger methacarpophalangeal
(mep) I and pinky finger mcp P of the left hand, as shown
in Fig. 3a. These points allow us to generate two vectors,

(Xp, Yp, Zp) Q

Fig. 3. (@) Palm plane for end-effector orientation extraction re-
ferred to image frame, where the blue point represents N, (b) camera
frame (Xc,Ye, Zc), image frame (X4,Y4,Zi) and robot arm frame
(X7, Yr, Zr). The line joining the camera origin and the pixel (u, v) is de-
fined by rs2DeprojectPixelToPoint, that obtains the 3D point (Xp, Y'p, Zp)
for each of the keypoints (red points).

WI =1—-W and WP = P — W that can be used to
obtain the normal vector (blue point in Fig. 3a) using the
cross product and normalising its value as follows:
N=WIxWP, N = (1)
The second objective involves converting each 2D point of
the human arm, measured in pixels, into a 3D point in
meters based on the camera reference frame. To achieve
this, the pinhole camera model is utilized in conjunction
with point cloud data to convert from pixel-based to spatial
information. The function rs2DeprojectPixelToPoint from the
Python wrapper PyRealsense2 is employed to accomplish
this task. This function is responsible for generating a 3D
vector that represents the ray passing through the (u,v) pixel
coordinates. The outcome of this process is the intended
3D point in relation to the camera reference frame. Fig.
3b illustrates a schematic explanation of this method. The
proper alignment of data from both the RGB image and the
point cloud enables this task to be carried out. The final

==
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task involves transforming the 3D points from the camera
reference frame to that of the robot arm base, which aligns
with the reference frame of the human shoulder. These are
represented in Fig. 3b. Furthermore, a re-scaling process is
essential to establish a correspondence between the robot arm
and the human arm. This involves generating a correction
factor based on the user’s arm length, which allows mapping
the positions of the wrist and elbow to ensure that the
maximum range of the human arm matches the maximum
range of the robotic arm.

Fig. 4. Different hand poses captured through MediaPipe. (a) Hand fully
open, (b) Fist, (¢) Hand partially occluded, (d) Tilted hand.

It is worth noting that methods relying on RGB-D sensors
for human tracking can be sensitive to occlusions, which
may obstruct relevant body parts. In this study, if the captured
data deviates significantly from the expected data considering
the user’s arm length and the intended trajectory, occlusions
are likely responsible for information loss. In such cases,
the positions of the wrist and elbow are estimated using a
similar re-scaling projection process. Regarding the detection
of human hand landmarks, it is worth mentioning that the
MediaPipe framework offers a robust method for capturing
the 3D positions of these key points. As depicted in Fig.4,
even in challenging scenarios such as when the hand is in
a fist position, partially occluded, or tilted, the algorithm
is capable of accurately estimating the feature points. This
capability allows us to compute the hand orientation, as pre-
viously discussed. However, it is important to monitor these
situations closely, as they can indeed potentially degrade the
quality of the captured data, especially when abrupt changes
in human positions are recorded.

B. Gaussian Smoothing

Pre-processing and filtering data generated by demonstra-
tions before being used for trajectory generation allows for
noise smoothing of the acquired data. This filtering allows
not only to improve the data by eliminating possible sources
of error or noisy data, but is also beneficial when mapping
to the robot arm. This is because continuous and even paths
generate smoother responses on the robotic arms, which
avoid over-oscillations when establishing the response to the
human input data. In this work, a Gaussian filter has been
applied for signal processing. This filter is a convolution
operator that is used to remove noise from a signal. In this
sense it is similar to the mean filter, but it uses a different
kernel which stands for the shape of a Gaussian hump. These
filters are characterized by narrow bandwidths, sharp cutoffs,
and low overshoots. The main advantages against other
methods such as Kalman Filters or Low pass filters are its
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simplicity, straightforward implementation and the absence
of a complex, dynamic model. Focused on data acquisition
using RGB-D cameras, Gaussian filters are a preferable
option due to their ability to remove high frequency noise
without negatively affecting low frequency components and
preserve important data details. The Gaussian filter is based
on the following Gaussian function:

1 —(z=m)?
e 202
oV2T

where —oo < x < 400, o represents the standard deviation
and p represents the mean. The filter is applied by the func-
tion gaussianFilter(input, o) to both the elbow and wrist
position and orientation values, for each of its components.
The application of this filter for the EE position is depicted
in Fig. 5. Empirically it has been observed that the best o
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Fig. 5. Components for EE with respect to the human shoulder. The

Gaussian filter (orange lines) smooths the values taken by the camera (blue
lines) eliminating the peaks derived from sensor noise.

values for our application are in the range o = [0.5, 1.3]. For
values lower than 0.5 the filter does not generate any filtering,
and for values higher than 1.3 the filter starts to eliminate
important information, especially for the wrist orientation.
For our experiments, a constant value of o = 1 has been set.

C. Posture optimization

Once the filtered position and orientation data for the
human arm are available, it is time to obtain the most human-
like configurations for the non-anthropomorphic arm from
these captured data. For this process, we have followed the
concepts and methodologies presented in [23], adapting and
applying them specifically to a non-anthropomorphic model
like the UR3 arm. The applied human-robot mapping method
pursues the minimisation of the distance between the elbow
of the human arm and the rest of the joints of the robotic arm,
except for the shoulder and the end-effector. A simplified
schematic of this method can be seen in Fig. 6.

This method makes use of a combination of both an ana-
lytical inverse kinematics (AIK) of the non-anthropomorphic
arm to obtain the 8 possible solutions and an optimization
model based on direct kinematics to obtain the distances for
each of the generated configurations. The AIK allows the al-
gorithm to be able to solve the configurations in a very short
time and minimise the EE error in position and orientation.
The use of the cost function based on the distances to the
human elbow allows estimating the most human-like position
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Fig. 6. The method is based on the minimization of the discontinuous
lines between human elbow and the rest of the joints (red points) of the
robotic arm. Green arm represents the UR3 arm and blue arm represents
human arm. In both arms the Pgpoydier and the Piarget are the same.
that the arm can reach among the possible options. The cost
function in the first place depends on the positions of the
EE. Let Xi = fr(qr) denote the Forward Kinematics (FK)
mapping for a non-anthropomorphic robot with n Degrees
of Freedom (DOF), where qp € R"™ is the vector of the
desired joint angles, and let Xz € R3 denote the human
end-effector position. Hence, the metric for the EE position
goal is defined as:

drp(ar) = || Xr — Xul]? 3)

The orientation influence is given using the robot EE ori-
entation hp = (a,, b, ¢, d,) and the human orientation of
the EE hy = (an, by, ¢y, dp,), both expressed in quaternions.
The orientation divergence is then expressed using:

“4)

To prevent problems derived from arm singularities, the cost
function takes into account the antipodal points in S, so the
Equation 4 is finally defined as:

dro(hr,hg) = min(dgo(hr, hi),dro(hr, —hu))  (5)

In order to obtain the joint position distances, the metrics use
the human elbow position as a reference. Let Sy,,,,, € R?
be the position of the human elbow in 3D space, and S;, j =
1, ...,n be the position of each robot joint in 3D space for an
specific configuration obtained by AIK. The distance metric
(excluding the shoulder and the EE) is given by:

dro(hr, hi) = arccos(a,ap, byby, crcp, dypdy)

n
D:ZHSHElbow _Sj”2 (6)
j=1

Finally, a continuity error Errorys; is added to the cost
function. This factor enables continuity to prevent abrupt
variations in the robot wrist orientation. Hence, the cost will
be lower when the configuration of the previous state and
the next state are as similar as possible. By combining all
the previously explained equations, the final cost function is
expressed as:

Fry :min(Wp*dRp(qR)+WO*dRO(hR,hH) 7
+Wy D+ Errory:)

where W,,, W, and W are weights for position, orientation
and humanity respectively that adjust the relative importance
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of each factor. Before deriving the cost function for each
arm configuration, the algorithm initially assesses two crucial
factors. Firstly, it determines if the resulting configuration
leads to any collisions with the robot’s body or surrounding
environment. Secondly, it verifies whether the configuration
remains within the arm limits, which are unique to each
model and assembly of the robot. If either of these two
constraints occur, the resulting configuration will be directly
ruled out from the possible solutions. In addition to the
latter, it is important to note that by making the robotic arm
follow natural human arm configurations, potential singular
configurations are inherently discarded.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy of the developed
TAICHI method applied to our ADAM robot. To conduct the
evaluation, muliple users recorded a series of movements in
real-time in front of the camera. The algorithm was then
executed and the human-likeness of the generated robotic
movements, the accuracy of the end effector tracking capa-
bilities and the smoothness of the generated trajectories are
analysed. A video with different examples of the experiments
is available in https://youtu.be/rSynggXa_Yc.

Pose 1 Pose 2 Pose 3 Pose 4
% - —

Human Pose

Simulation

ADAM

Fig. 7. Examples of how the robot follows human left arm poses.

A. Human-likeness Analysis of Posture

To demonstrate the performance of our method, we con-
ducted various tests aimed at achieving robotic configurations
that closely resemble human arm positions. The objective
was to leverage the RealSense D435i camera to enable the
robot to imitate the user’s arm configurations as accurately
as possible. Fig.7 illustrates the results of several qualitative
tests, demonstrating the effectiveness of the method outlined
in Section III in imitating human arm configurations despite
the robot’s different structure. It can be observed that the
developed method enables the generation of positions where
the robot arm configuration is as similar as possible to that of
the human arm. It is important to acknowledge that achieving
an exact match in configuration between both arms is highly
challenging due to their structural disparities. Consequently,
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it is qualitatively evident that the algorithm takes into account
the unique arm structure while pursuing the desired EE goal
position and orientation.

B. Accuracy Analysis of End-effector

To evaluate the accuracy of the method in terms of end-
effector tracking, various trajectories with different starting
points, end points, and velocities were executed. Fig. 8
illustrates an example case where the three-dimensional
solution paths for both the human arm and the robotic arm
are compared. As shown, the two paths are highly similar.
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Fig. 8. Generated human (blue) and robot (green) end-effectors trajectories.

There exists a specific region where slight perturbations are
present in the human path. These disturbances are caused by
inherent physical constraints of the human arm, such as joint
limits. The algorithm has the capability to detect and correct
these perturbations, ensuring smooth robot movements while
maintaining the overall consistency with the human trajec-
tory. Overall, the three-dimensional end-effector trajectories
demonstrate a qualitative and accurate tracking of the human
data. If a quantitative comparison is made, and the previously
shown path is decomposed into its positional and orientation
components (see Fig. 10), it is observed that the error in both
cases is almost negligible.

The method demonstrates a high degree of positional
accuracy, closely matching the human path. The noticeable
errors primarily occur at specific points where the algorithm
optimizes and filters the errors originating from human data
collection. One such example is at index 40 in the Y
position. Examining the orientation errors reveals a similar
pattern, with the two orientations being nearly identical. The
maximum outlier value for orientation error is 0.114 radians.

To assess the algorithm’s effectiveness, various tests were
conducted involving individuals of different heights, genders,
and physical builds. These tests involved performing similar
movements at different speeds. The accuracy results obtained
from these tests are summarized in Table I.

TABLE I
POSITION AND ORIENTATION ERRORS

Max Outlier Error Mean Error

x (m) y (m) z (m) O (rad) x (m) y (m) z (m) O (rad)
Test 1 | 0.0230 | 0.0310 | 0.0241 | 0.1530 | 0.0014 | 0.0018 | 0.0014 | 0.0097
Test 2 | 0.0233 | 0.0311 | 0.0207 | 0.1147 0.0024 | 0.0022 | 0.0017 | 0.0084
Test 3 | 0.0294 | 0.0177 | 0.0156 | 0.0551 0.0050 | 0.0028 | 0.0027 | 0.0062
Test 4 | 0.0330 | 0.0401 | 0.0274 | 0.2011 0.0100 | 0.0052 | 0.0610 | 0.0146
Test 5 | 0.0350 | 0.0300 | 0.0170 | 0.1316 | 0.0036 | 0.0031 | 0.0030 | 0.0175
Test 6 | 0.0260 | 0.0160 | 0.0190 | 0.1543 0.0019 | 0.0021 | 0.0032 | 0.0187
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Based on the results presented in Table I, it can be
concluded that the TAICHI algorithm effectively tracks the
human hand through the robot end-effector (EE) with high
accuracy. The algorithm achieves a mean positional error of
less than 1 cm and a mean rotational error of less than 0.02
radians. The maximum error values observed are localized
to specific points along the path where human joint limits or
captured data noise are encountered. However, the algorithm
successfully detects and corrects these errors, ensuring a
smooth trajectory for the robot. As a result, the positional
and orientation errors are consistently maintained below 4
cm and 0.2 radians, respectively.

TABLE I
JERK VALUES FOR HUMAN AND ROBOT MOTIONS

Human Jerk Values | Robot Jerk Values

Elbow Wrist Elbow Wrist
Test 1 | 6.3708 10.4192 6.5617 10.6246
Test 2 | 4.6500 8.3615 4.7801 8.3400
Test 3 | 3.7849 5.8892 3.9124 6.0059
Test 4 | 3.1862 5.2660 3.2540 5.2305
Test 5 | 3.0215 7.2156 3.1247 7.4561
Test 6 | 3.5489 6.3384 3.7321 6.5101

In addition, a study of the jerk value for the different
trajectories has been carried out. Jerk is estimated as the
time derivative of acceleration, and it is an important factor
in both suppressing vibration and achieving high accuracy in
path generation. In our case study, the jerk values represent
the minimum variation in acceleration changes between the
human and robot arm movements. The more similar the two
results are, the more similar the trajectories of the robotic
arm will be and the more similar they can be assumed to be
to human trajectories. Table II presents the results of studies
for the critical points of the arm (wrist and elbow). The mean
value for the difference between the jerk values of the wrist is
0.1289 and 0.1337 for the elbow. Since the mean difference is
less than 0.15, it can be assumed that the TAICHI algorithm
generates movements similar to those of the human arm.

Joint 1 Joint 2

Joint position (rad)

100 120

Path Index

Fig. 9. Smoothness study of robotic arm configurations for Test 1.

C. Smoothness Analysis of Joint Configurations
Finally, we have conducted a quantitative analysis of the

smoothness and feasibility of the computed robotic config-
uration trajectories. This analysis involved examining the
continuity of the joint values across different test runs. Fig.
9 presents an example of these results for a specific use
case. It is evident that the generated trajectories exhibit a
continuous and smooth profile, with no significant changes
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Fig. 10. Accuracy evaluation of end-effector tracking for Test 2.

in the configurations or abrupt changes in sign, which would
indicate sudden changes in joint configurations. This guar-
antees that trajectories computed by the TAICHI algorithm
are achievable by a real robotic platform.

V. CONCLUSIONS
In this paper, we have presented the TAICHI system,
which comprises an RGB-D sensor, a human position cap-
turing process, an AIK framework, Gaussian filtering, and
a configuration optimizer. The effectiveness of the system
in data acquisition for non-anthropomorphic arms has been
demonstrated, as it successfully obtains human-like config-
urations while considering arm limitations and achieving
minimal end-effector tracking errors. Moreover, the TAICHI
system is user-friendly, efficient, and adaptable to various
environments, making it suitable for LfD data collection.
For future work, we intend to enhance the tracking system
to support bimanipulation tasks. Additionally, we plan to
incorporate a tracking system for both hands simultaneously,
enabling the collection of grasping data.
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Abstract—Autonomous industrial mobile robots need advanced
perception capabilities to operate safely and human-compliantly
in shared working environments. To achieve a high-level un-
derstanding of the mobile robots’ surroundings, this paper
investigates Multi-Task Learning approaches to process multiple
tasks simultaneously and potentially improve the generalization
performance. Our work alleviates the scarcity of datasets that
are relevant for industrial settings by introducing and making
publicly available a simulated warehouse dataset (Warehous-
eSIM) covering semantic segmentation, depth estimation and
surface normals estimation tasks. We collect and examine nu-
merous MTL task-balancing techniques for industrial mobile
robot perception. Our experiments show that MTL methods
that have shown superior performance on different computer
vision datasets fail to improve over the single-task learning setup
in our scenario. This implies that the performance of those
approaches is very dependent on the considered dataset, which
further highlights the value of introducing new relevant datasets
focused on industrial mobile robot environments.

Index Terms—Multi-task learning (MTL), industrial mobile
robots, perception, warehouse dataset

I. INTRODUCTION

The usage of industrial mobile robots in production facilities
and warehouses has the potential to revolutionize the way
work is performed in these environments. This technology can
reduce costs and improve safety, ultimately replacing human
workers in hazardous or repetitive tasks. Additionally, mobile
robots can work around the clock, increasing productivity and
throughput. In order to achieve the desired effectiveness, it
is imperative that mobile robots exhibit both flexibility and
reliability within dynamic settings where they must seamlessly
integrate with human workers, lifters, and other autonomous
robotic systems, all of which contribute to the complex and
continuously changing nature of these environments. A rudi-
mentary level of environmental awareness has been attained
for industrial mobile robots, primarily by employing LiDAR
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Fig. 1: Typical Novo Nordisk warehouse facility with a custom
mobile manipulator (top left), and reference color image of the
simulated warehouse facility taken from the WarehouseSIM
dataset (bottom right)

technology. Nevertheless, these approaches tend to concentrate
on the identification of obstacles rather than a comprehensive
understanding of the objects present within the surrounding
context. Mobile robots equipped with cameras and machine
learning algorithms can potentially perform more complex
tasks, such as object detection, and enhance their interaction
capabilities. While there are still many challenges to over-
come, such as the need for robust and reliable sensing and
perception algorithms, the potential benefits of adapting these
technologies to industrial mobile robots are clear [1]. Figure
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1 (top left) depicts an industrial mobile robot equipped with
a retrofitted module with additional sensors (3D LiDAR and
LiDAR camera) and an edge computing unit which has been
used to test various perception algorithms in the Novo Nordisk
warehouse and production facilities.

The development in this area has been significantly hindered
by the lack of publicly available datasets specific to these
environments. This scarcity arises due to the closed nature
of these facilities, where strict regulations necessitate privacy,
proprietary information protection, and adherence to industry-
specific safety and security standards. As a result, limited
access to comprehensive data from warehouses and production
facilities, in combination with the cost of the labeling process,
highlights the need for alternative approaches. To advance
Al-based perception for mobile robots in these specialized
environments we generated a simulated warehouse dataset
called WarehouseSIM, an example image of which is depicted
in Fig. 1 (bottom right).

The primary objective of this study is to enable industrial
mobile robots with limited computational resources with the
capability to perform scene understanding through perception.
The majority of Al-based perception algorithms require a
single task to be optimized, e.g. image classification or depth
estimation, and are usually trained individually for the specific
task. However, human perception mechanisms have the ability
to transfer knowledge across tasks, which is one of the most
important indicators of advanced intelligence. This knowledge
transfer plays an important role in improving the accuracy
of information and allows complex reasoning. Similarly, in
machine learning, it is possible to deploy a single model
that can learn multiple tasks at once, i.e multi-task learning
architectures (MTL), with the goal of improving the gener-
alization performance by processing all tasks simultaneously.
Another distinct advantage of MTL architectures over single-
task learning architectures is that their shared computations
across tasks result in faster and more efficient information
processing during inference, which is rather significant for
mobile robots. We test common task-balancing techniques—
typically used in computer vision tasks—and highlight an
important limitation of these techniques in our newly intro-
duced dataset. Specifically, we found that previously used task-
balancing techniques failed to improve single-task learning
results, calling into question their effectiveness in new datasets.
Our findings underscore the importance of carefully selecting
and designing multi-task learning strategies and highlight the
potential benefits of adopting a more systematic approach to
this problem. By addressing this critical challenge, our work
has the potential to significantly enhance the automation and
efficiency of warehouse robotics.

The contribution of this work is threefold: (i) We make
public a simulated warehouse dataset, with color image, depth,
semantic and surface normals information. Furthermore, (ii)
we collect and examine numerous MTL task-balancing tech-
niques for industrial mobile robot perception. Finally, (iii) we
provide a benchmark of multiple baseline results, laying the
groundwork for future progress and development.
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II. RELATED WORK

Much of the progress in Al-based perception can be at-
tributed to the advancements made in the field of autonomous
vehicles and the broader domain of computer vision [2].
Although mobile robot perception has benefited from these
advancements, as it shares common underlying principles
and challenges, the necessity for domain-specific development
with focused datasets and models with real-time processing
capabilities is paramount. Late development in mobile robot
perception has pushed the boundaries of the field, moving
from basic navigation and obstacle avoidance to higher-level
scene understanding [3]-[6]. Graf et al. brought attention to
the gap between narrow perception tasks, such as 2D object
detection and 2D segmentation, that are typically solved in
isolation, versus developments in holistic scene perception
algorithms, which require tasks to be solved together [7].
Due to the intricate nature of the MTL problem, several
research findings indicate that definitive assumptions cannot
be made when designing a multi-task setting [8]-[11]. The
primary factor behind this is that when simultaneously training
on a shared set of features, the system often struggles to
strike a balance between competing optimization objectives.
The effectiveness of different approaches can vary based on
four key dimensions: the specific tasks involved, the model
architectures employed, the available data, and the perfor-
mance metrics considered. Regarding the tasks involved, some
works have focused on identifying task relationships and if
they should be trained together. In their study cited as [12],
Zamir et al. aimed at creating a computational model that
can effectively identify task relationships that are conducive to
transfer learning scenarios. In another work from some of the
same authors, a computational framework for differentiating
which tasks should be trained together and which individually
is presented [13]. Similarly, Finn et al. proposed an inter-task
affinity metric to measure task relationships [14]. Although
considerable effort has been devoted to researching how task
relationships affect the performance of each other, this remains
a complex problem that has not been solved. In the work of
Stadley et al., training an MTL network with surface normals
improved all other tasks, hurting, however, the performance of
surface normal estimation itself [13]. In [15] focusing on cross-
task consistency, Zamir et al. also showed that information
on surface normals helped improve the performance of other
tasks. Several studies have examined how the architecture
of the learning algorithm impacts the magnitude of poten-
tial improvement. In [16], a detailed comparison between
a standard multi-head split for each task and a multi-task
attention network (MTAN) [17] architectures shows that the
same weighting strategies affect each architecture differently.
A collection of architectures specifically designed for MTL
can be found in [18]. Vandenhende et al. provide a quantitative
analysis of different MTL architectures applied on NYUD-
v2 [19] and PASCAL [20] datasets [9]. Over the past few
years, attention has shifted toward developing effective task-
balancing techniques. These techniques aim to distribute the
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workload evenly across multiple tasks in a MTL scenario,
where a machine learning model is trained to perform multiple
tasks simultaneously. Vandenhende et al. [9] have categorized
task-balancing methods into two categories: indirect and direct
methods. Indirect methods, which are predominantly weight-
based methods, adjust the weight of individual task losses
relative to the total loss [17], [21]-[23]. Direct methods operate
on the shared task gradients to balance the learning process
among multiple tasks [24]-[28]. Recent work has shown that
task-balancing techniques that have previously dominated a
specific field, e.g. with a certain model architecture and a
specific dataset, fail to generalize in other architectures or
tasks, often resulting in worse results [29].

III. INDUSTRIAL MOBILE ROBOT DATASET

To support the optimization of multi-task learning (MTL)
architectures for industrial mobile robots, we have taken
the initiative to generate a comprehensive dataset specifi-
cally designed for this purpose. WarehouseSIM is a dataset
made using the Isaac Sim platform which is built based
on NVIDIA Omniverse. We utilized different randomization
components to create 3 different warehouse scenes. For each
scene, the lighting, transformations (object position, scale,
orientation) and textures where randomized. We incorporated
several mobile robots (MIR100) equipped with a robotic arm
(URS), mirroring the physical robots utilized in our testing
facilities. We used these mobile robots to collect data as they
navigated in the environments by fixing a virtual camera to
their body. Once each scene was generated, we used the
synthetic data recorder tool to record data from all sensors. We
collected 2125 images with corresponding depth maps, seman-
tic segmentation, instance segmentation, 2D tight bounding
box and 2D loose bounding box. Due to the unavailability
of generating synthetic surface normals using the Isaac Sim
platform, we used the work of Boulch and Marlet [30] to
generate the surface normals from the synthetic depth maps.
By employing a technique based on local surface fitting, their
approach demonstrates strong performance when applied to
depth maps containing well-defined features. The histogram
representing pixel occurrences of the different objects existing
in the WarehouseSIM dataset are visualized in Fig. 3. The
mapping between class names and label numbers is presented
in Table 1. Fig. 2 visualizes the distribution of depth values in
the scene, where each pixel is counted and categorized into
1-meter ranges. From the 2125 images of the full dataset,
we use 1456 images for training, 206 for testing and 463
for validation. The dataset is accessible online and can be
downloaded from the project repository by following the
provided link: https://github.com/DTU-PAS/WarehouseSIM.

IV. EXPERIMENTAL SETUP

A. Tasks

In this research, we focus on the dense prediction tasks:
semantic segmentation, depth estimation and surface nor-
mals estimation, which all require pixel-level predictions on
corresponding RGB images. Semantic segmentation requires
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an image to be divided into different subgroups (segments)
that describe different classes. Using a simulated warehouse
environment as an example (see Fig. 4a), a label should be
assigned to each pixel in the image, resulting in floor, human,
mobile robot, racks, and other segments, as seen in Fig. 4b.
Depth estimation is the task of assigning a depth value to each
pixel of an image. The result is a depth map that contains
information about the distance of the depicted objects, as
seen in Fig. 4c). Finally, surface normals describe vectors
perpendicular to the plane at a given 3D point. Surface normal
estimation is the task of assigning a vector for every pixel of
the image (see Fig. 4d).

B. Architecture

Following previous practices [16], [23], we use the im-
proved version of DeepLabv3 [31] with a ResNet-18 shared
encoder with dilated convolutions, and task-specific heads for
each task designed using the Atrous Spatial pyramid Pooling
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TABLE I: Corresponding classes of the WarehouseSIM dataset

[ Number | Name [[[ Number | Name ]
0 Humans 9 Imported mobile robots
1 Purple Boxes 10 Pallets
2 Structural columns 11 Floor markings
3 Shelves 12 Shelf section signs
4 Walls 13 Floor
5 Trolleys 14 Plastic containers
6 Signs 15 Wall cabling
7 Cardboards 16 Electrical enclosures
8 Electrical plugs 17 Fire extinguishers

(a) Reference color image (b) Semantic labels

-
il |
il

(c) Normalized depth map (d) Surface normals data

Fig. 4: WarehouseSIM dataset color image with
corresponding depth, semantic and surface normals data

(ASPP) module [32]. In light of the recent advancements in
hardware within the realm of robotics and edge computing,
models with increased size and complexity will exhibit the
capability to be applied in mobile robotic contexts. Therefore,
we also tested with ResNet-34 and Resnet-50 encoders but
found that the resulting improvement in performance was only
marginal, and came at the expense of a significant increase
in training time. Considering the significant number of tested
strategies and combinations, we ultimately opted to use solely
the ResNet-18 encoder for our experiments.

C. Training environment and Parameters

We use a NVIDIA Tesla V100 16 GB GPU, train for 200
epochs with Adam optimizer, a learning rate of 0.0001 and a
standard step scheduler reducing the learning rate every 100
steps with a gamma of 0.5. To reduce the computational load
we reduce the size of the images from their original resolution
to 240 x 420 pixels.

D. Metrics

For a multi-task learning scenario involving semantic seg-
mentation, depth estimation, and surface normal estimation,
different metrics can be used to evaluate the model’s per-
formance on each of these tasks. For semantic segmentation,
two commonly used metrics are mean Intersection over Union
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(mIoU) and pixel accuracy (pA). These metrics help to eval-
uate the accuracy of the model in segmenting objects and
identifying their boundaries. For depth estimation, common
metrics are absolute error (aE) and relative error (tE). Finally,
for surface normal estimation, the mean angle error (mE) and
percentage of points with an angle error less than 12.5, 22.5,
and 30 degrees (<12.5, <22.5, <30 respectively) are used.
Due to the multiple task and metrics per task we use the
A metric [16] that combines one metric from each task
to assess the overall performance of the multi-task learning
model. A7 compares the depth aE, segmentation mIoU and
surface normals mE errors against the corresponding values
of the single trained networks, and produces a single metric
defining the percentage of improvement. Negative values of
A prr describe a network that is performing worse than the
single trained networks.

E. Task Balancing

The need for task-balancing techniques arose due to the
varying complexity and data availability of different tasks. If
one task dominates the learning process, the model may not
be able to learn the other tasks effectively, leading to sub-
optimal performance. Therefore, task-balancing techniques
have become crucial to achieving optimal performance in MTL
scenarios. We test common loss-based weighting techniques,
adding individual losses with equal weight (EW), dynamic
weight averaging (DWA), uncertainty weighting (UW), geo-
metric loss strategy (GLS) and random loss weighting (RLW).
Additionally, we test gradient normalization (GradNorm),
gradient surgery (PCGrad), conflict-averse gradient descent
(CAGrad), gradient sign dropout (GradDrop) and gradient
vaccine (GradVac) for gradient-based task balancing.

V. EXPERIMENTAL EVALUATION
A. Single-task training results

We first trained three networks, each as a single-task
learning process, focusing at the shared encoder and solely
one branch at a time, consequently optimizing for each in-
dividual task. Table II displays the three single-task learning
results, namely DeepLabv3-SingleS, DeepLabv3-SingleD and
DeepLabv3-SingleN, for semantic segmentation, depth estima-
tion and surface normal estimation respectively. The results of
the single-task learning networks are used as baselines against
which we evaluate the MTL strategies.

B. Multi-task task-weighting balancing results

With the aim of evaluating commonly employed methods,
we initiated the MTL experimentation phase by weighting
the losses of the individual tasks and subsequently the total
loss of each experiment, with results reported in Table III.
We tested the effectiveness of the learning process by training
across all three tasks with an equal weighting strategy for each
task-specific term of the loss (DeepLabv3-EW). The results
of EW indicate that handling the task-specific losses equally
does not enhance performance on individual tasks and leads
to a decrease of 5.38% as determined by the corresponding
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TABLE II: Baseline results for single-task trained network

Single-task

Method Semantic Segmentation | Depth Estimation Surface Normal Estimation
mloU?T pAT aBE| rEl mE| <1251 <2257 <307
DeepLabv3-SingleS | 0.7936 0.9799 - - - - - -
DeepLabv3-SingleD - - 0.2449  0.0404 - - - -
DeepLabv3-SingleN - - - - 5.289  0.8647 09187  0.9389

TABLE III: Comparison of task-weighting balancing methods on the WarehouseSIM dataset

Multi-task
Method Semantic Segmentation | Depth Estimation Surface Normal Estimation Total
mloU? pAT aB| rE| mE| <1251 <2257 <301 | Ayt
DeepLabv3-EW 0.7812 0.9792 0.2463  0.0398 | 5.461  0.8609 09164  0.9372 -5.38
DeepLabv3-DWA | 0.7791 0.9792 0.2455  0.0390 | 5461  0.8615 09162  0.9368 -5.34
DeepLabv3-GLS 0.7862 0.9798 0.2578  0.0425 | 5.354  0.8639 0.9177  0.9378 -7.42
DeepLabv3-RLW | 0.7783 0.9792 0.2487  0.0406 | 5.508  0.8603 09159  0.9368 -7.61
DeepLabv3-UW 0.7884 0.9796 0.2467 0.0411 | 5378  0.8634 09173  0.9376 -3.05

TABLE IV: Comparison of gradient-based balancing methods on the WarehouseSIM dataset

Multi-task
Method Semantic Segmentation | Depth Estimation Surface Normal Estimation Total
mloUt pAT aE]l rEl mE| <1257 <2251 <301 | Amrit
DeepLabv3-EW-GradNorm | 0.7866 0.9792 0.2568  0.0447 | 5319  0.8642 09180  0.9382 -6.31
DeepLabv3-EW-CAGrad 0.7777 0.9786 0.2535  0.0435 | 5.301  0.8650 0.9188  0.9387 -5.73
DeepLabv3-EW-GradDrop | 0.7810 0.9792 0.2437  0.0404 | 5526  0.8606 0.9159  0.9366 -5.58
DeepLabv3-EW-GradVac 0.7804 0.9792 0.2468  0.0396 | 5.455 0.8619 09164  0.9368 -5.58
DeepLabv3-EW-PCGrad 0.7782 0.9792 0.2463  0.0402 | 5418  0.8632 09171  0.9374 -4.95

Ay metric. Dynamic weight averaging (DeepLabv3-DWA)
gives very similar results with a best Ay, of -5.34%. DWA
requires a temperature parameter (T) to be defined, which
controls the elasticity of weighting. The recommended value
of temperature (T) in previous works is 2 [17], [18]. In our
case, for T=2, we experienced low elasticity in task-weighting,
as the three individual weighting values were confined to a
narrow range of 10% throughout the training. In practice,
due to the low elasticity, the DWA setting performed almost
identically to the EW strategy, across all training epochs.
We experimented with reducing the temperature parameter to
increase the elasticity, and subsequently the allowed scaling
of weights but got worse results. Geometric loss strategy
(DeepLabv3-GLS) and random loss weighting (DeepLabv3-
RLW) produced analogous results, worse than the aforemen-
tioned strategies (Apsrp of -7.42% and Aprp of -7.61%
respectively). Uncertainty weighting (DeepLabv3-UW) did
enhance the performance significantly resulting in a Ay,
of -3.05%, yet not managing to take advantage of the added
information of all tasks to produce a positive Ay .

C. Multi-task gradient-based balancing results

Next, we assess the effectiveness of gradient-based bal-
ancing methods and document the results obtained when
employing these techniques on tasks that are weighted equally.
Gradient normalization (DeepLabv3-EW-GradNorm) performs
worse than the equal weighting baseline (DeepLabv3-EW)—
Ay of -6.31% opposed to Apypp of -5.38%—showing
that normalizing the gradients on all tasks is not an effective
strategy for our scenario. Similar results can be seen for
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conflict-averse gradient descent (DeepLabv3-EW-CAGrad),
gradient sign dropout (DeepLabv3-EW-GradDrop) and gra-
dient vaccine (DeepLabv3-EW-GradVac) with Apspp of -
5.73%, -5.58% and -5.58% respectively. CAGrad focuses on
minimizing conflicts by updating gradients from only one
task that has minimal interference with the others, GradDrop
encourages diverse gradient directions through sparsity by
randomly dropping the sign information of a portion of
gradients, and GradVac injects task-specific gradient noise to
promote positive transfer. The only gradient-based balancing
technique that improves upon the equal weighting baseline
is gradient surgery (DeepLabv3-EW-PCGrad)—A ry of -
4.95% opposed to A, of -5.38%—showing that projecting
conflicting gradients to a mutually beneficial subspace does
indeed benefit the learning process in our scenario. Although
it is feasible to combine gradient-based balancing techniques
with task-weighting balancing techniques, our experimental
results did not demonstrate any notable enhancements across
the tested combinations.

VI. CONCLUSION

In this work, we have presented a detailed analysis of
common multi-task learning techniques in the new setting of
mobile industrial robots. We start by producing a simulated
warehouse dataset with color images and corresponding infor-
mation for three tasks, i.e. semantic segmentation, depth es-
timation and surface normal estimation. The WarehouseSIM!
dataset is made publicly available and can be used for both

IThe dataset download link, source code and additional information on this
project are available at: https://github.com/DTU-PAS/WarehouseSIM
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single-task training and multi-task learning. Next, we test
various task-balancing techniques used in computer vision.
Throughout our experiments we demonstrate that these tech-
niques fail to improve upon single-task learning, questioning
their ability to be used in new scenarios, such as industrial
mobile robot perception. Future work includes augmenting
the synthetic dataset by incorporating additional scenes and
introducing greater variability, leveraging novel aspects of the
simulation platform like incorporating mobile human entities
to enhance the scenario, and integrating supplementary tasks
such as object detection, human pose estimation, and trajec-
tory estimation. Finally, we plan on revisiting task balancing
strategies to find solutions not tied to specific datasets and
tasks that will consistently produce improved metrics across
all tasks.
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Artifacts Mapping: Multi-Modal Semantic Mapping for Object
Detection and 3D Localization

Federico Rollof+$, Gennaro Raiolaf*, Andrea Zunino'*, Nikolaos Tsagarakisi, Arash Ajoudani:E

Abstract— Geometric navigation is nowadays a well-
established field of robotics and the research focus is shifting
towards higher-level scene understanding, such as Semantic
Mapping. When a robot needs to interact with its environment,
it must be able to comprehend the contextual information
of its surroundings. This work focuses on classifying and
localising objects within a map, which is under construction
(SLAM) or already built. To further explore this direction, we
propose a framework that can autonomously detect and localize
predefined objects in a known environment using a multi-modal
sensor fusion approach (combining RGB and depth data from
an RGB-D camera and a lidar). The framework consists of
three key elements: understanding the environment through
RGB data, estimating depth through multi-modal sensor fusion,
and managing artifacts (i.e., filtering and stabilizing measure-
ments). The experiments show that the proposed framework
can accurately detect 98% of the objects in the real sample
environment, without post-processing, while 85% and 80% of
the objects were mapped using the single RGBD camera or
RGB + lidar setup respectively. The comparison with single-
sensor (camera or lidar) experiments is performed to show that
sensor fusion allows the robot to accurately detect near and far
obstacles, which would have been noisy or imprecise in a purely
visual or laser-based approach.

I. INTRODUCTION

To boost navigation autonomy and contextual awareness of
mobile robots in unstructured environments, geometric infor-
mation collected from the surroundings and the associated se-
mantic data play key roles. The latter, in particular, includes
qualitative environment information that can contribute to
improving the robot’s autonomy for navigation, task planning
and manipulation, and simplifying human-robot interaction
(HRI). This problem is tackled in the Semantic Mapping
field, which aims to organize objects into classes and com-
pute their pose and shape in a specific fixed reference frame.
In this way, the environmental geometric information is
supported by high-level features which increase the robot’s
awareness of the environment. In our specific case, we deal
with the object detection and localization problem, which
nowadays is widely investigated. For instance, in the last
Darpa Subterranean Challenge', the main objectives were
multi-robot exploration and object mapping in unknown
environments, and the overall score was calculated based on
the number of correctly detected and localized objects on the
map.
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Fig. 1. An example of the framework during an experiment. On the left,
is the visual application where objects are shown with a landmark and a
spherical region of interest for the location in the Rviz visualization tool. On
the top right, is the instance segmentation inference of the image taken from
the robot camera while on the bottom right is the external representation of
the experimental scene.

Different works were proposed to cope with the semantic
mapping problem. Most recent results in robotics are facing
the problem of using only RGB data and some interactive
structures to be compliant with dynamic environments [1]
while others rely on RGB-D data exploiting older algorithmic
strategies (e.g. PnP algorithm) [2]. In autonomous driving,
the RGB camera and lidar sensor fusion for semantic under-
standing is a currently tackled problem [3]. For a broader
evaluation of the literature review see Sect. II.

Independently of the approaches used in robotics litera-
ture, the first thing which stands out is that most of them
rely only on camera sensors. Cameras can give lots of
dense information to the user especially if paired with depth
data. However, their accurate depth range is within a few
meters, leading to heavy depth measurement errors as the
distances increase, especially if the robot is moving. This is
particularly true for outdoor and vast indoor environments
(e.g., warehouses), where depth cameras are limiting and
object semantic mapping remains a major challenge for
far distances. In these cases, lidar sensors are an essential
camera partner, allowing to have precise depth measurements
for a wider distance range. Rather, in autonomous driving,
the lidar and the RGB camera are nowadays commonly
used but depth cameras are not considered due to their low
resolution in the wide outdoor areas commonly faced in
driving scenarios.

Another aspect not considered in most of the robotics
examined works is that they do not account for limited re-
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Fig. 2. This figure represents the whole Artifacts Mapping pipeline. The
top block groups the sensors’ data readings: (a) camera RGB image, (b)
camera depth image and (c) lidar point cloud. At the bottom, there are
(d) the RGB image inference performed with a Deep Neural Network for
instance segmentation, (¢) the multi-modal sensor fusion for detection and
localization which uses as input the camera depth, the lidar point cloud
and the Neural Network inference, and (f) a representation of the artifacts
manager state-machines used to handle the sensor fusion detections and
stabilize them.

sources applications which should run on embedded devices
(e.g. Nvidia Jetson Nano”). Furthermore, Semantic Mapping
is often used in the context of grasping or augmented
reality scenarios while this work proposes an application for
detecting and localizing objects (a.k.a artifacts) for high-level
navigation tasks.

In our work, we aim to merge robotics and autonomous
driving applications’ strengths and present a modular archi-
tecture for semantic mapping’. We provide a multi-modal
(camera-lidar) online semantic mapping framework which
can fuse sensor information in real-time depending on the
object distance and sensor’s accuracies. We use image se-
mantic information to enrich objects’ filtered and stabilised
positions to have precise object localization. The artifacts’
shapes are simplified as spheres but they will be improved in
future development. Our work relies on external geometric-
based navigation frameworks such as SLAM algorithms or
other localization algorithms (e.g., AMCL [4]).

The proposed application demonstrates good accuracy for
both near and far objects thanks to the camera-lidar depth
fusion which, as far as the authors know, was not examined
in other robotic or autonomous driving semantic mapping
works. The application operates online also on low resources
embedded systems (see Sect. IV-B) which strengthens the
contributions of this paper. Moreover, we developed a Rviz*
application which improves the user experience (UX) for
visualization and interaction with the objects and the robot
(see Fig. 1). The authors will provide on-demand a Docker
application® as an added contribution, for running the arti-
facts mapping applications in simulation or on a robot (see
Sect III-A-III-B and Sect. III-C).

The paper is divided as follows. In Sect. II a literature

2Nvidia Jetson Nano: https://developer.nvidia.com/
embedded/ jetson-nano-developer-kit

3 Artifacts Mapping Youtube videos: https://www.youtube.com/
playlist?list=PLdibjJIfM06zugiWd-yUcdGH-SRWKTA3nQ

4rviz: http://wiki.ros.org/rviz

5The authors will grant access to a Docker image with the compiled
application upon acceptance of the paper, based on the Freeware license.
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review of some recent works in semantic mapping is pre-
sented. The framework developed for this work is explained
in Sect. III. We can distinguish the framework pipeline as two
perception modules and a manager one. The first perception
module performs 2D object detection while the second aims
to estimate 3D artifacts position by fusing camera and lidar
depth information (see Sect. III-A). The last module is
needed to stabilize the perception estimations and to filter
out noisy outliers (see Sect. III-B). An application of the
presented framework (see Sect. III-C) is proposed based
on two steps: (i) the robot can autonomously classify and
localize objects on a map and save them in a specified
format, (ii) the robot can load the artifacts as way-points
on the map and the user can interactively select them to
command the robot moving in that place to successively
accomplish various kind of tasks such as manipulation,
grasping, inspections or others. In Sect. IV the experiments
to validate the framework are evaluated and discussed, and
in Sect. V the conclusion and some future improvements are
provided.

II. RELATED WORKS

In literature, the semantic mapping problem was addressed
using several approaches both in robotics and autonomous
driving fields. Different surveys were presented that analysed
this topic from various points of view. In [5] the authors
explored the semantic mapping application in a human-robot
collaboration scenario in an indoor environment while in
[6] the semantic SLAM problem is presented in a general
fashion analysing the works also in terms of perception,
robustness, and accuracy. In [7], the less recent semantic
mapping works are reviewed (i.e., before 2014). This survey
is a good reference to analyse the first development for the
semantic mapping problem which yielded the more recent
applications.

Among the modern semantic mapping approaches pre-
sented in robotics literature in the last decade, some first
successful examples are [8] and [9]. In [8] the authors
presented a monocular SLAM system that uses a SURF [10]
feature extractor to check correspondencies and reconstruct
the object’s geometry. Instead, the authors in [9] showed
an object-oriented 3D SLAM based on an ICP [11] object
pose refinement and demonstrated that the introduction of
semantic objects in the SLAM loop improves performances.
the authors in [12] developed a monocular SLAM-aware ob-
ject recognition system based on multi-view object proposals
and efficient feature encoding methods giving as output a
semi-dense semantic map. In [13] the authors proposed a
framework which directly manages 3D objects. They use
a Kinect® camera to reconstruct the 3D environment from
different points of view and classify them while estimating
their pose. In [14] the Data Associated Recurrent Neural
Networks (DA-RNN) is introduced, which is an RNN for
semantic labelling of RGB-D videos. The network output

SMicrosoft Kinect camera https://en.wikipedia.org/wiki/
Kinect



is fused with the KinectFusion algorithm [15] to merge
semantic and geometric data. In [16] a Convolutional Neural
Network (CNN) is used along with the ElasticFusion SLAM
algorithm [17] to provide long-term dense correspondences
between RGB-D video frames even in loopy trajectories. The
authors in [18] leveraged ORB-SLAM?2 [19] to reconstruct
the geometric environment while using Single-Shot multi-
box Detector (SSD) [20] along with an unsupervised 3D
segmentation algorithm to place objects in the environment.

Moving towards more recent works, in [21] is presented
the Contextual Temporal Mapping (CT-Map). They modelled
the semantic inference as a Conditional Random Field (CRF)
to account for contextual relations between objects and
the temporal consistency of their pose. MaskFusion [22]
is a real-time object-aware semantic and dynamic RGB-D
SLAM algorithm. The greatest difference with respect to
its predecessors is that it can cope with dynamic objects
by continuously labelling them. Fusion++ [23] performs an
object-level SLAM based on a 3D graph map of arbitrary
reconstructed objects. They used RGB-D cameras, Mask-
RCNN [24] instance segmentation and the Truncated Signed
Distance Function (TSDF) to perform the semantic recon-
struction. In [25] is presented an approach that incremen-
tally builds a volumetric object-centric map with an RGB-
D camera. They used an unsupervised geometric approach
with instance-aware semantic predictions to detect previously
unseen objects. They then associated the 3D shape locations
with their classes if available and integrate them into the
map. This approach has limited time performances to be
used on a mobile robot because it runs at 1 HZ so it could
be impractical in real-time. Conversely, in [26] the authors
obtained a real-time dense reconstruction and semantic seg-
mentation of 3D indoor scenes. They used an efficient super-
voxel clustering method and conditional random fields (CRF)
with higher order constraints from structural and object cues,
enabling progressive dense semantic segmentation without
any precomputation. The CRF infer optimal segmentation
labels from the prediction of a deep neural network and
runs in parallel with a real-time 3D reconstructor which
utilizes RGB-D images as input. In [27] an open-source C++
library for metric-semantic visual-inertial SLAM in real-
time is presented. They provide a modular code composed
of a visual-inertial odometry (VIO) module, a pose graph
optimizer, a 3D mesh-building module, and a dense 3D
metric-semantic reconstruction module. The authors in [28],
used a UAV equipped with a lidar, an RGB camera and
a thermal camera to augment 3D point clouds and image
segmentation masks while also generating an allocentric
map.

One of the last available works which focus on this topic
is [1] which presented a semantic mapping framework which
uses only RGB data. They did not accomplish only object
mapping but they provided a framework that can also distin-
guish different rooms and buildings. They exploited the 3D
dynamic scene graphs [29] to abstract the different layers of
inference (i.e. object, room and building), to solve problems
such as loop closure detection and to cope with the mapping
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problem. Instead, the authors of [2] used RGB-D cameras
to reconstruct an allocentric semantic map. They used a
keypoint-based approach for pose estimation using a CNN
keypoint extractor trained on synthetic data. Object poses
were recovered from keypoint detections in each camera
viewpoint with a variant of the PnP algorithm. The outputs
obtained from the multi-camera system were then fused using
weighted interpolation.

In autonomous driving, the multi-sensor fusion problem
for 3D object detection is faced in [3] which uses lidar
and RGB camera sensors to estimate the objects positions
in the environment through ground estimation and depth
completion. They use an end-to-end approach to train their
multi-task network. The authors in [30] build a semantic map
with a laser-based semantic segmentation of the point cloud
not requiring any camera data. In [31], the authors provided
a lidar-based SLAM for the geometric mapping and then use
a CRF to fuse and optimize the camera semantic labels to
obtain the semantic map. Instead, in [32], the camera and
lidar data are used to build a probabilistic semantic octree
map considering all the uncertainties of the sensors involved
in the process. The authors in [33] presented one of the latest
works in autonomous driving semantic mapping. They use an
RGB camera and a lidar to perform semantic segmentation,
direct sparse visual odometry and global optimization to
include GNSS data in the mapping process.

Our review of the state-of-the-art indicated that most of
the works on robotics platforms rely only on camera mea-
surements and the experiments are limited to small indoor
environments. Instead, in the autonomous driving scenario
the camera-lidar fusion is already used for semantic tasks
but they rarely use depth cameras, their lidars are generally
more powerful (i.e., they have 128-row lidars compared to
the 16 ones commonly used in robotics) and they test the
application in driving outdoor scenarios which offer different
challenges with respect to robotic indoor once. Hence, with
our work, we aim to stress the fact that RGB-D cameras and
lidars are complementary sensors also in robotic semantic
applications. For the semantic mapping application, we stated
that with both sensors we can correctly localize objects at
different distance ranges, improving detection accuracy.

III. ARTIFACT MAPPING FRAMEWORK

In this section, the whole framework is presented as a
conjunction of two blocks: Sect. III-A for object perception
and Sect. III-B for object managing. In Sect. III-C the
provided UI application is illustrated.

A. Artifacts detection and position estimation

The perception part can be conceptually divided into
two components: (i) 2D object segmentation, (ii) 3D object
position estimation using camera-lidar filtering.

1) 2D object segmentation: In this phase, a deep neural
network [34] is used to infer from RGB images (see Fig. 2a)
some predefined objects’ classes and their masks. During
the navigation, the robot takes pictures of the environment
using the camera mounted on it. The pictures are passed



into an instance segmentation deep neural network which
outputs the classification labels and masks (i.e., a binary
image having 1 where the object is found and O elsewhere)
for each object recognized on the image (see Fig. 2d). The
outputs are grouped and passed to the next module which will
convert 2D data into 3D ones. An optional feature provided
in this module is the possibility to filter out classes in real-
time upon request. In this way, the robot can map different
objects online depending on the requirements proposed.
Other implementation aspects will be further explained in
Sect. IV.

2) 3D object position estimation using camera-lidar filter-
ing: This module fuses RGBD camera and lidar measure-
ments to have a precise estimate of the objects’ positions in
the environment. The input is composed of the classification
labels and masks found in the previous module, and depth
information extracted from the camera (see Fig. 2b) and
the lidar (see Fig. 2c). Sensors depth measurements are first
analyzed separately in the following.

The depth image obtained from the camera (see Fig. 2b) is
filtered using the recognized objects masks through element-
wise matrix multiplication. The output, containing only the
depth data of the object plus some sensor noise and environ-
ment outliers, is used to build a 3D point cloud projecting
the 2D image points in the 3D space using the formula in
the equation:

1 0 B
e foo N u
yo| =10 7 7| |v|zc, 40
zc 0 0 1 1

where z¢, Yo, z¢ are the 3D point coordinates with respect
to the camera, u, v are the pixels on the image plane and
fas [y, Po and p, are the camera intrinsic parameters (focal
distances and sensor’s centre). Note that zo is the depth
measured by the camera depth sensor.

The obtained point cloud is filtered using a voxel grid
downsampling filter’ to reduce the number of points and,
consequently, a radius outlier filter® is applied to remove
the outliers induced by sensors noises and inference imper-
fections. The final point cloud is then used to compute the
camera artifact centroid X as the mean of its points.

The 3D lidar centroid estimation is computed as follows.
Projecting the 3D lidar points (see Fig. 2¢) in the 2D detected
masks images using Eq. 2, we are able to extract the object
points of interest from the point cloud (i.e., the points which
have the 2D projection inside the mask).

L

u fe 0 pu n
zp|v| =0 fy, py| [RY TF] Jo 2)

1 0 0 1 L

1

where RE € Rj3;3 and TLC € R3;1 are the rotation matrix
and the translation vector between the lidar and the camera,

7voxel grid downsampling filter: https://pointclouds.org/
documentation/tutorials/voxel_grid.html

8radius outlier removal: https://pointclouds.org/
documentation/tutorials/remove_outliers.html
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Fig. 3. An example of the contribution weights of camera and lidar for
sensor fusion. The camera weight is in blue while the lidar one is in dashed
green. In the specific example, we considered the specifications of a generic
RGB-D camera you can find on the market: minc = 0.5, accc = 2.0
and maxc = 6.0.

xr, YL, z1, are the 3D centroid position with respect to the
lidar and the other parameters are the same of Eq. 1.

The extracted point cloud, representing the noisy artifact,
will be then filtered using a radius outlier filter similar to
the one used for the camera. Both radius filter parameters
are directly dependent on the number of point cloud points
because different distances and sizes of objects affect the
point-cloud density and consequently the filtering. Finally,
the mean of the point cloud is computed to obtain the lidar
artifact centroid X7,.

Once both centroid measurements are available, they are
fused in the artifact centroid X following the rules in the
equation:

0 If distc < ming
Xc
EXc+ (1-8)Xy,
Xr

If ming < diste < acce
If acce < diste < maxc
If distc > maxc ,

3)
where distc is the euclidean distance between the 3D point
estimates and the camera, min¢ and max ¢ are the minimum
and maximum distances the depth camera can perceive, accc
is the distance within which the camera can have accurate
enough measurements to be used alone for the object local-
ization (the camera information are generally provided by
the sensors vendors), X; € R® and X € R? are the lidar
and camera 3D centroid estimates and ¢ € [0,1] € R is the
fusion weight represented by the blue slope of the segments
between accc and maxc in Fig. 3 and it is computed as
follows:

1

marc — acco

E=— (distc — acce) + 1 4

Using the filtered camera and lidar point clouds, a rough
3D radius estimation p of the objects is performed. The
camera radius p¢o and the lidar radius py are computed as
the mean of the two bigger dimensions along the X, Y and
Z point cloud axis. the final radius p is computed following
the same centroid fusion rules of Eq. 3 substituting X with
p, Xc with po and X, with pr.



Also, the view angle ¢ of the artifact with respect to the
robot is computed. Such an angle is rotated with respect to
the map reference frame for implementation reasons with
equation:

¢ = atan2(re1,m11) + atan2(y,, x,) , 5)

where the r;; is the entry at row ¢ and column j of the
rotation matrix )" € Rs,3 between the map m and the robot
r and x,, y, are the x, y positions of the artifact centroid
with respect to the robot base. The two addends of Eq. 5
represent respectively the heading angle between the robot
and the map and the angle between the robot and the 3D
centroid.

B. Artifacts manager for data association

The manager (see Fig. 2f) is needed to filter out outliers
and to stabilize artifact position estimations provided by the
sensor fusion module. This process is generally known as
data association[5][14]. The manager is composed of two
modules: (i) object position filtering and (ii) object position
stabilization which runs asynchronously in parallel.

1) Position filtering: Using a temporary data structure, the
temporary buffer, we store and filter the perceived artifacts.
Once the manager receives the 3D artifacts position estima-
tions from the perception module (see Sect. III-A), it checks
if the artifacts were already seen before (i.e., the distance
between one of the already seen artifacts and the current one
is less than its 3D radius). If this is the case then the artifact
in the temporary buffer is updated. Otherwise, for each not
previously seen artifact received, the manager creates a new
artifact instance in the temporary buffer. These instances have
their own moving average filter which estimates the average
of the artifact centroid position and its radius with Eq. 6
and computes a variance based on the distances between the
position and the moving average in the filter horizon with
Eq. 7.

1
n=5 D X (©)
XEQN
1 2
o= > Ix—ul*, (7)
XEQN

where N € N is the number of measurement in the moving
average set Q1 of 3D points, Y € R? represent the current
3D position measurement, p € R3 is the 3D mean position
and o € R represent the variance of the filter.

2) Position stabilization: This module checks the stability
of the artifacts in the temporary buffer and stores stable
artifacts in another similar structure, the stable buffer. If an
artifact in the temporary buffer is stable, the stabilizer moves
the artifact from the temporary buffer to the stable one. An
artifact is considered stable when its moving average filter
variance o is less than half its 3D artifact radius p and at least
half the average filter set {2y is filled. This means that we
have enough stable object position estimations and the object
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position average can be used for fixing the object position
on the map.

At the end of the Artifacts Mapping application, an
additional data association step is performed. The artifacts
belonging to the same class which overlay each other on the
XY plane are merged into a single artifact. This step reduces
the duplicated object which sometimes appears on the map
due to different point-of-view measurements and occlusions.
After that, the stable artifacts buffer is saved in a yaml file
which could be loaded into the user interface application
presented in the next section.

C. User Interface for goal sending

A User Interface (UI) application based on a Rviz plugin
(see Fig. 1) was developed to provide an intuitive visualiza-
tion of the artifacts on the map, to send commands to the
robot for moving near an artifact of interest and to delete
artifacts which the user do not need or are wrong. Such
artifacts can be loaded from the yaml file obtained with the
artifacts mapping application. Through the UI application,
the user can send nav_msgs/goal ROS messages which can
be used by the robot to move towards the object (e.g., using
the ROS navigation stack as we do, see Sect. IV). The user
can interact with the artifacts by simply right-clicking on
them on Rviz and selecting the action Go To or Delete. Being
the artifacts centroid position inside the artifacts shapes, the
goal is moved in front of the artifact so that the robot stops
before colliding with the object. The other available option is
artifact deletion. If the user notices that an artifact is wrongly
identified (classification or position) then the user can delete
it and, once the UI application is closed, the loaded yaml
file is updated with the remaining artifacts.

IV. EXPERIMENTS

The experiments are performed both in simulation and
using a real robot in a laboratory environment. The experi-
mental setup is the same: some chosen objects are randomly
positioned in the experiment area and the robot, following a
predefined path, maps the predefined objects it encounters.
This strategy is chosen because the objective is the validation
of the artifacts mapping accuracy during an application,
for example during a patrol. In other application scenarios,
e.g. search and rescue, our framework could run in parallel
with an exploration algorithm and the robot could trigger
the exploration module every time an object of interest is
encountered to obtain a precise localization.

In the experiments, we compare the data fusion with the
mono-sensors application (i.e. using only an RGB-D camera
or only the lidar) to demonstrate that the data fusion highly
improves the detection accuracy and decreases the errors. For
each environment setup, the experiments are repeated three
times, one for each sensors configuration: only camera, only
lidar, and both.

This work focuses only on semantic mapping and does
not account for the robot localization which is assumed
to be given. Additional errors in mapping resulting from
localization are not considered in the final evaluation even if



11*" European Conference on Mobile Robots — ECMR 2023, September 4—7, 2023, Coimbra, Portugal

TABLE 1
DETECTION RESULTS OF THE SIMULATION AND REAL EXPERIMENTS.
Simulation Real
Camera  Lidar  Fusion Camera  Lidar  Fusion
Correct detection 386 391 416 86 81 929
Wrong localization 12 13 7 10 14 2
Duplication 19 24 15 10 14 6
Wrong classification 0 0 0 7 11 6
[ Total detections | 417 28 433 || 113 0 113 |
[ Total objects | 422 I 101 |
they negatively affect our application. Moreover, is important Cotract detactions over the totsl susiber of objects
to notice that quadrupedal robots’ movements are jerky and e h—— ges r i == twon
the sensors can suffer from that. 1000
We set the parameters ming, acce and maxc of Eq. 3
as 0.3, 4, 6 respectively based on the camera hardware in- 80.0
formation provided by the camera vendors (Intel Realsense). P
The final validation performance is based on the number of 8 ¢/ o
objects which the robot can correctly find over the number of §
total objects. Also, the number of correctly-detected objects & 23% Al
over the total number of detections is evaluated. The object »e 20%
is considered found if the difference between the estimated
position and the real one is less than the real object radius 20.0
and the associated class label is correct. The errors are
categorized as duplicated objects, wrong localization and 00
wrong classification. The duplications occur when there are ' Simulation Real

more artifacts on a single object. they could be caused by
the wrong artifacts radius computation due to occlusions or
distinct point of view detection (i.e., viewed from different
perspectives: front and behind). The localization is consid-
ered wrong if the artifact’s estimated position is outside the
real object shape while the classification is erroneous if the
artifact’s class label is not correct.

For the simulation, the Whole-body Locomotion Frame-
work (WoLF)[35] is used on a notebook with an Intel®
Core™ (9-11950H processor and an NVIDIA Geforce RTX
3080 Laptop GPU. In the real scenario, a Unitree Gol’
quadrupedal robot equipped with a RoboSense RS-Helios16
lidar'?, an Intel RealSense D455'! and three Nvidia Jetson'?
(two Jetson Nano 4GB and one Nvidia Xavier NX) are
used for the evaluation. The experiments are performed
with the instance segmentation algorithms Yolact++ [34] and
YolactEdge [36] trained on COCO [37] data set.

A. Simulation Experiments

Gazebo'? simulator is used to simulate the robot in two
different environments: the office!* and Maze worlds where a
predefined number of objects are positioned randomly at each

9Unitree Gol: https://www.unitree.com/en/gol/

10RoboSense  RS-Helios16: https://www.robosense.ai/en/
rslidar/RS—-Helios

ntel RealSense D455: https://www.intelrealsense.com/
depth-camera—-d455/

12Nvidia Jetson: https://www.nvidia.com/it-it/
autonomous-machines/embedded-systems/

13Gazebo simulator: https://gazebosim.org/home

14Clearpath robotics worlds: https://github.com/
clearpathrobotics/cpr_gazebo/tree/noetic-devel/
cpr_office_gazebo

94

Fig. 4. Percentage of the correctly mapped and labelled objects concerning
the total number of objects on the scene. On the left are the simulation results
and, on the right, are the real experiments. Each block has three histograms
representing the three sensors configurations used during the experiments:
only RGBD camera, only RGB + lidar, and both.

iteration. The chosen objects for the simulation evaluation
are vase, couch, plant and person. Specifically, in the office
world, there are 5 vases, 12 couches, 6 plants and 11 persons
while in the Maze world, there are 15 vases, 13 couches, 12
plants and 12 persons. The robot path is chosen randomly
in advance using some waypoints on the map. In total, for
each sensors configuration, 10 experiments were conducted,
5 for each environment, using different setups, for a total of
30 experiments.

The results of the simulation experiments are shown in the
left part of Fig. 4 in terms of the number of correct detected
objects. Specifically, considering the three ordered sensors
configurations (i.e. only camera, only lidar, and both), we
obtain the 92%, 93% and 99% of correctly localized and
classified objects. Moreover, analysing the total number
of detections produced, we obtain the distribution of the
detections represented in the left column of Table I and the
top part of Fig. 5 for the simulation experiment. Among all
the detection produced, considering again in order the three
sensors configurations, the 92%, 91% and 95% were correct
while the remaining 8%, 9% and 5% of them were wrong.

The farthest object correctly detected in simulation during
the camera-lidar sensor fusion experiments was at 15.47m
from the robot, while the nearest was at 1.23m.



Fusion

Simulation

Real

Detections

= Wrong localization =3 Correct detections £ Duplicated @8 Wrong classification

Fig. 5. Distribution of correctly and wrongly detected artifacts among
the total generated detections. The pie charts represent the distribution of
the correctly detected artifacts in green, the doubled objects in blue, the
wrongly localized ones in pink and the wrongly classified ones in red. On
the top row are the simulations results while on the bottom are the real
ones. For each row, experiments are divided into three columns depending
on the sensors configuration used during experiments: only camera, only
lidar, and both.

B. Laboratory Experiments

The real experiments were carried out in a laboratory
setting considering two scenarios, a one-room laboratory en-
vironment and a complete floor environment where the robot
can move through corridors. In these environments were
positioned umbrellas, chairs, cabinets, backpacks and TVs
in variable amounts. For each sensors configuration, A total
of 6 experiments were conducted, 3 for each environment,
for a total of 18 experiments. For each trial, the objects
were randomly moved and the illumination changed, i.e.,
switching off lights or closing shutters.

The results of the laboratory experiments are shown in
the right part of Fig. 4 in terms of the number of correct
detected objects. Specifically, considering the three sensors
configurations in order (i.e. only RGBD camera, only RGB
+ lidar, and both), we obtain respectively the 85%, 80% and
98% of correctly localized and classified objects. Moreover,
analysing the total number of detections produced, we obtain
the distribution of the detections represented in the right
column of Table I and the bottom part of Fig. 5 for the
real experiment. Among all the detection produced, the 76%,
68% and 88% were correct while the remaining 24%, 32%
and 12% of them were wrong.

The farthest object correctly detected during the camera-
lidar sensor fusion experiments was at a distance of 10.37m
from the robot, while the nearest was at 0.98m.

C. Discussion

The first thing to point out is that the farthest distances of
the detected object were greater than 10m both in simulation
and in real experiments. We take into account this distance to
show a qualitative comparison between the lidar and RGB-D
measurement in Fig. 6. The figure qualitatively upholds the
thesis that a lidar sensor along with the camera is necessary
to improve semantic mapping and, in general, other detection
algorithms in wide areas. Moreover, from the results obtained
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Fig. 6. Qualitative comparison between RGB-D camera (left image) and
lidar (right image) point cloud detections at an approximate distance of 10m
from the wall. At the bottom centre, there is the representation of the scene
taken with the robot camera at that time instant. At large distances, the
camera data are noisier and less accurate with respect to the lidar one but at
small distances cameras provide a denser accurate point cloud while lidar
data are sparser. From this comparison can be deduced that a visual-lidar
sensor fusion can enhance semantic mapping.

from the experiments, it is clear that in our framework the use
of both sensors improves the robustness of the application
and decreases the detection errors. These improvements are
less evident in a simulation environment where we used
almost ideal sensors, i.e. the noise representation is not
realistic as in Fig. 6. Still, it impacts real scenarios where
there is more sensor noise.

The lidar can map far obstacles precisely while the camera
introduces lots of errors at high distances. If we adopt only
the camera, one solution to avoid erroneous measurements
could be to not consider the depth measurement out of the
accurate range guaranteed by the device specifications. By
the way, by doing this the robot could miss some artifacts if
it does not get close enough to them.

The camera, by providing more information at near dis-
tances with respect to the lidar, yields more precise centroid
computations because it has fewer outliers than the lidar.
Lidar outliers can be caused by wrong camera-lidar pose
calibration and time synchronization which are essential for
these applications especially when the robot moves fast.
Instead, with RGBD cameras, the depth and the RGB images
are synchronized in time and can be spatially superimposed
almost exactly.

It is important to notice that wrong classification errors
result from erroneous classifications in the pre-trained in-
stance segmentation neural network which can be caused by
illumination, reflections or other environmental conditions.
They are here considered because the image inference is
a module of the proposed pipeline but such errors can be
decreased using more powerful neural networks.

V. CONCLUSION

We presented a framework which uses multi-modal sen-
sors fusion to tackle the semantic mapping problem which
is a rare setup in robotics applications. We fuse the lidar and
RGB-D camera sensor readings to achieve better accuracy
both for near and far objects as opposed to camera-only
systems which lose accuracy for distant objects or lidar-
only which lack high-level texture understanding of the
environment.



We proposed a Ul application to interact with the artifacts
map obtained during the mapping application. This applica-
tion is useful to perform autonomous high-level decision-
making tasks because it exposes the object’s class and
location to the robot and the user.

The experiments showed that our application can correctly
detect, localize and map the 98% of the objects present in
the scene at different distances providing a small number
of detection errors and good localization accuracy. The
comparisons with the single-sensor scenario (only camera
or only lidar) proved that sensor fusion is essential for wide
areas and high-accuracy applications.

There are different future improvements we planned for
this framework: (i) evolve the algorithm to an independent
graph-based SLAM system, (ii) use 3D semantic point clouds
with oriented bounding boxes and dimension information for
better visualization and object understanding, (iii) deal with
dynamics obstacle.

REFERENCES

[1] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial
perception system for 3d scene graph construction and optimization,”
Robotics: Science and Systems XVIII, 2022.

[2] J. Hau, S. Bultmann, and S. Behnke, “Object-level 3d semantic
mapping using a network of smart edge sensors,” arXiv preprint
arXiv:2211.11354, 2022.

[3] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task multi-
sensor fusion for 3d object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[4] W. Xiaoyu, L. Caihong, S. Li, Z. Ning, and F. Hao, “On adaptive
monte carlo localization algorithm for the mobile robot based on ros,”
in Chinese Control Conf (CCC), 2018.

[5] A. Achour, H. Al-Assaad, Y. Dupuis, and M. El Zaher, “Collaborative
mobile robotics for semantic mapping: A survey,” Applied Sciences,
2022.

[6] L. Xia, J. Cui, R. Shen, X. Xu, Y. Gao, and X. Li, “A survey of
image semantics-based visual simultaneous localization and mapping:
Application-oriented solutions to autonomous navigation of mobile
robots,” International Journal of Advanced Robotic Systems, 2020.

[7] 1. Kostavelis and A. Gasteratos, “Semantic mapping for mobile
robotics tasks: A survey,” Robotics and Autonomous Systems, 2015.

[8] J. Civera, D. Galvez-Ldpez, L. Riazuelo, J. D. Tardds, and J. M. M.
Montiel, “Towards semantic slam using a monocular camera,” in 2011
IEEE/RSJ international conference on intelligent robots and systems,
2011.

[9]1 R. E Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and

A.J. Davison, “Slam++: Simultaneous localisation and mapping at the

level of objects,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2013.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Computer vision and image understanding, 2008.

P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”

in Sensor fusion 1V: control paradigms and data structures, 1992.

S. Pillai and J. Leonard, “Monocular slam supported object recogni-

tion,” arXiv preprint arXiv:1506.01732, 2015.

K. Tateno, F. Tombari, and N. Navab, “When 2.5 d is not enough:

Simultaneous reconstruction, segmentation and recognition on dense

slam,” in 2016 IEEE international conference on robotics and automa-

tion (ICRA), 2016.

Y. Xiang and D. Fox, “Da-rnn: Semantic mapping with data associated

recurrent neural networks,” arXiv preprint arXiv:1703.03098, 2017.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,

A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,

“Kinectfusion: Real-time dense surface mapping and tracking,” in

2011 10th IEEE international symposium on mixed and augmented

reality, 2011.

(10]
(11]
[12]

[13]

[14]

[15]

96

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

(36]

(371

11*" European Conference on Mobile Robots — ECMR 2023, September 4—7, 2023, Coimbra, Portugal

J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Se-
manticfusion: Dense 3d semantic mapping with convolutional neural
networks,” in 2017 IEEE International Conference on Robotics and
automation (ICRA), 2017.

T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “Elasticfusion: Dense slam without a pose graph,” in Robotics:
Science and Systems, 2015.

N. Siinderhauf, T. T. Pham, Y. Latif, M. Milford, and I. Reid,
“Meaningful maps with object-oriented semantic mapping,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017.

R. Mur-Artal and J. D. Tardés, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, 2017.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
Conference on Computer Vision, 2015.

Z. Zeng, Y. Zhou, O. C. Jenkins, and K. Desingh, “Semantic map-
ping with simultaneous object detection and localization,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recog-
nition, tracking and reconstruction of multiple moving objects,” in
2018 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), 2018.

J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leuteneg-
ger, “Fusion++: Volumetric object-level slam,” in 2018 international
conference on 3D vision (3DV), 2018.

K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask r-cnn,” 2017
IEEE International Conference on Computer Vision (ICCV), 2017.
M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric instance-aware semantic mapping and
3d object discovery,” IEEE Robotics and Automation Letters, 2019.
Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Real-time
progressive 3d semantic segmentation for indoor scenes,” in 2079
1IEEE Winter Conference on Applications of Computer Vision (WACV),
2019.

A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

S. Bultmann, J. Quenzel, and S. Behnke, “Real-time multi-modal
semantic fusion on unmanned aerial vehicles,” in 2021 European
Conference on Mobile Robots (ECMR), 2021.

A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, “3d dynamic
scene graphs: Actionable spatial perception with places, objects, and
humans,” arXiv preprint arXiv:2002.06289, 2020.

X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, and
C. Stachniss, “Suma++: Efficient lidar-based semantic slam,” in 2019
1IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019.

J. Li, X. Zhang, J. Li, Y. Liu, and J. Wang, “Building and optimization
of 3d semantic map based on lidar and camera fusion,” Neurocomput-
ing, 2020.

J. S. Berrio, M. Shan, S. Worrall, and E. Nebot, “Camera-lidar
integration: Probabilistic sensor fusion for semantic mapping,” /EEE
Transactions on Intelligent Transportation Systems, 2021.

Q. Cheng, N. Zeller, and D. Cremers, “Vision-based large-scale 3d
semantic mapping for autonomous driving applications,” in 2022
International Conference on Robotics and Automation (ICRA), 2022.
D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact++: Better real-
time instance segmentation,” [EEE transactions on pattern analysis
and machine intelligence, 2020.

G. Raiola, M. Focchi, and E. M. Hoffman, “Wolf: the whole-
body locomotion framework for quadruped robots,” arXiv preprint
arXiv:2205.06526, 2022.

H. Liu, R. A. R. Soto, F. Xiao, and Y. J. Lee, “Yolactedge: Real-
time instance segmentation on the edge,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision, 2014.



11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

Dynamic Human-Aware Task Planner for Human-Robot Collaboration
in Industrial Scenario

Alberto Gottardi!»>, Matteo Terreran', Christoph Frommel?,
Manfred Schoenheits?, Nicola Castaman?, Stefano Ghidoni', Emanuele Menegatti!

Abstract— The collaboration between humans and robots in
industrial scenarios is one of the key challenges for Industry 4.0.
In particular, industrial robots offer accuracy and efficiency,
while humans have experience and the capability to manage
complex situations. Combining these features can enhance the
industrial process by avoiding the user manipulates heavy
weights and allowing him to dedicate his efforts to tasks
where flexibility, quality and experience make the difference in
the final product. However, the collaboration between humans
and robots raises several new problems to be addressed like
safety, tasks scheduling and operator ergonomics. For example,
human presence in the robot workspace introduces various
elements of complexity into robot planning due to its dynamism
and unpredictability. Planning must take into account how to
coordinate the tasks between the robot and the human and
be quick in re-planning to respond reactively to the operator’s
trigger. For this purpose, this work proposes a hierarchical
Human-Aware Task Planner framework capable of generate
a suitable plan to complete the process and manage user
interrupts in order to have a constantly updated plan. The
method is evaluated in a real industrial scenario and in a specific
complex assembly task like the draping of carbon fiber plies.

Index Terms— Human-Aware Task Planner, Human Action
Recognition, Human-Robot Collaboration, Dynamic industrial
scenario

I. INTRODUCTION

Human-Robot Collaboration (HRC) in the industrial sce-
nario is one of the most important technological challenges
of recent years. The synergy between the robot’s abilities,
like precision, accuracy, efficiency and repeatability, along
with human intelligence, flexibility and experience provides
several advantages because it reduces the operator’s effort
and improves ergonomics during the operations, ensures
the production quality and accuracy [1]. To be able to
fully benefit from these advantages, while at the same time
ensuring user safety when working with the robot, intelligent
task coordination between humans and robots is required.
A task planner takes over this intelligent coordination of
activities. Moreover, this implies that it is necessary to use
a planner that takes into account the user.
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Fig. 1: Dynamic Human-Aware Task Planning Framework
for Human-Robot Collaboration.

Since a shared industrial environment between humans
and robots is a highly dynamic scenario, the classical task
planner approaches are infeasible: they assume that the
workspace is deterministic, the state is fully-observable, the
robot is the only agent that can change the workspace, and
actions are instantaneous. Therefore, to be usable in dynamic
environments, task planners must deal with unpredictable and
partially uncontrollable situations, especially due to human
behaviour [2]. Several approaches have been investigated
over the last few years to handle the dynamic scenario:
from Artificial Intelligent Planning like PDDL [3] or Markov
Decision Process [4] through Finite State Machine [5] to
timeline-based approaches [6]. Multi-level programming [7]
and Task Allocation [8] solutions are also very common ap-
proaches. Finally, game-theory and Reinforcement Learning
(RL) models and methodologies are widely applied to multi-
agent task scheduling problems [9], [10].

This paper proposes the Dynamic Human-Aware Task
Planner framework for HRC in an industrial scenario sum-
marized in Fig. 1. In particular, it focuses on the dynamic
scheduling of shared human-robot activities within a man-
ufacturing environment where humans and robots have to
collaborate to complete complex tasks like object sorting,
production line assembly [11] or draping [12].

Draping is one of the most complex operations in carbon
fibre manufacturing. It is carried out by transporting the
carbon ply onto the mould and adapting its shape to the
mould. Nowadays, this process is completely manual and
performed by expert human operators. In addition, the human
operator is in charge of transporting the plies from a table
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to the mould and then draping it. The EU project DrapeBot!
aims at developing an HRC system capable of assisting an
operator working on the draping of carbon fibre parts. In
order to manage that process, a collaborative task planner
must be used.

To address the requirements outlined above, we propose
a hierarchical task planner that exploits the symbolic de-
scription of the process, the definition of Primitives and
Composites actions and human commands to generate a
suitable and continuously updated plan for the assembly
process. In detail, our contribution follows:

e Dynamic Human-Aware Task Planner framework,
which is able to compute human and robot activities
and handle the user commands to update the plan.
Using primitive actions to create more complex, so-
called composite actions, which contribute to the cre-
ation of the final plan.

Intelligent Action Recognition to trigger activities or
robot behaviour not foreseen in the plan but which the
expert user wants to perform.

II. RELATED WORKS

In recent years, task planning problems for HRC have
been investigated. Existing works like [13], [14] tried to
explore the knowledge encoded in the CAD model to extract
the product’s assembly sequence. Other works focused on
sub-problems such as scheduling human and robot actions
through Petri Nets [5], [15], or cooperative planning at a
symbolic level [16], [17]. These approaches work better
only in a classical static environment. Indeed, they cannot
handle dynamism, uncertainty and the possibility of the user
triggering unforeseen actions as a Human-Aware dynamic
scenario requires and as proposed in our approach.

Nikolakis et al. [18] proposed a hierarchical method
based on multi-criteria decision-making for an offline task
allocation and a dynamic replanning due to unexpected
events. Related works which used multi-criteria decision-
making framework are [19], [20]. In these works, the authors
considered robots and humans as resources. They developed
task allocation approaches capable of handling unexpected
events but not capable of handling specific commands/actions
desired by the user. An unexpected event can be considered
as a generic trigger where different events could correspond
to a generic reaction. A user’s command, instead, is a specific
trigger, i.e., each command corresponds to a specific reaction.
However, this part is crucial because the operator is an impor-
tant subject inside the process, and his ability is fundamental
to improve the process. Our method proposes solving this
gap using the action recognition module connected to the
task planner.

Graph-based approaches are described in [21], [22]. The
modelling of the process takes place via AND/OR graph
that can handle the parallelism of two actions assigned to
two different resources. However, they cannot handle the
order of precedence constraints typical of assembly tasks

Uhttps://www.drapebot.eu/
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and how our approach aims to address and resolve. In other
work, instead of using graph-based approaches, the authors
exploit the advantages of the Behaviour Tree (BT) [23],
[24]. In particular, Lamon et al. [24] have combined the BT
approach with a Mixed-Integer Linear Programming (MILP)
based role allocation method that allows individual and
collaborative roles within the same formulation. However,
human uncertainty is not modelled and considered. But, an
intelligent system has to consider human intentions in its
decision-making rather than force the operator to follow a
strict, predefined assembly plan. In our proposed method,
the operator can directly interact with the system and force
the robot to execute some tasks by the action recognition
module. Human intentions are typically modelled through the
Partially Observed Markov Decision Process (POMDP) [25].
Approaches which shared similarities with Cramer et al. [25]
modelled the collaborative task like hierarchical task network
(HTN) [26], [27], [28]. The latter directly employs first-order
logic to enable the robot to estimate its partner’s goals and
anticipate correctly in the presence of human variability and
non-deterministic sensing. Another work related to the HTN
is [29], where the task planner is able to divide the plan into
multiple streams for multiple agents, humans included.

Most of the approaches described above have an implicit
representation of the time. Actions are supposed to be
instantaneous so that the action effects become true when
the action itself is applied and changes the environment or
the situation. Therefore, states and goals are not supposed
to have a temporal extension such that they hold only for
a limited temporal interval, or that they must be achieved
within known temporal bounds. The planners that follow this
approach are temporal planning, and the main feature is that
they synthesize plans by combining causal reasoning with
time and resource reasoning [30], [6].

In [6], Umbrico et al. proposed a timeline-based planner
called PLATINUm with the ability to deal with temporal
uncertainty at the planning and plan execution levels. The
same authors then improved that tool by proposing an evo-
lution of it, called TENANT [31], capable of setting objec-
tives, defining tasks and establishing operational constraints,
despite the inherent complexity required in planning and
robotics. Although these works are evaluated in industrial
applications, these approaches are not able to be adapted or
rescheduled based on real-time observations by the operator.
Indeed, adapting plans on the fly can be difficult, especially
when the original plan heavily relies on strict time constraints
like in these approaches.

Finally, significant advances in Deep Reinforcement
Learning (DRL) have been witnessed in many outstanding
large-scale sequential decision-making problems [10], [32].
Hu et al. in [33] exploited the combination of timed-place
Petri nets with the deep Q-network with GCN to manage the
dynamic scheduling problem of an industrial manufacturing
scenario. In the same application, Kim et al. in [34] pro-
posed the RL approach where intelligent agents evaluate the
priorities of jobs and distribute them through negotiation.
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Transport —» Draping }—L Inspection —> Transport —» Draping

Fig. 2: Example of a plan with composite and primitive
actions.

III. SYSTEM ARCHITECTURE

This section presents the Dynamic Human-Aware Task
Planner framework that handles the entire process and
human-robot planning. Fig. 1 depicts an overview of the
system proposed.

The Task Planner module coordinates the human and
robot activities. It is responsible for creating a continuously
updated plan that serves as a guideline for the workflow and
will be composed of the sequence of actions to achieve the
assigned task. Finally, the Task Planner must manage the
human intentions to adapt the computed task plan to meet
the collaboration needs dynamically or to handle unexpected
situations and use recovery actions to return to a safe state.
A simple example of the plan for a draping process is
shown in Fig. 2 where it is composed of composite action
like Transport that represents the activity to transfer the
carbon fibre ply from a picking table to the mould, and
primitives like Draping and Inspection that represent the
actions performed by the human operator that drapes the
ply into the mould and checks that no defects have formed
during the previous activity.

The second important module is Action Recognition,
which recognises the gestures associated with triggering spe-
cific actions. The associated command is sent to the Central
Node, which is the module that monitors the operation of the
system and sends the commands to the other modules that are
in charge of performing the action in the plan. The Central
Node manages the information the sensors provide in the
workcell. Finally, a state-of-art Motion Planner is involved
in order to generate a collision-free trajectory for the robot.

A. Task Planner

The task planner structure is outlined in Fig. 3 and is
developed following a hierarchical approach consisting of 3
different layers:

o A low layer consisting of Primitive Actions.
« A middle layer consisting of Composite Actions.
« A high layer consisting of the Plan of the entire process.

Each layer has its own distinctive characteristics and a
different level of abstraction with respect to the final task.

In the lower layer, we have the Primitive actions which
represents the activities to be performed (e.g. Move, Draping,
Inspection, etc.). The robot and the human alone could
execute this activity, or both agents are required. A series
of preconditions and effects characterise a primitive action.
The preconditions are verified directly by the primitive itself,
while the effects describe the state changes. When one of the
preconditions is not satisfied, the current state is invalid and
the primitive cannot be sent to execution, i.e. the related
activity cannot be performed. Therefore, the primitive itself
notifies the Central Node that the state is invalid. The central
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Fig. 3: Hierarchical structure of the Task Planner: the primi-
tive actions are in the lower layer, the composite actions are
in the middle layer and the final plan is in the highest layer.

node triggers the related recovery behaviour in order to return
to a valid state. A recovery behaviour is a specific and simple
action, strictly related to the primitive itself, that is respon-
sible for returning the system to a valid state, thus allowing
the process to continue while limiting external intervention
to a minimum. For example, if a robot’s gripper fails to
grasp an object, recovery could be deactivating the gripper
and retrying the grasping operation, i.e., reverting the state,
performing the object detection again and re-evaluating the
precondition primitives for the grasp action. Another more
complex example could be the Piece-Detection primitive,
which involves localizing the object on the pick-up table
and providing a suitable grasping point. If the algorithm does
not find the desired object, two recovery behaviours can be
activated: the first starts a second scan of the table by moving
the camera in a slightly different position; the second, if the
process allows (i.e. without violating precedence constraints)
searches for the next object to pick-up. The action associated
to recovery behaviour is defined as a primitive, with its
precondition (if needed) and effects. After the intervention
of a recovery behaviour, it is verified whether the current
plan is still valid and whether the preconditions of that
action are now valid. If this happens, the primitive is re-
executed, otherwise a re-planning is required. A set of
specific configuration files defines the primitives and their
structure.

In the middle layer, we have the Composite actions defined
as a logical sequence of primitive actions. The composite
has both preconditions and effects, corresponding to the first
and last primitives, respectively. Similar to the primitives, the
composite has a set of recovery behaviours triggered when
a transition between one primitive and the next fails. The
sequence of the primitives is defined in an external config-
uration by an expert operator who has to collaborate with
the robot in the workcell. The definition of primitives and
composite actions are provided in input to the Task Planner
as shown in Fig. 1. The symbolic language used to model the
primitives is the PDDL [35] because its action is precisely
defined by a set of parameters, preconditions, and effects
required by the Task Planner. Fig. 4 depicts an example of
the Transport composite action which includes the primitives
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Fig. 4: Example of the Transport Composite Action (CA) as
the sequence of Primitive Actions (PA).

Move, Piece-Detection, Activation and Deactivation of the
gripper.

Finally, in the highest layer, we have the Plan for the
entire process. By construction, this is the most abstract layer
and where the definitions of composites and primitives are
used together with information from the assembly process,
environment and human operator to create the process plan.
Assembly applications contain precedence constraints to
manage and define the order in which the main components
should be mounted. For these reasons, it was decided to use
a Direct Acyclic Graph (DAG) approach with weighted arcs
to represent all the possible alternative plans. In particular,
each node of the graph represents an action (primitive or
composite), while each arc represents the dependencies that
must be fulfilled. For example, some objects must be placed
before others in assembly tasks. Therefore, during the build-
ing of the graph, the task planner has to take into account that
aspect. For example, as shown in Fig. 5, the Action 5 must be
performed only after Action 3 and Action 4. In addition, each
arc has an associated cost representing the effort of the robot
and the user respectively in performing the action associated
with the transition between the two nodes. The goal is to
create a plan that minimises the user’s effort and maximises
the robot’s effort by exploiting the possibility of having
the robot perform some actions while the user performs
others in the same collaborative workcell. Therefore, using
the DAG (Algl - line 1) it is possible to find a topological
ordering which describes the sequence of actions to complete
the process (Algl - line 2). However, a DAG may contain
more than one valid topological ordering. For this reason,
the Depth-first search (DFS) algorithm was used for the
topological search and optimised the cost function. The cost
function used to calculate effort is the same for user and
robot and it is the sum of the weights on the arcs in the
DAG in Fig. 5. The mathematical formulation of the cost
function follows:

C(w) = Z Wi + Zwi,ru - Z Wy r (1

where w; ; represents the weight of ith arc and j repre-
sents to which agent the weight is associated, whether to
the user (u), the robot (r) or both (ru) when that action
is to be performed by the two agents together. In order to
optimize the cost function and obtain the plan that minimizes
the user’s effort, the arg min,, C'(w) is taken (Algl - line 3).
In this way, a plan can be found to complete the process and
described by the sequence of actions to be performed by the
robot and user.

B. Human Action Recognition

The Human Action Recognition module monitors human
activities during the collaboration, such as phases of the
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Fig. 5: Plan described by the Direct Acyclic Graph (DAG)
where the action is represented by the node and the effort
associated by the arc’s weight.

Algorithm 1 Task Planner

Input: P A Primitive Action set, C A Composite Action set, Py
Process description, state current state, a action failed, h
human command

Qutput: P Plan

1: G+ buildDAG(PA,CA, Py, state,a, h)

2: < TP,C(w) >+ findAllTopologicalOrdering(G)
3: P <+ arg min,, C(w) €< TP, C(w) >

4: return P

Algorithm 2 Central Node

Input: P A Primitive Action set, C A Composite Action set, Py
Process description, H human command set
1: P < TaskPlanner(PA,CA, Py)
2: for all a € P do
valid + evaluate Precondition(a)
4 if valid then
5 state < Ezecute(a)
6: else
7‘
8

W

(state, valid) < RecoveryBehaviour(a)
if valid then

9: goto3

10: else

11: P < TaskPlanner(PA,CA, Py, state, a, null)
12: end if

13: end if

14:  h < HumanActionRecognition(), h € H
15:  if h then

16: P < TaskPlanner(PA,C A, Py, state, null, h)
17: end if
18: end for

process (e.g., draping) or particular gestures to provide
commands to the robot (e.g., request a new ply). Such
information allows the task planner to be constantly updated
on the current activities of the human operator: the task
planner can periodically check whether the human is still
engaged in particular tasks (e.g., draping) or whether through
the use of gestures it is requesting specific actions from the
robot that require the generation of a new task plan.

The human action recognition module is based on a
previous work [36], where a graph convolutional neural
network was proposed to recognize common human actions
and gestures which arise in a collaborative manufacturing
scenario. Such network takes as input a sequence of human
3D poses (i.e., skeletons) and tries to classify human move-
ments according to a set of actions of interest by analyzing
both spatial and temporal information.

In this work, human poses are provided by the state-of-
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Fig. 6: Example of replanning due to user command.

the-art monocular 3D pose estimator MeTRAbs [37]. Such
estimator outputs human poses composed of 19 keypoints
describing the main body joints (e.g., torso, arms, legs).

Differently from [36], where actions were recognized
using an ensemble of various models specialized for different
body parts (e.g., body and hands), in this work we focused
only on the body, as during a real manufacturing application
the hands are thickly occluded and difficult to estimate
accurately.

C. Central Node

The Central Node executes the plan by activating the cor-
rect primitives and supervising their execution. In addition,
this module is always aware of the state of the workcell
through the sensors present in the scene, e.g. a camera
network positioned around the robot workcell, laser scanners,
etc. A second purpose of the central node is to handle invalid
state situations one may find oneself in during the execution
of the process plan. When a primitive precondition is not
satisfied (Alg2 - line 3), it is notified that the state is invalid
and the central node will trigger the corresponding recovery
behaviour in order to return to a valid state (Alg2 - line
7). When this happens, the primitive is asked to re-verify
whether the preconditions are satisfied (Alg2 - line 9) in
order to verify whether the current plan is still valid or if a
re-planning is necessary (Alg2 - line 11). In the last case, the
central node notified the task planner module that the current
plan was unfeasible and a new plan was required. A similar
situation occurs when the user wants to make the robot
perform a task not foreseen in the plan (Alg2 - line 14). In
this case, through the Human Action Recognition system, the
user executes a specific command associated with a specific
action to be done, be it a primitive or a composite. For
example, as depicted in Fig. 6, when the Inspection action
was finished, the user noticed some defects and decided to
take a picture of the area where the defects were present. In
order to perform this action, which was not included in the
original plan, he performed the specific gesture associated
with the composite TakePicture. The central node receives
this information and sends it to the Task Planner module
which is in charge of creating a new plan where the requested
action is the first action to be performed. The requested
action is treated as a precedence constraint to add to the
DAG.

IV. EXPERIMENTS

The Dynamic Human-Aware Task Planner developed in
this work was tested in a specific assembly scenario which
is the draping of fibre carbon plies. First, we described the
draping process and the actions involved, then we evaluated
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the performance of the Task Planner analyzing the computa-
tional time spent to create a suitable plan, considering also
the replanning phase, and the performance of the Human
Action Recognition system. Finally, a qualitative analysis in
a real scenario is provided.

A. Case Study

Draping is a complex industrial operation that requires
an advanced skilled user who is not only responsible for
draping onto the mould but also for a series of activities
such as inspecting the part, noting by text and/or photos of
certain areas if they have slight defects, and checking that
the orientation of the fibres is correct. The transport of a
ply could be executed by the operator or robot alone, or it
could be a collaborative transport where human and robot
are involved. Thus, the coordination of the activities, like
the robot’s motion, activation/deactivation of the gripper to
perform the pick and place and the detection of the piece in
the picking table is crucial.

In addition, the operator could use a gesture to trigger
an action which it was not in the original plan (Fig. 6) or
to notify the central node that the current action has been
completed and to move on to the next one. An example
of this situation is when the operator has finished draping
the ply and wants to notify the central node so that it can
perform the next action. This is a simple and intuitive way
for the user to interact with the robots and provide his/her
experience into the system. Therefore, analyzing the process
and the activities to be done, a set of gestures of interest
has been defined based on the possible human interactions
which can arise during the process. In particular, a set of 6
human actions has been considered: Detection, Inspection,
Transport, Draping, Drape Next and Take Picture.

As described in the previous paragraph, a configuration file
is used to represent the precedence constraints and define
the order in which the plies are draped. Also, the sets of
primitives, composite and gesture are defined in order to
perform the entire draping process. Table I provides an
overview of the actions used to evaluate the Task Planner,
while a detailed list of the human actions of interest and their
description is provided in Table II.

Action name Description

Move
Gripper Activation
Gripper Deactivation
Piece Detection
Draping
Transport
TakePicture
Annotation

Primitive that represents the motion of the robot and/or the operator
Primitive that represents the activation of the gripper to pick up the ply
Primitive that represents the deactivation of the gripper to place the ply

Primitive that represents the detection of the plies on the table
Primitive that represents the draping of the ply onto the mould by the operator
Composite that represents the transport of the ply from the picking table to the mould
Composite that represents the saving of an image of a certain mould area
Composite that represents the saving of information by the user operator
Composite that rep the i ion of the draping plies onto the mould

TABLE I: Overview of actions used to evaluate the Task
Planner.

B. Task Planner Evaluation

The Task Planner was evaluated through the entire draping
process using the actions shown in Table I and 20 inde-
pendent process trials were performed. For each trial, the
plan considered the draping of 5 plies. As mentioned above,
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Action name Meaning Description

Detection Trigger the Object Detection Clap with stretched arms above head
Inspection Stop current robot operation Raise one hand with a stretched arm
Transport Collaborative transport Move while holding one side of the ply
Draping Manual draping Drape the ply on the mould

Drape Next Require next ply Move the right arm bend 90°

Take Picture  Take a photo of the ply status  Point at the desired location to be framed

TABLE II: Set of actions of interest considered for evaluating
the human action recognition module in the proposed case
study.

Trial First Plan Time [ms] Replanning Time [ms]
1 3.36 3.16
2 3.58 4.08
3 3.79 5.9
4 3.81 4.1
5 2.95 6.79
6 2.14 5.72
7 2.5 5.95
8 2.4 343
9 3.52 3.13
10 3.04 3.5
11 2.42 3.49
12 3.86 5.09
13 3.15 3.81
14 3.62 4.18
15 3.35 5.86
16 2.32 3.67
17 2.42 4.37
18 2.61 6.12
19 3.76 6.52
20 2.70 5.56
Average 3.065 4.7215
Validity 19/20 19/20

TABLE III: Time for the first plan (left) and average time
for replanning (right) in ms.

the computational time is used to evaluate the performance
and the interaction with the user was done by the Human
Action Recognition system. Therefore, when the Central
Node received the gesture it would either perform the next
action in the plan or send a message to the Task Planner
that a re-planning was necessary. Task Planner and Central
Node were running in a Lenovo ThinkPad with 11" Intel
Core i7 processor and 16GB of RAM. The results obtained
are summarized in Table III where the time is expressed in
milliseconds (ms).

As shown in Table III, the planner demonstrated high
efficiency in generating the first plan, with an average
computational time of 3.065 ms. However, when the planner
had to replan in response to a user’s command, it was slightly
slower, with an average computational time of 4.72 ms. The
minimum and maximum computational times observed were
2.14 ms and 3.86 ms for the first plan, and 3.13 ms and 6.79
ms for the replanning phase, respectively. All the values in
the replanning column are the average of all replanning that
happened during the trial. In fact, in this way, it is possible
to consider when the rescheduling has taken place. If you
replan at the beginning of the process, there are a lot of tasks
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Fig. 7: Evaluation of the action and gesture recognition
performance on the test set as confusion matrix.

afterwards, so it takes a lot of time; vice versa if you replan
close to the end of the process, it will be faster because there
are fewer tasks left to complete the process. Out of all the
trials conducted, there was only one instance (Trial 13) where
the Task Planner provided an invalid plan both as the first
plan and during the replanning phase. The computational
time was recorded in this case, and the trial was aborted.
These findings highlight the efficiency of the planner in
generating initial plans, with most plans being valid and
feasible. The slight increase in computational time during
the replanning phase suggests that the process of revising
and generating a new plan takes slightly more time than
the initial planning stage. Additionally, the occurrence of an
invalid plan during replanning emphasizes the importance of
thorough testing and verification to ensure the reliability and
safety of the system.

C. Human Action Recognition Evaluation

For evaluating the Human Action Recognition module, a
dataset has been collected for 5 different subjects, each one
performing five times all the human actions considered in
Table II. In order to improve the reliability of the action
classifier, also a general “unknown” class has been consid-
ered in the dataset acquisition to learn better to distinguish
the movements associated with the gesture from movements
related to general movements of the worker within the
workcell not related to the overall process as walking and
standing. We considered 10 sequences for each subject for
evaluating performance on the “unknown” gesture since it
includes a larger variability of possible movements.

The action recognition module is trained on the collected
dataset, using the sequence relative to 4 subjects. The se-
quences related to the fifth subject are reserved as a test
set, on which the action recognition classifier is evaluated in
terms of accuracy. This allows to evaluate the action classifier
on a set of data not used to train the model, assessing
the classifier’s ability to generalize on novel data. The total
number of test sequences is 40: five sequences for each of
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(d)

®

Fig. 8: Evaluation during a draping task: the robot detects the required ply (a) and moves to the “pick” position (b); the
operator waits until the robot reaches the final position on the mould (c) and then starts the manual draping phase (d); when
draping is finished, the worker requests a new ply using a Drape Next gesture (e); while the robot starts moving towards a
new ply, the human raise the right arm to trigger a manual “inspection” causing a replanning (f).

the six human actions defined in Table II, and ten sequences
involving common movements annotated as “unknown”.

The action recognition module has been evaluated in
terms of Topl and Top3 accuracy. The former represents
the percentage of correctly predicted gestures in the test set.
At the same time, the Top3 accuracy is the percentage of
actions whose correct prediction falls in the three highest
softmax scores estimated by the network. The performance
achieved are Top1=90.00% and Top3=97.50%. As shown in
the confusion matrix, Fig. 7, the classifier performs well in
terms of accuracy on the considered test set since most of
the actions of the fifth subject are correctly recognized.

D. Experimental Validation

The proposed framework has been validated in a real
industrial scenario, targeting a collaborative draping task
shown in Figure 8. In particular, the human operator and the
robot work together to drape a series of plies on a mould: the
robot provides the material transport and accurate placement
on the mould (Figure 8c), while the human operator performs
the actions that require high manual dexterity, such as
manually draping the material over the mould (Figure 8d).
At any time, the user can request particular actions from the
robot by means of gestures, such as a request for a new
ply (Figure 8e) or a request to stop the current operation to
allow the operator to manually inspect the draping quality
(Figure 8f). The proposed framework is able to monitor
the worker’s activity and handle sudden requests from the
operator. For example, in the experimental validation shown
in Figure 8, at the end of the manual draping, the operator
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makes a Drape Next gesture, thus triggering the task planner
to generate a plan to move the robot towards a new ply;
immediately afterwards, when the robot starts to move, the
user makes a new Inspection gesture forcing the task planner
to delete the previous plan and generate a new one.

V. CONCLUSIONS

In this paper, we proposed a Human-Aware Task Planner
for Human-Robot Collaborative industrial applications. The
advantages of this approach are the ability to create a plan
starting from the description of the process and the actions
in order to share that activities both from humans and
robots. In addition, it is able to handle user interaction
through the dynamic rescheduling of the plan following
user interruptions or to handle unexpected events. The user
commands are handled by an intelligent Human Action
Recognition module based on Deep Learning technique.
Another main contribution is the ability of the planner to
create actions starting from primitives. The framework has
been validated in an industrial collaborative scenario derived
from the DrapeBot European research project. The results
obtained demonstrate the applicability and effectiveness of
the proposed approach. In future works, we plan to integrate
the Task Planner with an ergonomic Motion Planner in order
to evaluate the complete Task and Motion Planner (TAMP)
application in a dynamic industrial scenario where one of
the collaborative activities between robot and human is the
collaborative transport of plies.
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Decentralized Market-Based Task Allocation Algorithm for a Fleet of
Industrial Mobile Robots*

Jodo Tavares', Alberto Vale? and Rodrigo Ventura®

Abstract—In this paper, we present an efficient, resilient,
and flexible market-based task allocation algorithm with a
distributed architecture for a dynamic factory environment.
The proposed algorithm provides efficient and intelligent task
allocation mechanisms that reduce the time and total distance
traveled by the agents.

This algorithm is implemented in a simulation environment
that is similar to a real-world environment with various robots
and tasks to allocate to test its efficiency, resilience, and
flexibility. It is compared quantitatively with other baseline
solutions such as auction only with available robots and a queue
system.

The results show that the algorithm is more efficient than
the other methods tested. It is also reliable since it can handle
unpredictable behaviors such as corrupted messages, loss of
connection for an extended period, failures to complete tasks,
and obstacles blocking the robot’s path and forcing them to take
a different trajectory. Finally, it is flexible since it can be used
for several different purposes and is robust to communications
failures. Also, this algorithm possesses the drawback of being
ill-equipped to manage a substantial influx of task requests,
given that solely a single task is auctioned and assigned at any
given time.

I. INTRODUCTION

The problem of coordinating robots efficiently and reliably
to work together has a wide application in robotics and
multi-agent systems. It is one of the main developments
needed to update factories to industry 4.0. Efficiency, in this
case, means taking the shortest time and distance to execute
a task. And reliably means that the system will not stop
working if either one or more robots have technical issues
or there is a problem with the communication infrastructure.
Several task allocation algorithms have been created in recent
decades to solve this problem for different environments,
such as manufacturing, warehouse management, hospital
management, and rescue missions.

This work is part of a research and development project
for Industry 4.0 called AGILE, jointly with Imeguisa, In-
stituto Superior Tecnico (IST), and Volkswagen Autoeuropa
(AE), and is focused on developing an intelligent system of
autonomous mobile robots (AMRs) for logistics on the AE
factory floor.
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This project is necessary for AE since the last few years
mobile robots called Automated Guided Vehicles (AGVs)
have transported mobile storage containers of items through-
out the factory. These robots use a simple, yet commonly
used guidance system that can only follow a magnetic line
on the floor, like trains on rail tracks. In this system, if
robots find an obstacle in their path, they will not be able
to continue their task until the object is removed, usually by
a human. Meaning that if production stops, robots will pile
up in front of the delivery area with a full rack, causing an
unnecessary traffic jam and possibly blocking other AGVs
from executing their task. Often, the system that controls the
robots has a centralized architecture that is neither efficient
nor resilient because the whole system stops working if
there is a problem with either the central computer or
the communication network. In short, this system is cost-
effective and simple but has inherent disadvantages that
potentially make it less reliable.

The system developed in this R&D project must be able
to assign transportation requests (tasks) provided by the
containers to each robot, compute the optimal trajectory,
detect obstacles, recompute the trajectory of each robot if
necessary without any human intervention, and work in a
non-centralized fashion. The containers used in this project
will be smarter than the previous ones since they have a
computer that monitors how many items are left and informs
the network when it needs to be transported to a different
location in the factory. This system is more complex than
the one currently operating in the factory, but it should
be more efficient and resilient, as explained before, and
flexible. Flexibility means that the system can be easily
adapted to handle different types of allocation methods,
can handle heterogeneous tasks and robots, and a variable
number of active robots, and does not require a powerful
communication infrastructure.

This paper places its main emphasis on the task allocation
mechanism, specifically the utilization of a sequential decen-
tralized market-based approach. The algorithm implemented
is sequential, allowing for the allocation of one task at
a time. Furthermore, it is decentralized in nature, as all
computational resources and decision-making capabilities are
equally distributed amongst the robots within the network.
Lastly, this mechanism employs a market-based approach to
task allocation, thereby facilitating the even distribution of
computational power throughout the network of robots.
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II. RELATED WORK

To the best of the authors knowledge, the first decen-
tralized auction algorithm was developed in [1] and [2]
in 1979 and 1989, respectively. Since then, several decen-
tralized and distributed auction algorithms were developed.
A Market-based Multi-Robot Task Allocation via Strategic
Pricing algorithm is presented in [3] with a decentralized
architecture and the possibility to auction many tasks at
once. Murdoch, presented in [4], has a central auctioneer
and several heterogeneous agents, which means that only
those capable of executing the task in auction will bid on it.
This algorithm can only allocate one task at a time. Also,
the communication infrastructure requirements are reduced
since the number of messages and the size of each message
is almost negligible. Finally, this algorithm monitors the task
progress and auctions the task again if there is a problem.
Consensus-based Auction Algorithm (CBAA), presented in
[5], [6], and [7], has a distributed architecture and uses a
consensus algorithm to ensure only one robot will execute
each auctioned task. Many tasks can be auctioned at once
but only robots not executing any task can participate in the
auction. The alliance task allocation algorithm was developed
in [8] and [9]. It has a behavior-based fully distributed
architecture. It can only allocate one task at a time with
the option of re-allocation when other agents’ motivation,
more specifically their impatience and acquiescence, reach a
certain level. This makes this algorithm resilient. However,
it was only designed for small to medium size fleets. The
Consensus-based Parallel Auction and Execution (CBPAE)
was introduced in [10] and is similar to the CBAA since it
has an auction and a consensus phase and has a distributed
architecture. Also, it has the ability to work with heteroge-
neous agents and tasks, bid and execute tasks in parallel and
prioritize tasks. This algorithm, presented in [11], works in a
distributed fashion with a network of heterogeneous agents.
M-+ algorithm presented in [12] has a distributed architecture
suited for cooperative missions where task reallocation is
possible and agents have reasoning, decision, and reactive
capabilities. The Sequential Single-Item Auctions algorithm
was proposed in [13]. This algorithm is a robust solution for
obtaining the shortest total distance traveled by agents.

III. TASK ALLOCATION ALGORITHM
A. Formulation

Formally there is: 7 to represent time; a set of
N Autonomous Mobile Robots (AMRs), denoted R =
{r1,..,7n}; a set of @ containers, denoted P =
{p1,..-,pQ}, where a container is, as explained in Section
I, a movable storage unit with a computer that monitors how
many items are left and informs the network when it needs
to be transported to a different location in the factory; a
set of M tasks, denoted T' = {#1,...,tpsr}, where each task
t; is defined by 5 attributes (Task ID, Container ID, Start
and Finish coordinates (location), Deadline) and consists
of a request by the containers to be transported to a pre-
determined location; b, +(7) to represent the bid robot r did

on task ¢ at instant 7; ¢,.(7) to represent the time needed for
robot r to finish the current task at instant 7; n,. ; to represent
the time needed for robot r to execute task ¢.

We consider the following assumptions: 1) robots are
identified by their unique ID; 2) each robot 7 can only be in
one of three states, s,(7) = {Available, Occupied, Offline};
3) a robot is: a) available if it is online and not executing
any task; b) occupied if it is online and executing a task;
¢) offline if it is not connected to the network or has a
technical problem; 4) only robots available and occupied
participate in auctions; 5) robots have a distributed repository
of information with the current task in auction, every robot’s
current state, bids, and the task being performed; 6) robots
are homogeneous, meaning that every tasks can be executed
by any robot as long as they are not offline; 7) each robot
can only execute one task at a time and can not have any
task allocated while performing another; 8) each task can
only be executed by one robot.

The bid computation formula is contingent upon the
environmental factors under which it is implemented. Hence,
for the purposes of the experiments described in this paper,
the bid for each task shall be determined by considering
the duration required to arrive at the task’s starting location
during the auction, as well as the task currently being
performed. The equation used to calculate is the following:

Nty
br’t(T) = { ot

cr(T) + Ny,

if s,.(7) = Available
if s,(7) = Occupied

The main objective is to find an optimal allocation of
robots to tasks. The allocation is done sequentially, one task
at a time. An allocation is a set of robot-task pairs (7;,%;).
The optimal robot ¢ for task 7 is the one that has the smallest
bid:

ri(T) = arg min(b, ;(7)) 2)
v

B. Methodology

The algorithm will use a distributed architecture and
will be inspired by three algorithms, already explained in
Section II, CBAA, Murdoch, and CBPAE. This algorithm
provides efficient and intelligent task allocation mechanisms
that reduce the time and resources needed in environments
with a high number of unpredictable obstacles that might
force the robots to take longer to execute their task. Also, it
is resilient since it does not fail if a robot has an unexpected
problem or there is a communication issue. Finally, this
algorithm is flexible since it can be easily adapted to different
environments. In Figure 1 a flowchart of the task allocation
algorithm is presented.

When a container requests a new task, all robots add the
task to a local priority queue, where the highest priority task
is the one with the closest deadline. Then, if there is not an
auction procedure happening, the robot with the lowest ID
starts the auction procedure for the highest priority task. To
establish a synchronized and orderly auction process, robots
engage in periodic message transmission among themselves.
These messages serve two crucial purposes: firstly, to signal
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Fig. 1. Flowchart of the auction and monitoring algorithms.

the online status of each robot, and secondly, to enforce the
condition that only one agent initiates the auction process at
any given time, thereby ensuring the occurrence of a singular
auction event at a time. By implementing this communication
mechanism, the system effectively prevents simultaneous or
overlapping auctions, promoting a streamlined and coherent
execution of the auction protocol.

After the auction procedure starts, every available and
occupied robot compute their bids using equation (1) and
sends them to all other robots participating in the auction.
After the robots receive all the bids or a specific time interval
has passed, the first consensus phase starts. In this phase,
each robot compares its bid with all the others and chooses
a winner, just like in CBAA [6]. This consensus phase
does the same as equation (2), where the robot with the
smallest bid value gets chosen as the winner. It is important
to note that if the robot with the lowest bid is already
executing a task, the task in auction will not be allocated.
This practice is undertaken for two primary purposes. The
initial rationale is to enforce the restriction that robots cannot
be assigned multiple tasks concurrently. In the event that a
robot, engaged in a particular task, experiences an unforeseen
delay, any subsequent task(s) awaiting execution by this robot
would likewise suffer an unnecessary delay. Secondly, this
practice aims to prevent scenarios wherein a robot, nearing
completion of its ongoing task, abstains from participating in
the auction process. Should this robot abstain, the auctioned
task could potentially be allocated to a different robot that,
theoretically, would require a longer duration to execute said
task.

If the winner already has a task allocated to it, the
second highest priority task is auctioned to avoid having
the algorithm always trying to allocate the same task and
failing consecutively. In the event that the allocation of a
task fails due to the fact that the winning candidate has
already been allocated, the algorithm proceeds to retry the
allocation of the task with the highest priority, and repeats
this process iteratively until the task has been successfully
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allocated. Then, to ensure that every agent reaches the same
conclusion and that only one robot will execute the task,
a second consensus phase is performed where robots share
their winner decision with all the others participating in the
auction and compare them. If the consensus is successful,
the task gets assigned, and the auction finishes. However, if
the consensus is unsuccessful, the task in auction does not
get assigned, goes back to the priority queue, and the process
repeats until either this task gets allocated or a higher priority
task is requested, making it the new task in auction, just like
in CBPAE [10]. This second consensus phase might seem
redundant, but it guarantees that only one robot will execute
the task currently in auction and only requires a reduced
amount of computational and communication resources to
execute it.

Upon the successful completion of an auction process, all
robots within the network engage in the monitoring of the
progress made by the robot that has been allocated the task.
Like Murdoch [4], robots periodically try to communicate
with the assigned robot. In cases where the allocated robot
does not respond, the robot is informed that he is no longer
executing this task and the task returns to the priority queue.
The container will request to be transported from its current
location to the final location of the task.

Regarding the communication infrastructure prerequisites,
the auction mechanism necessitates the exchange of in-
formation among robots. This communication is facilitated
through ROS (Robot Operating System) Topics, wherein
robots transmit messages containing essential details such
as bids, decisions made by winners, and task specifications.
These messages primarily consist of integers and a concise
assortment of integers and floats to represent the speci-
fications of each task under auction. Furthermore, during
the monitoring phase, robots engage in periodic message
exchanges akin to ”ping” signals, ensuring continuous con-
nectivity and communication across the entire network of
robots.

IV. SIMULATION SETUP

In order to test the proposed approach, a simulation
environment was developed using ROS Noetic and Python3.
A Gazebo world was built to generate a map with walls
and corridors for robots to circulate. Figure 2 illustrates the
map used in all simulations. Robots are represented with
orange rectangles, and their idle positions, i.e., where robots
go when they do not have any task assigned, being located in
the red squared room. The tasks paths are shown in yellow.
Each task starts at the green circle and finishes in the red
circle. So, when a container requests a task, it means that this
container is located at the start location of that task. After
a task is allocated, the robot travels to the start location of
the task, transports the container to the task destination, and
[30; 60] seconds after the task was successfully executed,
the container requests to be transported back to its initial
position, and the process repeats. Each container requests
a total of 20 tasks per simulation and each simulation is
repeated 10 times with a different order of tasks being
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requested at the start, to ensure consistency in the results.
Blue rectangles with a cross are dynamic obstacles that
are introduced to block corridors, at random moments for
a period between [10; 20] seconds, and force robots to
recompute their trajectories and take a different route. Only
one zone can be blocked at a time to ensure that robots can
always get to their destination.

e o -~

X LRLRLRLLLE

Fig. 2. Map used in simulations. Robots are represented with orange
rectangles, and initially located at their idle positions, in the red squared
room. Tasks are drawn in yellow. Each task starts at the green circle and
finishes in the red circle. Blue rectangles with a cross are zones that are
temporarily blocked.

The robots used in simulations have similar kinodynamics
to the robots used in real-world applications.

V. EXPERIMENTS PERFORMED AND RESULTS

Since the objective of the Proposed Algorithm (PA) is
to be resilient, efficient, flexible, and decentralized, several
simulations were performed with a different number of
robots and containers. The tests performed will now be
described:

A. Resilience

1) Setup: To assess the resilience of the PA, different sim-
ulations were performed where randomly chosen robots were
temporarily turned off, had their communications obstructed
during the auction period and while executing tasks, or were
forced to fail a task execution to ensure that the algorithm
handles all types of failures. These failures were supposed
to prompt the algorithm to fail in several areas such as bid
computation, sending or receiving a message with the bid
or a winner decision, reaching a consensus on either phase,
having more than one robot execute a task, and failing on
reallocating a task after the assigned robot failed. All of
the failures mentioned were predicted based on the typical
behaviors of networks and computers.

2) Results: The algorithm consistently assigned tasks to
only one robot and never experienced prolonged stalls in
the auction process, even when messages were deliberately
blocked or robots changed online/offline status. This is due
to the built-in mechanisms within the algorithm that prevent
these types of failures. One of the mechanisms used to avoid
allocating more than one robot to a task is the interruption of
the auction procedure if the robots do not reach a consensus
on the winner. Another mechanism for the same purpose is
used by robots during an auction where they are constantly
checking if the current auction is still on. If it is not, they
leave the auction and wait for another task to be auctioned to
ensure that they do not send their bids or results to a different
auction and allocate the wrong robot. Situations like this
will happen when either the bid computation fails or takes
too long or when a robot loses connection for an extended

period. To prevent the algorithm from getting stuck due to
unresponsive robots, in case a robot goes offline or takes an
excessive amount of time to answer during an auction, other
robots will detect the lack of response and disregard it until
the auction concludes. Finally, in situations where robots
have unexpected issues while executing a task, other robots
will notice and the robot with the lowest ID will add the task
back to the priority list. Robots are constantly checking for
the robots online so, they always know which robot has the
lowest ID. In every environment, the time needed to auction
a task was between 1.5 and 15 seconds, depending if there
is a communication problem. Because, after each auction
phase, a robot only goes to the next phase when all the others
reach its phase or, in cases a robot fails, a wait time of 5
seconds has expired to avoid the auction getting stuck or
taking too long unnecessarily. In the simulations performed,
it is observed that the bid computation time takes around 0.1
seconds. The PA is resilient in environments with a variable
number of active robots, bad communication infrastructure,
and failures in the execution of the task.

B. Efficiency

1) Setup: In order to analyze the efficiency of the PA,
several simulations in different environments were performed
and compared with other baseline solutions that compute
their bids in the same way as the proposed model but have
different criteria to choose the winner of an auction namely:

Auction only with available robots (AOA): Only robots
that are not executing any task participate in the auction,
and the robot with the lowest bid wins, meaning that the
auction will always be successful but the most efficient robot
allocation might not happen;

Queue system (QS): All robots participate in the auctions,
and the winner is the robot with the lowest bid. However,
if this winner is occupied, the task gets added to its queue,
which means that the robot will execute it right after finishing
the current task.

These algorithms were simulated in environments with 4
robots and 10 containers with and without dynamic obstacles
and in environments with 6 robots and 10 containers with
and without dynamic obstacles. For every simulation, several
statistics were obtained namely the time needed to execute a
task since it was requested by the container and the time
needed to execute the task since it was allocated. These
statistics will be used as metrics to evaluate the algorithm’s
efficiency and capability to handle unforeseen path changes
due to, for example, obstructed corridors.

2) Results: In Figures 3, 4, 5 and 6 the simulation results
in environments with and without dynamic obstacles and
with different numbers of robots are presented. In each
figure, three distributions are shown for each container in the
horizontal axis—one for each allocation method. The vertical
axis represents the time taken to execute the set of tasks
since they were triggered. For each distribution, the median,
minimum, maximum, and quartiles time are highlighted. As
explained before, each container requests a total of 20 tasks
per simulation, and each simulation is repeated 10 times
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to ensure consistency in the results. This means that each
distribution has a total of 200 values. In all distributions, for
each container, the minimal time taken to execute each task
is very similar. This has to do with how the simulation starts
since the tasks are all triggered simultaneously and auctioned
in random order. The first tasks to be auctioned will always
have a low execution time.
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In an environment with 4 robots and 10 containers and
without dynamic obstacles, Figure 3, the PA takes almost the
same time to execute the set of tasks as the QS and slightly
less time, around 2%, than the AOA method. With dynamic
obstacles, Figure 4, the proposed model is significantly faster
than the QS and the AOA model, around 6% for both.

In an environment with 6 robots and 10 containers and
without dynamic obstacles, Figure 5, the PA takes the same
time to execute the set of tasks as the QS and slightly less
time than the AOA method (1%). With dynamic obstacles,
Figure 6, the proposed model is slightly faster than the QS
and the AOA model, around 3% and 4%, respectively.

3) Results Analysis: The AOA takes more time to execute
the tasks than the proposed model in all tested environments.
Because, in many cases, robots that were closer to the start
of the task but were still finishing another one would not
be able to participate in the auction. A typical example of
this situation is shown in Figure 7. In this case, there are 3
robots executing task 2 (T2), task 3 (T3), and task 4 (T4).
Task 1 (T1) was requested but is not yet allocated and there
is one robot in its idle position. When T1 is auctioned, only
the robot in the idle area (red square) will participate in the
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auction and, therefore, get the task allocated to him. The
other robots did not have the possibility to participate in the
auction, even those that were almost finished executing their
task and that would probably execute the task in auction
faster. The PA solves this problem by always having all
the robots in the network participate in the auction and if
the winner is occupied, the task gets re-auctioned as it was
explained in III-B.

e

T1T2 T3 T4

Fig. 7. Example of a state where AOA is inefficient.

The QS presents similar execution time results in envi-
ronments without dynamic obstacles to the proposed model.
However, in environments with dynamic obstacles, the re-
sults are worse than the proposed model. In fact, when the
robot has to change its path due to unforeseen obstacles
blocking the corridors, the execution time of its current
task and, therefore, all the others in its queue will increase
unnecessarily. An example of this situation is shown in
Figures 8 and 9.

In this example, two possible paths exist to execute T3, but
the robots always choose the shortest path. In the first state,
Figure 8, the robot executing T3 has not noticed that there is
an obstacle blocking the corridor. In this state, an auction is
started for T4, where all robots bid. Since the robot executing
T3 thinks it is the closest to being able to execute T4, this
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Fig. 8. Before the robot executing T3 detects the blocked corridor.

Fig. 9. After the robot executing T3 detects the blocked corridor.

task gets added to its queue. After the robot identifies the
obstacle, a new path is calculated, as it is shown in Figure 9.
This means it will take more time than expected to finish T3
and start T4. If the PA had been used, the auction for T4 in
the first state would have failed and restarted as many times
as needed until the auction winner was available. This means
that when the robot executing T3 noticed the obstacle, T4
would have been attributed to the robot in the idle area. So,
in a dynamic environment, where obstructions occur, the PA
is better suited than the QS.

C. Flexibility

The PA is also flexible and can be used in different types
of scenarios and robots models since the bid computation
algorithm and the task allocation restrictions, used in the
efficiency experiments performed are easy to implement with
very few changes needed in the code.

Furthermore, this algorithm is suitable for environments
where robots have different capabilities and can’t perform
all tasks. This is because the messaging system employed by
the containers to request tasks consists of several attributes
that are accessible to all robots, enabling them to determine
their eligibility to participate in an auction and execute a
task. These attributes can also be used to organize the order
in which tasks are auctioned and therefore handle tasks with
different levels of priority.

Finally, since the task allocation algorithm proposed does
not require a powerful communication infrastructure, as
explained before, it can easily be implemented in most
infrastructures.

VI. CONCLUSION

This paper proposes a task allocation algorithm for a
fleet of heterogeneous robots operating in factory floor
environments, where obstacles may affect the path execution
and communication. This algorithm is inspired by state-
of-the-art task allocation algorithms developed in the past
like CBAA, Murdoch, and CBPAE. It has a distributed
architecture, meaning that the computation and decision-
making are distributed between all the agents involved.

The proposed task allocation algorithm is implemented
and tested in simulation environments with a variable number
of robots, containers, and tasks to evaluate its efficiency
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and resilience. Different task allocation methods are used as
baselines, such as AOA, and a QS to compare the efficiency
results with the proposed method.

To evaluate the efficiency of the model, two metrics are
taken into account: the time taken to execute each task after it
was triggered, and its ability to handle unforeseen obstacles
that can force the robot to change its current path.

The results show that the proposed algorithm is more
efficient than the other methods tested in environments with
and without dynamic obstacles. Also, in terms of resilience,
the algorithm can handle unpredictable behaviors such as
corrupted messages, loss of connection for an extended
period, failures to complete tasks, and obstacles blocking the
robot’s path and forcing them to take a different trajectory.
Finally, the algorithm is also flexible since it can be used for
several different purposes and is robust to communications
failures.

One limitation of the proposed algorithm is being ill-
equipped to manage a substantial influx of task requests,
given that solely a single task is auctioned and assigned at
any given time.

As future work, efforts will be directed towards the refine-
ment of the algorithm to address its limitations in managing
high rates of task input. Additionally, plans are in place to
deploy the algorithm in an authentic factory setting.
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Distributed 3D-Map Matching and Merging on Resource-Limited
Platforms using Tomographic Features

Halil Utku Unlu’, Anthony Tzes?3, Prashanth Krishnamurthyw, and Farshad Khorrami'?

Abstract— A fast, robust, resource-efficient, and distributed
3D map matching and merging algorithm utilizing extracted
tomographic features is studied. Instead of depending on 3D
features and descriptors, 2D features are extracted from 2D
projections of horizontal sections of gravity-aligned local maps
and matched with slices from the other map at different
height differences, enabling the estimation of four degrees of
freedom. The proposed algorithm is observed to provide order-
of-magnitude improvements in memory and time efficiency over
state-of-the-art feature extraction and registration pipelines,
rendering it useful for near real-time map merging tasks in
resource-limited platforms (e.g. UAVs).

I. INTRODUCTION

Implementation of collaborative robotics in real sys-
tems [1] suffers from communication limitations, including
network delays, available bandwidth, and intermittent con-
nectivity. Furthermore, mobile robotic devices usually have
limited computational capabilities, restricting the computa-
tional budget of the robotic platform significantly.

Simultaneous localization and mapping (SLAM) is a re-
quirement for robots operating in an unknown environment.
Single robot SLAM for both 2D- and 3D-motion is a mature
field with many advanced platforms and frameworks for a
variety of sensor setups [2]-[4]. Multi-robot collaborative
SLAM (C-SLAM) remains an active research area [5]-[7].
C-SLAM algorithms focus on performing state estimations
for multi-robot teams to improve resiliency and accuracy.
Sharing map data between agents is not of primary concern.

In map matching and merging, agents share and update
their understanding of the collective map upon establishing
a communication link with one another. Multiple approaches
have been proposed for 2D-map matching and merging
scenarios [8], [9], but the solutions do not scale to 3D-
map representations. The lack of a standard that establishes a
common representation for 3D maps exacerbates the problem
further, leaving the problem of multi-robot map knowledge
sharing partially unaddressed.

Map matching is a subset of the point cloud registration
problem in which the relative rotation and translation be-
tween two sets of point clouds with some overlap are sought.
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Many of the existing datasets and algorithms focus on scan
matching [10]-[12]. However, map matching differs from
scan matching due to the higher density of the input point
clouds, providing a bigger computational challenge for ex-
isting feature extraction and matching algorithms, motivating
this paper.

In this work, we address 3D map matching problem by
providing a feature extraction framework that enables the use
of 2D-image features in a pair of gravity-aligned 3D maps.
The proposed framework is akin to the use of tomography-
where a) the algorithm extracts a binary occupancy represen-
tation for horizontal cross-sections of the maps, b) extracts
2D features over these slices, and c) restricts matching space
for the features across maps to its corresponding section only.
The proposed approach is significantly efficient (in both time
and memory) and accurate compared to state-of-the-art point
cloud registration methods.

The contributions of this article include

« asimple and efficient approach to extracting 3D features
via tomographic extraction of horizontal sections,

o study of viable uses of the aforementioned features in
addressing large-scale 3D-map matching and merging
scenarios,

o studies on real data to compare effectiveness against
alternative methods.

The remainder of the paper is structured as follows: Sec-
tion II provides the relevant work. Section III formulates the
studied problem. Section IV defines the tomographic feature
extraction, and Section V details two frameworks that utilize
tomographic features for map matching. Studies to verify the
algorithm’s performance are provided in Section VI followed
by concluding remarks.

II. RELATED WORK
A. Point Feature Extraction & Description

Local 3D feature extraction algorithms require translation
and orientation invariance for effectiveness and can be an-
alyzed in two main categories: hand-crafted and learning-
based. Many hand-crafted feature extractors define a local
reference frame around individual points. Most notably in
Fast Point Feature Histograms (FPFH) [13] the descriptors
are comprised of the histograms of angular variations for
a point of interest in its k-nearest neighborhood. Scale-
persistent and statistically unique features are returned as
features. A comprehensive review of hand-crafted features
in [14] found FPFH to be effective in low-noise scan
matching scenarios.



Learning-based feature extraction and description schemes
utilize deep neural networks (DNNs) to find points of interest
from an unordered set of points. Various DNN architectures
have been proposed but fully-convolutional [15], [16] and
transformer-based [17] DNNs are gaining popularity due to
their efficiency and effectiveness. The main problem with
3D point feature extractors and descriptors is the speed.
Algorithms either require GPUs to operate or take too long
to compute for a near-real-time operation.

B. Point Cloud Registration

3D feature matches across different maps are converted
into a pose transformation through registration algorithms.
For noiseless data and perfect correspondences, an ideal
form of the orthogonal Procrustes problem provides a closed-
form solution. However, 3D correspondences are commonly
observed to have as high as 95% outlier ratios [18], creating
a need for robust solutions.

Learning-based registration frameworks cast the problem
into differentiable sets of modules, treating the initial set of
correspondences as putative and assigning weights to each
correspondence. Deep Global Registration (DGR) [19] min-
imizes a robust energy metric with a convolutional network
for confidence assignment, while PREDATOR [20] model
enables the network to focus only on the overlapping regions
via an attention-based mechanism.

Many other solutions for robust registration without
learning-based methods exist. Sample consensus-based al-
gorithms [21], [22] find the most consistent registration can-
didate by evaluating the solution generated from a minimal
set of correspondences. TEASER [23] relies on semi-definite
relaxation in its optimization, allowing it to handle extreme
(> 95%) outlier ratios with a certificate of optimality.

C. Map Matching & Merging

A review of map matching and merging algorithms for
2D maps can be found in [24]. Other notable algorithms
utilize ‘suppositional boxes’ as features on 2D occupancy
maps for better performance over feature-based methods [25]
and centralized genetic algorithms operating on 2D raster
representations of maps [26].

Some examples of 3D map merging algorithms are pro-
vided in [9]. A probabilistic map matching and merging
scheme for 3D occupancy grids on heterogeneous sensor
modalities is proposed in [27]. An algorithm on 3D maps
with a pose-graph backend is proposed in [28], which allows
for non-rigid deformations of the map structure and yields a
tighter merging, albeit at a computational cost that prohibits
online execution.

D. Collaborative SLAM (C-SLAM)

Many centralized [29], [30] and fully-distributed [5], [6]
solutions have been proposed for the C-SLAM problem.
Unlike map matching and merging, the primary focus for
C-SLAM algorithms has been the pose optimization of
the local trajectories. Even though the map matching and
merging problem can be solved using C-SLAM solutions, a
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framework for sharing map data between agents is generally
overlooked. The high bandwidth requirement for dense 3D
map data remains a significant challenge.

III. PROBLEM FORMULATION

This paper is tackling the problem of pairwise merging
of 3D maps that can be canonically represented as a point
cloud ‘m = {..., 'p;, ...}, ['m| = N; expressed as a set
of 3D coordinates ‘p; € R* and generated by agent 4.

The points in map ¢ can be transformed into a common
world frame w, T € SE(3), via a rigid 3D 4 x 4
homogeneous transformation. The global world frame w can
be arbitrarily defined by anchoring one agent’s frame as the
global origin. Therefore, the goal is to find the 3D rigid
transformation between the global frame of reference and
the agent i’s local frame using the maps ‘m, i € {c,d}. No
prior knowledge of the absolute pose information for any
agent is assumed, and the agents are not required to observe
each other via a rendezvous (indirect map merging).

In this work, we assume that the local maps are gravity-
aligned (i.e., the same z-axis). If the first agent’s (# c¢)
coordinate is selected as the world frame, the problem
reduces to estimating the transformation T that is restricted
to four degrees of freedom (DoF): three translations in z,
y, and z and one rotation # around z-axis. Notice that the
given setup does not restrict the motion of the agents. The
gravity vector can be reliably measured using an inertial
measurement unit (IMU) while the agent is executing any
motion in 6 DoF.

Optimization-based registration algorithms utilize putative
correspondences to calculate the transformation between the
representations of the maps, which can be all the points
(dense), or a smaller subset of points of interest (sparse),
matched across different point clouds via their descriptors.
Part of this paper addresses the problem of efficient feature
extraction using tomographic features.

Let the set of correspondences be defined as C =

{(“Pm, “Pn) m,n € Nm < N,n < Ny}.The
registration task can be cast as an optimization as
T¢ = argmin (P, T Ip,) (1)
TeSE®) (°Pm,%pPn)€EC

where p(a, b) is a non-negative metric to determine the error
for a given correspondence. In the case of point-to-point ICP,
the cost metric assumes the form of Euclidean distance.

Despite the non-convexity of Euclidean distance in the
optimization cost, it is possible to find a closed-form solution,
assuming all of the correspondences are correct. In practice,
the correspondences should be treated as putative due to high
outlier rates, and an inlier set C;, C C needs to be selected
from correspondences that agree with the unknown, correct
transformation, leading to a modification of (1) as:
PP, T "p) . ()
(°Pm,*Pn)ECin

g = argmin
TESE(3)



IV. TOMOGRAPHIC FEATURE EXTRACTION

A tomographic section of the map, termed ‘slice’ through-
out the paper, is defined as the 2D binary occupancy
representation of a horizontal cross-section of a map m;,
8p, ={'p; : h—t <|'pj|l. < h+t} with h as the height
at which the slice is extracted and ¢ as the distance parameter
that determines the thickness of the cross-section.

Points in ‘§;, are projected onto the zy-plane and dis-
cretized on a 2D grid to obtain a 2D binary occupancy image,
isy. The extrema xy coordinates of points in *3;, and the
grid size g dictate the width and height of the binary image.
Intuitively, each pixel represents a real area of size g X g.

In practice, the 3D point cloud is pre-processed with a
voxel grid filter to reduce the number of points to a given
resolution and to eliminate uneven point density. The leaf
size of the voxel grid filter is a natural choice for the grid
size g during the slicing of the entire map. Furthermore, the
points are separated approximately by the voxel grid leaf size
along the z-dimension. For this reason, we select the heights
h at which the slices are extracted to be at least g apart,
encompassing a height of g (i.e., t = g/2) in order to utilize
all of the available information.

ORB features and descriptors [31] are extracted for the
2D binary images. There are many other potential feature
extraction and description pipelines [32]. However, the pro-
cessed binary images do not possess real photo-like intensity
changes. ORB feature pipeline describes oriented FAST cor-
ners with BRIEF descriptor on orientation-aligned patches,
providing an ideal option in this scenario. Its reliability
and efficiency are validated in the literature against its
alternatives [33] for other use cases.

The reason that these slices are extracted perpendicular to
the z-axis is due to the ease of the observation of the gravity
vector. Many mobile robots utilize an onboard IMU to esti-
mate part of their state (e.g. attitude, velocity, acceleration).
The gravity vector is common among all agents, regardless of
their motion or mobility. As such, the algorithm is agnostic
to agents’ motion capabilities.

V. REGISTRATION WITH TOMOGRAPHIC FEATURES

Extracting features on slices removes a dimension that
prevents exactly identifying the correct match for a repetitive
feature in the 2D projection of a 3D structure. Finding the
closest match for one feature in the source map among all
the features in all slices of a target map will yield erroneous
correspondences. We analyze two different algorithms that
address this issue: Consensus-based and Direct. A visual
summary of the general framework is provided in Figure 1.

A. Consensus-based Registration

In this algorithm, we divide the computation of the 4 DoF
into two distinct components: joint estimation of x, y, and
@, and the estimation of z.

1) Per-slice Estimation: For now, let us assume that the
relative height (i.e. parameter zj) is known. We will outline
the exact method to estimate relative height in the next
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section. Given zj, the problem reduces to finding a 2D rigid
transformation, which has the form

z ) Ak o

sin(6)
for corresponding points pcay = [T{c,a y{c)d}]T. Solu-
tion to the linear system below yields the parameters 69, 3,
and y5:

: (e :
Ty — 1 0 Te
v o= 4)
ya xqa 0 1| |xg Ye
: Ya
where @ = scos(fg) and 8 = ssin(63) with s as the

scale parameter. To recover the angle 09, we simply use
atan2(8, «). Since the maps are known to have the same
scale, no estimation of s is needed. For simplicity, we
use RANSAC to obtain a robust solution, followed by
Levenberg-Marquardt refinement steps over the inlier set.

In this manner, each individual slice provides a 2D
rigid transformation estimation T(z$,yS, 25,05) = TS, at
a known height of zj. The collection of the 2D rigid
estimations at a particular z5 forms the set 7 (z3).

However, we cannot expect all slices to contain sufficient
occupancy information to provide a meaningful estimate,
resulting in erroneous measurements that need to be elim-
inated. To that end, we find the consensus between different
2D rigid estimations by finding the largest set of hypotheses
with the shortest distance to an anchor hypothesis:

T (25) = argmax

(Tg)i - (T3] — [Tgly) < ¢, [Tl € T(2q)

(&)

where the vector-valued function d encodes the Euclidean
distance between the estimates of z§,y; and the angular
distance between the angles 69, and t is a threshold to specify
maximum allowed deviations. We then take the parameter-
wise average of the hypotheses in the inlier set 7(z5) to
compute the resultant pose, Tg.

2) Relative Height Estimation: Up until now, we assumed
that the height 2§ is known. However, matching z-axis height
between different agents is a strong assumption that restricts
the applicability of the proposed system significantly.

We estimate zj based on consensus again. Due to the grid-
based nature of the 3D map, there is a finite number of
relative height differences we can establish between different
maps, all of which are g units apart. We calculate the “cross-
correlation” of the map slices from different maps, estimating
the rigid 2D transformation as outlined above and using
the number of inliers as the correlation value. The height
difference zJ with the largest inlier set cardinality is selected
as the height estimate:

25 = arg max ‘T(zg)‘ (6)

c
Zd
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Fig. 1: Visual summary of the proposed distributed 3D map matching framework. Each agent {c,d} is responsible for
extracting slices {¢%'s, at a predefined grid size. One of the agents cross-correlates the slices by estimating a 3DoF rigid
transformation, T, between slices. Consensus of different height hypotheses, zj, yields the 4th DoF.

Our empirical tests indicate that the number of inlier
correspondences is maximized for all slices when they
are matched with the correct slice from the other map,
for indoor/outdoor environments with distinctive geometric
features. The cross-correlation scheme is expected to fail
for environments that are corridor-like with no distinct 3D
objects that change the uniformity between adjacent slices.
However, such idealized scenarios are not usual to encounter
in practice. As such, we opted for the cross-correlation
scheme for the relative height estimate.

Even though the above algorithm is expensive due to the
slice correlations, each individual step (feature calculation
and 3DoF estimation for a pair of slices) is independent
of each other, enabling parallelization opportunities that
can provide further speed-ups with hardware acceleration.
However, we will demonstrate that it is not fully necessary
for intermittent map matching and merging.

B. Direct Registration

Instead of breaking down the estimation into two separate
steps, we can estimate the full 4 DoF transformation if we
can convert the correspondences to 3D-3D. As discussed
before, we lose some information during the slicing opera-
tion, yielding many incorrect feature matches. However, the
slicing operation is structured and it is not necessary to find
matches for one feature across all maps. For a given height
25, we expect the matching features to be contained within
the slice pair from the opposite map that is zj; apart in z-axis.

To that end, the relative height 2 can be used to augment
2D correspondences across different slices into their 3D
counterparts. We aggregate features from different slices to
yield two 3D point clouds with putative matches, which we
register using the TEASER algorithm to obtain the 4 DoF
rigid transformation estimate. We refer to this method as
“Tomographic TEASER++" throughout the paper.

Similar to the consensus-based algorithm, the relative
height z§ is not known. We estimate it by performing regis-
tration at every unique z§ hypothesis that is valid and select
the value that provides the largest inlier set. Again, each
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registration problem is independent of each other, providing
opportunities for parallelization.

VI. PERFORMANCE EVALUATION

We evaluated the performance of the proposed algorithms
in real-life datasets, in terms of their translational accuracy,
rotational accuracy, memory footprint, and execution time.
We provide comparisons against robust registration pipelines
using learning-based features (FCGF [15] TEASER++) and
completely learning-based registration frameworks (Deep-
GlobalRegistration [19]). We note that newer state-of-the-
art learning-based registration pipelines have been proposed
(e.g. PREDATOR [20], GeoTransformer [17]). However, due
to the scale of the map matching problem, none of the
pipelines with existing implementation could be made to fit
into the GPU memory of a laptop-grade (or sometimes even
a workstation-grade) GPU.

Unless specified otherwise, the tests are performed on an
Intel Phantom Canyon NUCI11PHKi7C (Intel i7-1165G74
CPU, NVIDIA RTX 2060 6GB GPU, 64 GB RAM).

To evaluate the performance on a real-life dataset,
KITTT [34] odometry sequences are used. There are 11 se-
quences for which the GPS ground truth position information
is provided. However, only 5 of the 11 sequences (00, 02, 05,
06, 07) revisit the previously explored locations, providing
a map matching scenario when the sequence is divided into
two. In total, there are 10 different instances of map merging
tasks that are generated with the KITTI dataset, with an
average overlap of 43.90% (minimum 11.17%, maximum
83.53%).

KITTI sequences provide significantly more challenges for
learning-based systems due to the sheer size of the maps.
The original grid size of 0.3 m as used by the original
authors of the works cannot fit into the memory of a desktop-
grade GPU. Therefore for the KITTI study, learning-based
algorithms are run using the KITTI weights as trained by
the original authors on a 0.5 m grid size, but downsizing the
maps to a grid size of 1.5 m, and setting the grid parameters
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Fig. 2: Aggregated errors, execution times, and memory usage of the tested algorithms on select KITTI sequences. Inputs
maps have been pre-filtered with a voxel grid filtering with a grid size of 0.5 m. In Figure 2a, tomographic algorithms use
a grid size of 0.5 m, while learning-based algorithms use a grid size of 1.5 m. All algorithms use 1.5 m grid size in 2b.
Error thresholds (5 x grid size for translation, 0.17 rad (= 9.7°) for rotation) are marked in dashed magenta line.

accordingly. Even at 1.5 m, the learning-based algorithms
cannot be run on the NUC Enthusiast. As such, the results
reported for learning-based algorithms on KITTI data are
from execution on a workstation with 12 GB GPU memory.
The proposed algorithms still use the device specified before.

Tomography-based methods can handle as low as 0.5 m
grid sizes without long execution times. Results on KITTI
sequences for a grid size of 0.5 m for tomographic methods,
and 1.5 m for learning-based methods are provided in
Figure 2b. To compare the performance under the same grid
size, Figure 2a provides the results when the grid size is
set to 1.5 m for all algorithms. Note that the learning-based
algorithms are run on a desktop machine. Also, note that no
parameter tuning is performed for the proposed tomographic
algorithms in the KITTI studies, except for the grid size
adjustment.

At the grid size of 0.5 m, the Consensus algorithm
provides the lowest translation and rotation errors with
the shortest execution time and smallest memory footprint,
rivaled only by Tomographic TEASER++. Both learning-
based methods manage to accurately register only one in-
stance out of 10 possible pairings. Even though the ex- !
ecution time of DeepGlobalRegistration is comparable to (b) Map from the second half of KITTI sequence 02.
tomographic methods, memory usage is the largest out of 0 T
all tested systems.

Increasing the grid size to 1.5 m degrades the performance
of tomographic methods, but they still perform better than
learning-based methods. Execution times of Consensus and
Tomographic TEASER++ methods are roughly equal at a
grid size of 1.5 m, but Consensus has the lowest memory
footprint of approximately 250 MB.

An example merging on maps generated from the
KITTI 02 sequence using Consensus is provided in Figure 3.
This pair provides the smallest overlap of all sequences in
KITTI. Each individual map spans a height of approximately ) ) ) ) )
50 m, which is color-coded in the figures. Resultant align- Tig- 3: A sample matching & merging operation using
ment correctly estimates the 30 m displacement in the z-axis ~ Consensus algorithm. Figures 3a and 3b are color coded
required to find the correct alignment. based on their 2-coordinate.

e

(c) Matched & merged map with Consensus.

VII. CONCLUSIONS

We proposed a computationally lightweight approach to
generate effective features for gravity-aligned maps and
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demonstrated the performance against possible alternative al-
gorithms. A consensus-based and a more holistic registration
paradigm are demonstrated to be both more accurate and
efficient compared to 3D feature generation and matching
algorithms. State-of-the-art learning-based approaches are
not suitable for the map matching task due to a lack of
standard training data and the memory requirements that
surpass that of scan matching. Furthermore, the proposed
tomographic approach to extracting features is observed to
be resilient to noise and does not require any additional pa-
rameter tuning for maps of different scales. The findings are
corroborated on real datasets that map volumes of different
scales, underscoring the algorithmic efficiency and accuracy.
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A Temporal Perspective n-Point Problem with Model Uncertainties for
Cooperative Pose Estimation in a Heterogeneous Robot Team

Florian Steidle!, Simon Boche?, Wolfgang Stiirzl', and Rudolph Triebel®

Abstract— Many solutions exist for estimating the pose of an

object with respect to a camera, where perfect knowledge of
the object is assumed. In this work we lift the assumption of a
perfectly known model and introduce uncertainties for the 3d
points, which are retrieved from a dynamically created model.
The positions of model points can either be uncorrelated or
correlated. The latter is typically the case for mobile robots
navigating based on results of visual-inertial pose estimation in
unknown and GNSS-denied environments. In our approach, a
selection of poses estimated by one robot is used as a dynamical
3d model and combined with 2d points from tracking the
robot over time with the camera of another robot. In addition,
selection criteria for adding and deleting 3d model points
in an optimal way are proposed. Weighted residuals in the
tangent space are used in a generalized least-squares problem to
calculate the transformation between the tracking camera and
an object. Measurement errors are projected into tangential
planes of the unit sphere.
The proposed method allows to estimate the relative pose of
members of a robotic team with high accuracy. The benefits
of our approach are shown in simulation and also during real-
world experiments using visual odometry measurements from
a multicopter that is tracked by the camera of a rover.

I. INTRODUCTION

Determination of the pose of an object with respect to
a camera is a broad field and many different applications
and approaches exist to solve the problem. If distinct feature
points on the object can be detected by a calibrated camera,
the task is called Perspective n-Point Problem (PnP). It needs
a model of the object and a calibrated camera. Usually,
the model is assumed to be perfectly known. Therefore, no
uncertainty in the location of 3d model points is considered
and also most approaches do not consider uncertainties of 2d
image points. Instead of using 3d points from a model that
is known in advance, e.g. from CAD, also the model can
be created at runtime. One possibility is the integration of
consecutive Visual Odometry (VO) measurements. Thereby,
the model is spanned over time and the transformation cannot
be determined at a single time instant, but needs several
observations over time (Fig. 1). As in usual PnP approaches,
observations are the projections of 3d points into the camera
used for tracking. But instead of using a predefined 3d
model, we create the 3d model at runtime by integrating VO
observations from the tracked object. Hence our approach
combines the classical PnP with a dynamical creation of the
model and addresses the main challenges in this scenario.

L Authors are with DLR German Aerospace Center, Institute of Robotics
and Mechatronics florian.steidle@dlr.de

2 Author is with Smart Robotics Lab, Technical University of Munich,
School of Computation, Information and Technology
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Fig. 1: The pose °p;,R; of the multicopter ARDEA
(ARDEA) at time 7 is estimated with respect to the Light
Weight Rover Unit (LRU). Estimation is based on 2d mea-
surements of ARDEA in the camera of LRU and integra-
tion of a number of past visual odometry measurements
iTz;l, _..7i—n+1 T ..

An envisioned application of the proposed method, e.g. in
a planetary exploration setting, is the accurate pose estimate
of a scouting drone with respect to another team member in
order to make optimal use of the information provided by the
drone. This, for instance, will allow a rover to directly reach
a point of interest detected by the drone or to evaluate the
terrain for path planning with respect to the rover’s reference
frame based on images sent by the drone and could be a
relevant component in space-analogue demonstrations like
ROBEX [13] or ARCHES [9] and future planetary missions.

There exist many approaches to solve the classical PnP
problem. In [4], the problem is reduced to estimating 4
virtual control points. The result is obtained by a weighted
sum of these points and called Efficient PnP (EPnP). An
other approach is introduced in [1], which takes into account
the uncertainty of 2d image features and therefore lift the as-
sumption that the location of all 2d features is known with the
same accuracy. More recently, in [11] a statistically optimal
solution taking feature point uncertainty into consideration
was introduced. The approach is called Maximum Likelihood
Perspective n-Point Problem (MLPnP). It projects the 3d
model points and the corresponding 2d camera observations
to a tangent plane on the unit sphere. Also uncertainties
associated to 2d camera observations are projected to the
tangent space and a weighted non-linear optimization is
performed to get the result.
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Besides uncertainty of the 2d features, [12] introduced
uncertainty of the sparse feature points of the underlying 3d
model. The approach, which uses point and line features,
is based on EPnP [4] and Direct Least Squares Method
(DLS) [3]. It assumes knowledge of the average scene depth
or needs a rough initial guess of the transformation. With the
average scene depth the 3d point depths are approximated
and based on that an isotropic approximation of the 3d
point covariance is calculated. A rough initial guess of the
transformation is used to approximate the covariances of the
3d points. The second work, that incorporates uncertainty of
3d feature points is Extended Kalman Filter for Camera Pose
Estimation in a Sequence of Images (EKFPnP) [6]. During
the update step of an Extended Kalman Filter (EKF) an a pri-
ori estimate is received based on the camera motion model.
In the correction step, the reprojection error is minimized. In
contrast to [12] and [6], our approach does not use a model
known in advance and allows correlation of model points.

Our main contributions are:

o instead of using a beforehand known 3d model, the

model is spawned dynamically, online and over time

e 3d uncertainties of and correlation between model

points are considered in addition to 2d measurement
uncertainties

« different criteria for selecting new points to be added to

the model are proposed and evaluated

« different criteria for deciding which point to delete are

proposed and evaluated. One criterion is directly based
on propagated uncertainty.
We show the benefit of our approach in simulation and real-
world experiments.

II. SYSTEM MODELING AND POSE ESTIMATION

The overall system consists of two robots, see Fig. 1.
One robot, LRU [9] is equipped with several calibrated
cameras, which can be used for tracking of objects. The
second robot is ARDEA [5], [7], which uses VO to estimate
its egomotion. The primary goal is to calculate the position
°p; and orientation “R; of ARDEA with respect to LRU.

C

Fig. 2: The error e; is the difference between 2dy. and

3dy., which is the projection of “p; onto the tangent plane
defined by 2%v,. 24v; is the unprojected and normalized 2d
observation in the camera frame and “p; is the corresponding
3d model point after transformation into the camera frame.

At each time 7 the calibrated camera provides 2d measure-
ments x; € R? with associated covariance matrices X rep-

resenting measurement uncertainties. For better readability
the subscript ¢ is omitted in the remainder of this document,
whenever possible and if it is clear that the variables refer to
a specific point in time. The unprojection of a point x’ € R?
in the camera frame to a direction vector x € R? follows the
equation

x=714x) E,=J, 13T, (1)

with 77! : R? — R3? being the unprojection function of

the camera. In the perspective case with focal length f and
principal point (cs,c,), we simply have 7~ (x') = (2/ —
cz,y' — ¢y, f)T. Following the ideas of [11], the subsequent
spherical normalization

2d, _ X
(bS]

leads to the final observations on the unit sphere and

1 T
m <13X3 _2d,2dy, ) '

2%y = Joay 2, J%,

J2dv -

The superscript *2d’ indicates that the unit vector v corre-
sponds to a 2d image point. The formulation on the unit
sphere allows to use non-standard cameras, e.g., a fisheye
camera with field of view beyond 180°. According to [2]
and [11], a homogeneous vector v can be projected to its
reduced equivalent 2%v,. € R? with

2y, = J7 2y =0, ()

where the column vectors of Jy, € R3*? are a basis for the
the nullspace of 2%v and can be used to obtain residuals in the
tangent plane defined by 2?v, see Fig. 2. For a vector in the
tangent plane the residual is e = JT (3dv —2dy) = JT 3dvy,
In addition, by projecting 2?v to its reduced subspace, the
associated covariance matrix X2a,  is no longer singular.
The second source of measurements originates from the
tracked system and consists of a sequence of pose changes

i—j+1Ri7j
013 1

- i—j+lg.
1*J+1f111_j — tZ*J

with the corresponding initial ¢ ; and final timestamps
t5 ;- Such pose changes could be estimated by a VO or
Visual-Inertial Navigation System (VINS). If no camera
measurement x’ corresponding to the end time t;; of a
VO measurement is available, several VO measurements are
integrated until a camera observation with matching time-
stamp is available. With n previous readings from the VO
i, T, ., 772t and the current transformation
°T; = (°R;,“t;) between ARDEA and LRU, the previous
positions of ARDEA can be calculated according to the
following scheme

‘pi =t
“pi—1 = “ti + “Ri't;_y
“Pi—a = “ti + ‘Ri'tim1 + ‘Ri'Ri1 " 't 3)

“Pi—n =t + ...
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By introducing the term

i m-—1

b= (JT T Ricmsn) " i)
m=1 n=1
the pose of ARDEA at a former time t;_; can be expressed
with
‘pi—j = ‘Ri'pj +“t; 4)

In case of 3d measurements, the points “p;_; with j €
[0,1,...,n] have to be projected to the tangential plane
defined by 2?v;_;. By calculating
(&
3d Pi—j
Viej = g 5)
=y szT—j 2dvi—j

the observations 2dv7;_j and °p;_; are projected onto the

tangential plane defined by dv,_;.
Also, the covariance information has to be propagated to
the tangential plane

s, =Bx,B’. (6)

Due to the structure of the underlying problem, B €
R3(+1)x6n i a Jower triangular matrix with Osy3 blocks
on the diagonal. See the appendix for further details on its
derivation. ¥, € R%"*6" is a block-diagonal matrix with
elements Xi—j+1q;_; representing the uncertainty of the VO
observations i*j“Ti,j. The covariance of the points “p; to
the tangential plane defined by 2%v is calculated by

3y, =J,2,J7
with the block-diagonal matrix J,, € R3(»+1)x67 Ag can be
derived from (5), each block Jy 11 € R3*3 is given by

Jv ke = ((P"v) Isxz — vp")

(p7v)*
with the abbreviations p = “p; and v =

readability.
The final covariance matrix

Zv _ 3d2v + 2d2v

2dvy introduced for

is used in the optimization of the transformation from Eq. (7)
after projecting it to its reduced counterpart 3, using J,
from Eq. (2).

The main goal of the algorithm is to estimate the pose
of the tracked object/robot with respect to the camera. This
can be formulated as a nonlinear minimization problem.
The transformation °T} consists of a translation °t; € R3
and a rotation part “R;. During optimization a minimal
representation of rotation is used and transformed to “R;
using Rodrigues’ Formula [8]. By stacking the reduced
observations from Eq. (2) for different times, a nonlinear
optimization problem in the form

F(ll) == Hnull(pa u)TE;TIHnull(pa 11) (7)

can be formulated and solved by e.g. a trust-region mini-
mization. The vector u € R6*! contains the six parameters
defining 7T} and II,, consists of the stacked residuals
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v. BEach camera measurement x’ from Eq. (1) defines
the projection matrices J, and each integrated VO mea-
surement from Eq. (4) defines the reduced observations dy.

To start the tracking process, an inital solution has to be
calculated. Therefore, the non-linear system from Eq. (7)
is reformulated as a linear system, following the approach
from [11]. Thereby, the state of the linear system consists
of three elements representing the translation “t; and nine
elements representing the rotation matrix “R,;.

When the algorithm is executed, new measurements arrive
continuously and it is assumed that the camera and VO
streams are synchronized. Whenever a measurement from
VO arrives, it is looked for a camera observation with
equal timestamp. If no corresponding camera observation
is available, the new VO measurement is appended to the
measurement before. If a corresponding camera measurement
is available, the decision has to be made, if the transformation
¢T; should be optimized with the new information or, if the
benefit of executing the optimization is marginal in compari-
son to appending the latest VO measurement to the estimated
transformation °Tj in the time step before. If measurements
are added each time the optimization is executed, the buffer
containing all measurements grows unbounded. To keep
processing time constant, each time a new measurement is
added to the buffer another measurement has to be removed.
Therefore, two aspects are remaining. The first one concerns
the decision, when to add a new measurement to buffer
and use it to execute the optimization. The second aspect
relates to the decision, which measurement to remove from
the buffer.

In our approach, the decision which measurement to
replace is based on its influence on pose estimation, which
we determine by means of the tangent plane leverage matrix
H € R?"%27 [10]. It is defined according to

T 3d
Jv,.

H = JOPt(JZthOPt)ilJT

opt

where the diagonal elements hy, ;, represent the sensitivity of
a measurement with respect to the result and J,p¢ € R2n%6
1

is the Jacobian of the weighted residual Xy ?II,,y at the
solution. In [10], the largest values %y, , are used to determine
leverage points. These points are assumed to have a high
influence on the result. On the other hand, a value Ay
close to zero, indicates that the measurement has very little
influence on the result. Therefore, each time the optimization
is run, the diagonal elements Ay j are stored. Whenever a
new measurement should be added to the optimization, the
measurement corresponding to the smallest diagonal element
is deleted and replaced with the new measurement.

The second aspect concerns the addition of a new obser-
vation. We employed three different criteria:

o ARDEA traveled more
(“position-based”)

« the last addition of an observation is too far back in
time (“time-based”)

« the covariance of the accumulated delta poses is above
a threshold (“uncertainty-based”)

than a defined distance
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All three criteria specify a rule for the addition of new
measurements.

In the course of this paper, the camera used for tracking
is assumed to be static. But it would be straightforward to
extend the approach to a moving camera, e. g. by attaching
it to a pan-tilt unit. Additionally, both system are assumed
to be temporally aligned. That means, measurements from
both systems refer to a common time basis and therefore,
the correspondence between 3d model points and 2d camera
observations is known. In the special case of uncorrelated
model points, the covariance 3¢%, reduces to a block-
diagonal matrix. Finally, due to the underlying, iterative
structure of the problem, mainly caused by Eq. (3), updates
of most matrices can be done iteratively, which can be
exploited during implementation.

III. SIMULATIONS

Extensive simulations were done to evaluate different
aspects of the approach. For the evaluation of each aspect
100 s segments from 50 different trajectories were simulated
5 times each. Simulation parameters were carefully chosen
to represent the characteristics of true experiments. Two dif-
ferent errors are introduced. On the one hand, the translation
error is defined by

et — ot
s T
[[et]]

with Cfi being the estimated translation and “t; the true
translation. On the other hand the rotation error is defined
by

e = fo (R “R;)

with Cﬁi being the estimated rotation, “R; the true rotation
and the function f, () extracting the angle of a rotation
matrix.

The main points that we evaluate with simulation are:
(1) Influence of different noise levels on results, (ii) compari-
son of different strategies for adding points, (iii) comparison
of different strategies for deleting points and (iv) comparison
of weighted and non-weighted solution.

0
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40 0.01 5,

#points (1) 30 2

# points (1) 40 4

Ap(m) At(s) # points (1)

(a) position-based (b) time-based (c) uncertainty-based

Fig. 3: The three figures show errors for different strategies
to add points to the optimization. In all three cases leverage
information is used for the decision, which point to delete
and the error is below 1% for a suitable choice of parameters.

Fig. 3 shows the errors for the three different strategies to
add points to the optimization. For all three strategies and

an appropriate choice of parameters the error is below 1%.
In the remainder of the paper, a combination of position
and time-change-based strategies is used. The threshold for
position change is set to 1.5m and for the time based
strategy to 0.9s. In addition, the number of points used for
optimization is limited to n = 15.
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Fig. 4: Influence of using weights on translation and rotation
errors. The + sign indicates the median and the horizontal
bar — indicates the mean of each box. In (a) the translation
error e, is depicted and in (b) the rotation error e, in degree.

Fig. 4 shows the effect of considering VO uncertainty
information on the error of the estimated trajectory. The
weighted solution uses uncertainties associated with camera
points 2?3, and with integrated odometry readings 3¢%,,,
while in the unweighted case only 2¢%,, is used and 3¢%, =
0. For evaluation, 50 segments of trajectories were simulated
10 times. Each segment had a length of 100s. A new
integrated odometry measurement was added every 1.5m
distance traveled. The buffer of measurements was limited
to 15 and the oldest measurement was always deleted to
keep the buffer size constant. The intrinsic parameters of the
simulated camera were the same as those of the tele camera
on LRU and the distance of ARDEA was approximately
50m. Odometry readings were created at a frequency of
10Hz and zero-mean Gaussian noise was added that would
on average result in a Relative Pose Error (RPE) [14] of
0.03455,; for translation and 0.01 fgil for rotation. By using
weights the mean translation error could be reduced by 24%
and the mean rotation error by 19%. The standard deviation
is reduced by 37% and 34%, respectively.

In Fig. 5, the mean errors in dependency of noise levels are
displayed. Noise levels from a to d were chosen in a way, that
an integration of odometry readings would on average result
in RPE [14] from 0.05-2- for translation and 0.01 2L for

. 10 m d 10m .
rotation to 0.5615 and 0.1575+-. For all evaluated noise

levels, the errors e; and e, Welzge reduced by the weighted
approach. Based on the results from Fig. 4 and Fig. 5 a
distinct advantage of using 3d uncertainties is visible. But
the additional workload has an impact on processing times.
Compared to the algorithm proposed by [11], the runtime
is =10 times slower. Nevertheless, our algorithm still runs
in real time with measurements from the sensors used on

ARDEA and LRU.
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Fig. 5: Influence of noise level on mean translation and
rotation error. The noise level increases from a to d.
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Fig. 6: Influence of different point deletion criteria on trans-
lation and rotation errors of the estimated transformation. In
(a) the translation error e, is depicted and in (b) the rotation
error e, in degree.

leverage leverage

In Fig. 6, results are shown for the two different strategies
for deleting points from the buffer of measurements used
for estimating the transformation. By switching from simply
deleting the oldest point in the buffer to the leverage criterion,
the translation and rotation errors are reduced by 27% and
21% and standard deviations by 32% and 13%. This shows
the clear benefit of using leverage information when deciding
which point to remove.
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Fig. 7: Distribution of delayed measurements being used in
the optimization of the transformation
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When using the leverage-based criterion, the buffer of
measurements covers different time spans. The time span
represented in the buffer is influenced by different parame-
ters, e. g. the course of the trajectory followed and the dis-
tribution of the uncertainty of measurements acquired along
the trajectory. In Fig. 7 the probability of a measurement
being part of the buffer over the amount of time passed
since the measurement was taken is shown. When the time
passed since the measurement was taken is around 15s, the
probability has a peak. Afterwards it declines. Most recent
measurements have a higher probability of being removed
from the buffer, which indicates that measurements could be
added less frequently to the buffer. The latest measurement
is not displayed in the figure as it is always used. In
phases of good VO measurement quality, indicated by low
uncertainties, the observations in the buffer cover a bigger
time span than during phases of high VO uncertainty.

IV. EXPERIMENTS

During an indoor experiment ARDEA was flying several
times. Each time for approximately 50s. The main benefit of
the lab environment is the possibility to record ground truth
data along with the robot data.

In Fig. 8 the tracked and the reference trajectory are
depicted as an overlay to the initial image of the tracking
camera on LRU. The estimated poses are shown in Fig. 9.
Determining the positions of ARDEA and their uncertainties
in the image was done manually. Shortly after take off, when
the buffer of measurements is filled, the pose between LRU
and ARDEA can be determined. The times at which the
optimization was carried out are indicated by * symbols.
Between two consecutive optimizations, the transformation
between both systems is updated with integrated VO read-
ings. There are no optimizations carried out for a time span
of 2.5 s beginning after approximately 35 s. This corresponds
to the time, when ARDEA was not visible in the camera
and can also be seen in Fig. 8, where both trajectories leave
the field of view of the camera. In general, the errors of the
transformation are relatively small and highest perpendicular
to the image plane of the tracking camera.

V. CONCLUSIONS

In this work, we estimated the transformation between
a static camera and a moving object by minimizing er-
rors between 3d model points and 2d camera observations
by projecting them onto respective tangent planes on the
unit sphere. Instead of assuming a predefined model of
the object, we spawn the model over time and not only
consider 2d uncertainties of camera measurements, but also
3d uncertainties of the model points. The 3d model points
are calculated based on integration of VO observations.
Therefore, they are highly correlated and potentially change
with each observation. To keep computation times limited,
the number of measurements used for the optimization is
limited. Different criteria for the addition of new points to
the optimization and also for the deletion of points from the
buffer are proposed and evalulated.
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Fig. 8: Reference and tracked trajectories of ARDEA over-
layed on the initial image of the dataset. The reference
trajectory was measured by an external tracking system
and projected into the camera reference frame of LRU. In
addition to ARDEA, a second LRU is visible in the image.
It is not used during the experiment.
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Fig. 9: Reference and estimated trajectories of ardea. The
symbol indicates that the optimization was executed.

The benefits of the proposed approach were shown in sim-
ulation and in experiments conducted in a lab environment.

Investigating the implications of a moving tracking camera
could be an extension to the presented approach.
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APPENDIX

In Eq. (6) the matrix B € R3("+1)x67 {5 project uncer-
tainties of single VO measurements to uncertainties of 3d
points is introduced. It can be derived with the error model

°R; = °R;°/R;
t; = °t; — 5ty

(®)
where CRZ-, §; are estimated quantities, “R;, “t; are true
quantities and “0R;, ¢dt; are rotation and translation errors.
Rotation errors §¢ € R3*! are locally defined and a linear
approximation of °6R; = I+| “d¢; | « is used for covariance
propagation. The operator | |y for a vector t € R3*! is
given by

0 —t3 to
[t]x=| t3 0 —t
—ty t1 0O

By plugging the error model from Eq. (8) into Eq. (3), the
matrix B can be derived

B = blkdiag (“Ri) [b1 by bo | )

with by, € R3™+1x3 and h € [1,2,...,2n] . The function
blkdiag (X) creates a block-diagonal matrix of appropriate
size from X € R3*3. In Eq. (9) the size of blkdiag (CRZ)
is therefore 3(n + 1) x 3(n + 1).
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The first submatrix by = [O3x3 nggn}T. For the
remaining odd indices h € [3,5, ...,2n — 1] the sub matrices
b;, are given by

. 03 (ht1)x3
> . Isxs
by =fa | []7""Ris - (10)
k=1
I3xs
[ ——
b,

In by, from Eq. (10), the identity matrix Isys is repeated
n+1-— % times. For even indices h € [2,4,...,2n] the
sub matrices by, are given by

h
2

by =fa | []7" " Rick
k=1

0(3+%h)><3

Chn

The matrix C, € R3"=5)%3 can be developed iteratively

123

according to the following scheme
Chi < |7 |«
for £ <~ h+1 ton do
Chit1 « Chp + 7F2R oy |78 0 |
end for

Each block Cy, j; refers to a 3 x 3 matrix and overall Cy, is
created by stacking them according to

Ch i

Cp = :
Ch,n

The sub matrix by from Eq. (9) with odd indices h
refer to the propagation of translation uncertainty of a VO

measurement and for even indices / it refers to propagation
of rotation uncertainty.
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Human-centered Benchmarking for
Socially-compliant Robot Navigation

Taroslav Okunevich!, Vincent Hilaire!, Stephane Galland’,
Olivier Lamotte!, Liubov Shilova2, Yassine Ruichek!, and Zhi Yan'*

Abstract—Social compatibility is one of the most important
parameters for service robots. It characterizes the quality of
interaction between a robot and a human. In this paper, a human-
centered benchmarking framework is proposed for socially-
compliant robot navigation. In an end-to-end manner, four
open-source robot navigation methods are benchmarked, two of
which are socially-compliant. All aspects of the benchmarking
are clarified to ensure the reproducibility and replicability of
the experiments. The social compatibility of robot navigation
methods with the Robotic Social Attributes Scale (RoSAS) is
measured. After that, the correspondence between RoSAS and
the robot-centered metrics is validated. Based on experiments,
the extra robot time ratio and the extra distance ratio are the
most suitable to judge social compatibility.

Index Terms—Social navigation, human-robot interaction,
benchmarking

I. INTRODUCTION

The development of computing and sensing technologies
allows us to apply mobile robotic systems in different envi-
ronments. Robot behavior is especially important in an envi-
ronment with human presence, such as in the case of mobile
robots for emerging logistic [1] or disinfection [2] purposes. In
these cases, socially-compliant robot navigation [3] is one of
the main requirements that guarantees a high-quality human-
robot interaction (HRI).

Although robot systems perform relatively well, people still
tend to fear them, which negatively affects mental health and
decreases the productivity of workers [4]. The problem behind
fear is the lack of understanding of robot behavior [5]. Robotic
intelligence is different from that of humans, and human-robot
interaction is limited in ways of communication compared to
human-human interaction. People feel safer in the presence of
other people, thus preferring them to robots as their working
partners. The feeling of safety comes from the belief that
people’s behavior is more predictable. Similarly, one generally
feels uneasy when communicating with a drunk person, as
alcohol makes their behavior unpredictable.

To make the behavior of the robot more understandable,
one could apply different engineering solutions. In addition to
the sensors necessary to perceive the world, the robot can be
equipped with mechanical elements to show its behavior or

This work was supported by the Bourgogne-Franche-Comté regional
research project LOST-CoRoNa.
'UTBM, CIAD UMR 7533,
firstname.lastname@utbm. fr
2Center for Bioinformatics, Saarland Informatics Campus, Saarbriicken,
Germany. 11sh00001@stud.uni-saarland.de
*Corresponding Author.

F-90010 Belfort, France.
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Fig. 1. The experiment to examine the social compatibility of robot naviga-
tion. The person works in a room, while the mobile robot moves nearby. The
logistic operations at a warehouse are an example of a real scenario, where
human workers and autonomous mobile robots need to collaborate with each
other and navigate in a shared space.

intention, such as the light [6] and sound [7] signaling system
or an additional screen [8]. Another way to reduce robot fear is
to improve the quality of navigation algorithms. This implies
that the robot tries to follow the unspoken social rules that
people have in their regular life. For instance, the left- and
right-hand rules to avoid collisions [9], social zones around
people [10], and navigation through pedestrian flow [11].
However, evaluating the social effectiveness of socially-
compliant navigation methods can be challenging. Many stud-
ies [9], [10] apply robot-centered metrics (RCM) to assess the
quality of the social part of navigation methods. These metrics
are numerical and usually measure robot functionality as a
reference. For example, the speed of the robot or the length
of the traveled path. As fear is not a numerical parameter,
scientists also need to use psychological metrics to assess
the acceptance of the robot by people. The latter can be
regarded as compatibility from a robot perspective. We suggest
therefore to use “social compatibility” (SC), rather than “social
acceptance” used in the literature, which characterizes the

124



11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

social effectiveness of robotic navigation methods. The high
SC value of a navigation method implies that, in a social
environment, a robot moves in an efficient, safe and socially
acceptable manner [3].

One of the most popular approaches to measure SC is to
invite people to participate in an experiment (such as that
shown in Fig. 1) and then conduct a questionnaire for the
participants. As questions are used as metrics to evaluate hu-
man feelings, they are called human-centered metrics (HCM).
However, in different articles various metrics and experimental
settings are applied to assess the interaction between robots
and humans. Consequently, reproducing these experiments
is often not straightforward, making comparisons between
different methods tricky.

The contributions of this paper are twofold.

« We propose an end-to-end human-centered benchmarking
framework. To confirm our idea, we benchmark four
open-source robot navigation methods under the proposed
framework. Two of these methods have been developed
to be socially-compliant. All experimental settings and
parameters are clearly stated to ensure the reproducibil-
ity and repeatability of the experiments. The software-
hardware integration scheme is publicly available to the
community!.

« We evaluate different methods using both HCM and RCM
and report the experimental results. We gain insight that
some RCMs are suitable for assessing SC while others
are not, if considered for HCM. This provides a basis for
clarifying the connection between RCM and HCM.

II. RELATED WORK

Much work has been done on socially aware robot naviga-
tion, as well as interaction between humans and autonomous
mobile robots. However, the applied experiment conditions
(e.g. hardware, software, environment, etc.) and metrics to
measure method performance vary from paper to paper sig-
nificantly.

[9] focused on a multi-agent collision avoidance algorithm
that exhibits socially-compliant behavior. The authors trained
their algorithm in a reinforcement learning framework and
compared it with two algorithms in simulation. They chose
three performance metrics: 1) average extra time to reach the
goal; 2) minimum separation distance to other agents; 3) rela-
tive preference between left-handedness and right-handedness.
Although the experiment in real life proved that the method
developed was safe, the work did not show the opinion of
the people about the behavior of the robot. [12] compared
standard and social navigation strategies for efficient robot
behavior. For a person and a robot moving in the corridor,
the following metrics were recorded: 1) the speed of the robot
and the person during the experiment. Higher speed indicates
a more efficient HRI. It was shown to be a useful metric
to measure the difference in HRI representing the changing
human behavior; 2) the signaling distance between the person

1 https://github.com/Nedzhaken/human_aware_navigation
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and the robot. For the human, it was measured when the person
started to change their trajectory to react to the robot. For the
robot, it was measured when the robot started to avoid the
person. This metric was shown to be suitable for a perception
system but not for HRI.

Another way to evaluate socially aware robot navigation
is to use simulations. This has the advantage of repeatability
of the experimental conditions for each evaluated naviga-
tion method. In addition, simulated experiments often do
not require real participants, which decreases the cost of
the study. [13] presented a grounded simulation framework
to evaluate social navigation. This simulator included pre-
recorded pedestrian trajectory datasets in different scenarios.
Despite the effectiveness of the proposed framework, the
simulator included only RCM and could not provide any
information on HCM.

[14] developed a 29-question HRI measurement question-
naire to assess how humans feel about robots. Questions were
asked in five groups: anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety. The answers are
ranked from 1 to 5, with 1 being the worst and 5 being the best
opinion mark. This questionnaire has been used as a baseline
for numerous questionnaires in HRI research [15]. How-
ever, [16] criticized the Godspeed questionnaire [14]. Through
the exploratory factor analysis (EFA), it was shown that the
Godspeed questionnaire has been loaded onto three unique
factors, while originally this questionnaire was designed for
the five factors/groups. Therefore, based on the Godspeed
questionnaire, Carpinella et al. developed RoSAS. It consisted
of 18 questions, which were chosen from the psychological
literature on social cognition. Despite these questionnaires
being one of the ways to represent HRI, their application leads
to limited autonomy, since a robot itself cannot assess it.

[15] presented the design of the user study for the ex-
perimental evaluation of mobile robot navigation strategies
in human environments. The authors applied different RCM
to define the most suitable navigation strategies for HRI,
such as average acceleration and energy, minimum distance
between robots and humans, irregularity of the path, efficiency
of the path, time spent per unit of length of the path, and
topological complexity. After the experiment, the participants
evaluated HRI during the experiment through a questionnaire.
The combination of the results of two different types of metrics
allowed HRI measurement by RCM and confirmed the results
by comparing the responses to the questionnaire (i.e. HCM).
The work provides immensely valuable input regarding the
evaluation of mobile robot navigation strategies in a controlled
lab environment. However, it could also be noted that the
questionnaire used was later criticized by [16]. [17] studied
how different robot navigation strategies are perceived by
users in terms of comfort, safety, and awareness. Their results
demonstrated some correlation between safety and comfort
and the distance between the robot and the pedestrian when
the robot passed the intersection.

From the survey, it became clear that there is still much to
be done about the benchmarking methods and standardizable
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metrics for socially-compliant navigation. The existing evalu-
ation mainly uses RCM. However, it is not completely clear
how these metrics reflect the SC. Furthermore, the lack of
necessary experimental information makes benchmarking of
the community difficult. The status quo drives us to develop
reproducible experiments based on standardizable processes
to accelerate the development and comparison of relevant
methods in our community. In the current work, our aim is
to develop such an experiment and explore the correlation
between RCM and HCM for the SC parameter.

III. BENCHMARKING FRAMEWORK

HRI benchmarking is often very challenging. This is due
to, on the one hand, the increasing complexity of the robotic
system (both hardware and software) and, on the other hand,
the unforeseeable and unpredictable behavior of different
participants with different understandings of the experimental
procedures, which makes benchmarks difficult to reproduce.
To this end, we propose an end-to-end benchmarking frame-
work (similar to black-box testing in software engineering),
focusing on human-centricity that allows rapid and efficient
evaluation and comparison of the performance of different
socially-compliant navigation methods, by clearly defining
experimental scenarios and evaluation metrics. Applying HCM
ensures that human opinion is one of the criteria of evaluation,
which makes our framework human-centered. Moreover, we
propose to divide the experiment into explicit and as small
steps as possible, ideally consisting of simple motion or action
primitives, which make it easier to reproduce and avoid any
ambiguity. For example, the instruction to a person could be
“go straight forward for three meters at normal speed to point
B” rather than “go to point B”. Based on this principle, we
propose the following experimental design.

A. Experiment Design

Unlike the non-object experiments commonly seen in the
literature [9], [17]-[22], our experiment required humans to
move cartons. This task was inspired by the industrial example
in which workers carry boxes in factories, warehouses, or
supermarkets. We tried to reproduce the situation in which
a person should complete a working task in the presence of
the robot. This setting helps us to avoid bias in HCM results.
According to research in the field of sociology, people are
less likely to pay attention to robots when they concentrate
on their tasks [23]. Therefore, experiments can provide an
objective and impartial assessment of SC performance, which
is beneficial for comparing different methods. Specifically, in
a 2.5x4 m room, trial participants were asked to carry three
cartons from one side of the room to the other (see Fig. 2).
During this period, the robot moved in the shared space. The
robot’s acceleration and maximum velocity of the robot were
set to 0.3 m/s*> and 0.3 m/s, respectively. Humans were told
to move at normal speed. The evaluation of the socially-
compliant navigation methods included two parts: the robot
path being coinciding or perpendicular to the pedestrian. We
wanted to test navigation methods in three general ways of
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Fig. 2. Our reproducible experiment design. Shown on the left is the case
where the robot’s trajectory is coinciding with the human’s. The coordinates
of positions H2-R1 and H1-R2 are equal to ensure the crossing of the robot’s
and human’s trajectories. Shown on the right is the case where the robot
moves perpendicular to the pedestrian.

social interaction of a mobile robot with a human: passing,
crossing, and overtaking [9]. The robot movement along the
human path was used to simulate the passing and overtaking
scenario, and the perpendicular robot movement was used for
the crossing scenario. The passing and crossing movements
can be performed by both the robot and the human. The
overtaking movement was performed only by a human, as the
robot’s speed was chosen to be low to decrease the influence
of the velocity on SC. To make our experiments reproducible
and to facilitate the comparison of results between different
methods, we next describe the full implementation details.

The initial position of the person was at the entrance of
the room, denoted as HS. The person was asked first to reach
HI1 and then H2, walking in a straight line. When reaching
H2, people were asked to pick up a box and take it to H1 to
drop it off. This process was repeated until all cartons were
transported to H1 and the experiment ended. On the other
hand, the starting position of the robot was in the opposite
corner of the entrance to the room, marked RS. Similarly, the
robot first moved to R1 and then went back and forth between
R1 and R2 four times to ensure that the person completed the
task within its moving time. As shown in Fig. 2, the robot
moved between R1 and R2 following the same trajectory as
HI1-H2 or perpendicular to H1-H2. When the robot finally
reached R1, we collected the experimental RCM.

The moderately sized workspace ensures actual HRI and
reliable robot navigation and allows experiments to be easily
reproduced at other places. The distances between human
positions were chosen to ensure the naturalness of human
behavior. In the first case, the robot and human waypoints
were in the same location (R1-H2 and HI1-R2) to ensure that
a participant interacted with the robot and did not ignore
it. During the perpendicular movements of the robot, the
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human could solve the task without interaction with the robot.
The close positioning of R1-R2 in this case increased the
probability of the intersection of trajectories.

B. Human-centered Metrics

In principle, RCM alone cannot fully describe SC, as
they do not reflect people’s subjective feelings about the
robot’s behavior. To assess human opinions, we adopted the
aforementioned RoSAS questionnaire. It includes 18 ques-
tions?, each of which is answered on a scale of 1 to 9. The
questions are divided into three underlying factors: warmth,
competence, and discomfort. The questionnaire provides a
psychometrically validated and standardized measure of HRI.
The RoSAS was applied to measure social perceptions of
human, robot and blended human-robot faces [16] or human-
to-robot handovers [24]. We innovatively applied the RoSAS
to measure the SC of the robot navigation methods. Moreover,
we wanted to demonstrate that the scale was applicable in
mobile robotics to assess SC as a form of HRL

C. Robot-centered Metrics

Five RCM metrics commonly used from the literature are

selected, as well as one additional metric.

1) The robot extra time ratio evaluates how efficiently a
robot can complete a task in an environment shared with
humans [9], [25], [26], and is defined as:

R =TT, (1)

extra

where T" and 7, are the time it takes the robot to
complete the task without and in the presence of humans,
respectively.

2) The human extra time ratio is a human analog of
the previous one. It is first proposed in this paper to
assess changes in human performance when working
with robots. It could improve our understanding of the
connection between human performance and SC. It is
defined as:

Rl =T"/T}, 2)

where T" and T are the time it takes a human to
complete the task without and in the presence of robots,
respectively.

3) The extra distance ratio evaluates system performance
in terms of the distance a robot would have to travel
additionally when a human is present [15], [27], and is
defined as:

Riiss = D" /D, (3)

where D" and Dj represent the distance that the robot
travels to complete a task without and in the presence
of a human, respectively.

4) The success ratio assesses the ability of a robot to
complete a task without colliding with a human [9], [25],
[26], and is defined as:

Rsuce = SMCC/N7 (4)

2 https://github.com/Nedzhaken/human_aware_navigation
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where Ny, represents the number of successful trials
during which the robot does not hit a human and N
indicates the total number of trials.

5) The hazard ratio assesses the time that a robot gets too
close to a human [26], which is defined as:

hazard
1

n
Rhaza = Z Tsocial o)
i=1 %

S| =

where 7 is the number of people, Tihaz‘”d is the duration
of time when the distance between the robot and the i-th
person is less than the safe distance (denoted as Dyqre),
and Tf“ial is the duration of time when the distance
between the robot and the i-th person is less than the
social distance (denoted as Dy,iq;). In our experiments,
Dy4re = 0.2 m and Dyyeiqr = 0.4 m.

6) The deceleration ratio evaluates a robot’s ability to slow
down when approaching a human [12], which is defined
as:

L
Y Y (6)

where n represents the number of speed measurements
when the robot is less than Dy, from the human. V;
represents the instantaneous speed of the robot at i-th
measurement, and V%" is the maximum speed of the
robot (0.3 m/s). The maximal velocity was kept the
same for all methods. Although the different methods
can work with different maximal velocities, variations in
this parameter would complicate the analysis. It would
be difficult to understand whether the maximal velocity
or the algorithm itself affects the SC.

IV. EXPERIMENTS

Our experiments aimed to benchmark four open-source
robot navigation methods. Two of them were developed as
socially-compliant. This, on the one hand, showed the effec-
tiveness of the proposed benchmarking framework and, on the
other hand, revealed the connection between RCM and HCM.

A. Experimental Platform

For the experiment, we used a mobile robotic platform.
The robot chassis is a Clearpath Jackal UGV. The perception
system includes four RGB-D cameras and a 3D lidar. The
RGB-D cameras are placed toward all sides of the robot
for a panoramic view. The 3D lidar allows people detection
and tracking under different lighting conditions. The robot
is equipped with a 2D lidar that has higher measurement
frequency, accuracy, and resolution compared to the 3D li-
dar. It is beneficial for robot localization and collision-free
navigation. The software system has been fully implemented
in ROS [28] with high modularity and is publicly available to
the community.
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B. Evaluated Methods

We deployed several open-source methods and reported
results on four of them. The choice was based on two factors:
1) the method must be deployable on real robots, and 2)
the effectiveness of the method must have been confirmed in
its corresponding paper. Two of these methods are socially-
compliant robot navigation methods and two are traditional
navigation approaches that include only collision avoidance
mechanisms.

o Social Navigation Layers (SNL)* [29]: This method im-
plements a Gaussian mixture model around the detected
person on the navigation cost map. The extra cost area
around the person makes the robot consider avoiding it
when planning its path. This allows the robot to demon-
strate better social attributes during navigation. Also, if
the person moves, the social area grows in the direction
of the movement (i.e., from a circle to an ellipse). In
our experiments, according to the characteristics of the
working environment, the social radius was set to be
0.4 m centered on the person.

o Time Dependent Planning (TDP)* [30]: This method is
similar to SNL, except that the social area is no longer
limited to a person’s current location, but also includes
their predicted location several time steps in the future,
based on a constant velocity model.

o Collision Avoidance with Deep Reinforcement Learning
(CADRL)’: This method is the underlying implemen-
tation of the well-known SA-CADRL (socially aware
CADRL) [25], while the latter has not been ROSified.
However, it is still considered a baseline, as collision
avoidance is one of the most fundamental elements in
the social properties of robot navigation.

o move_base (MB)®: This is a basic component provided
by the ROS navigation stack and does not contain any
socially-compliant modules.

Additionally, we added the human-human interaction to
understand the difference between a robot and a human
interaction in the terms of HCM.

o Human-human interaction (HH): In this case, the robot
is replaced by a human who performs the task assigned
to the robot, that is, moving from one point to another.

The results of the RCM were recorded during the execution
of the above methods by the robot, and the participants were
asked to complete the questionnaire after each method to
assess the HCM.

C. Farticipants

The recruitment was carried out within the University
of Technology of Belfort-Montbéliard (UTBM) in France.
Twenty volunteers (14 men, 6 women), aged 18 to 39 years [M
=27.10, SD = 5.30] participated in the experiment. Participants

3 https://github.com/DLu/navigation_layers

4https:// ‘github.com/marinaKollmitz/human_aware_navigation
3 https://github.com/mit-acl/cadrl_ros
6https://github.com/ros—p1anning/navigation

were not rewarded in this research. To avoid carry-over effects,
the methods of the experiment were counterbalanced among
participants by applying a Latin square design [24].

D. Experimental Results

As RoSAS had not been used before to measure SC of a
mobile robot, we performed an internal consistency (IC) test,
which allows us to confirm the results of the EFA performed
in the original investigation [16]. Specifically, the IC measures
how closely the RoSAS questions match three factors (warmth,
competence, and discomfort) by applying the data from our
experiment. For the test, Cronbach’s alpha should be more
than 0.90 to represent high IC [31]. Cronbach’s alphas of
warmth (Qcyonpach = 0.94), competence (Ccronpach = 0.94), and
discomfort (Ocrpnpach = 0.92) satisfied this condition. Thus, the
factors have relatively high IC with their respective questions.
For the analysis of RoSAS, six questions were averaged
that comprise the dimensions of warmth, competence, and
discomfort. The warmth factor includes the items: happy,
feeling, social, organic, compassionate, and emotional. The
competence factor includes the following elements: capable,
responsive, interactive, reliable, competent, and knowledge-
able. The discomfort factor includes items: scary, strange,
awkward, dangerous, awful, and aggressive. The one-way
ANOVA results (see Table I) show that there is a statistically
significant difference between the methods evaluated for each
HCM and applied RCM (p < 0.05) except for R!

extra-®

TABLE I
ANOVA RESULTS OF APPLIED HCM AND RCM

Metric H Sum Sq | F value p
Warmth 250.134 28.203 <0.001
Competence 173.484 20.495 <0.001
Discomfort 110.194 10.317 <0.001
R ira 0.957 21.608 <0.001
R, 0.045 1.501 0.22
Ryist 0.041 3.025 0.035
Ryuce 0.459 3.435 0.021
Rhaza 0.104 4.052 0.010
Riec 2.626 166.332 | <0.001

Fig. 3 summarizes the normalized HCM results. The blue,
orange, and green bars represent respectively the average rates
of the warmth, competence, and discomfort factor of RoSAS.
It can be seen that TDP performs best in experiments involving
the robot. This is reasonable, as this method is the only one
with pedestrian prediction capability, which also confirms the
importance of robot foresight in socially-compliant navigation.
The reason for the worst CADRL performance is the freezing
movement of the robot during the experiment. The reason for
that is the implementation of the open-source version of the al-
gorithm. Therefore, it leads to aggressive motion and freezing
of the robot, therefore to low rates of warmth and competence
and a high rate of discomfort. Instead, HH scores for warmth
and competence are much higher and for discomfort much
lower than in other robot-involved methods. This reflects the
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The average rate of warmth factor
The average rate of competence factor
The average rate of discomfort factor
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MB

CADRL
Navigation method

Fig. 3. Experimental results of RoSAS. The bars represent the average values
of 3 questionnaire factors (warmth, competence, discomfort), normalized to
[0,1] with standard error (N = 20).

general understanding that people still find other people more
socially acceptable than robots. The difference between SNL
and MB is only the implementation of social zones in SNL.
The close values of the warmth and competence factors of
MB and SNL demonstrate that these social zones influence
exclusively the discomfort factor.

The results of the experiment are presented in Table II.
The gray row shows that R’ provides values that do not
vary significantly among the methods. Red and green cells
are respectively the worst and best results of a metric in
terms of SC. In terms of HCM, the CADRL with its freezing
movements can be seen as the worst and the TDP with
pedestrian prediction capability as the best method. RCM
partially follows this trend. On the one hand, three out of
five RCMs were indeed the worst for CADRL. On the other
hand, R},,,, and Ry, demonstrated the method to be the best.
This means that, while the robot did not pose a real danger
to people and did not spend extra time with them, it was still
perceived as the most uncomfortable to work with. For TDP,
only Ry reached the best value. In line with the HCM results,
this metric has the highest value in TDP and the lowest value
in CADRL.

R}, shows the inverse relation to HCM, which allows the

application of the inverse value of R, to measure SC. The

TABLE II
EXPERIMENTAL RESULTS OF RCM AND HCM

Metric || SNL | TDP | CADRL | MB |
Warmth 044 | 045 030 | 044
Competence 0.60 | 0.65 0.40 0.59
Discomfort || 0.39 | 0.35 060 | 043
Riaza 059 | 057 065 | 056
Rlvira 09 | 088 094 | 087
Ruist 0.96 | 1.00 095 | 097
Ruee 0.56 | 0.58 017 | 061
R 077 | 0.74 .00 | 0.83
Ryuce 092 | 085 1.00 0.8
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TABLE III
CORRELATION COEFFICIENTS OF RCM TO HCM
Metric || Ryaza | Rgxtra | Raist | Rec | R ira | Ryuce |
Warmth -0.700 | 0.148 0.152 -0.402 | 0.114 | 0.086
Compet. -0.620 | 0.304 0.156 | -0.195 0.029 0.085
Discom. 0454 | -0.456 | -0.197 0.059 -0.079 | 0.022

reason for the lowest value R}, of TDP is the pause during
movements. The mobile robot with the pedestrian prediction
capability prefers to wait while the person liberates the path
of the robot than trying to avoid them. In this case, the
robot spends more time finishing the task but crosses fewer
distances and seems to be better accepted by people. As R, ,
and Ry;;; have low correlation coefficients (see Table III), the
relationship between these RCM and HCM is likely non-linear.

The Rpazq, Ryec, and Ry, do not seem to match the HCM
trends when comparing the methods, although the correlation
coefficients for some of them are considerable. The values
of Rjgzq are similar for SNL, TDP and MB. This matches
the warmth factor of HCM. As expected, the more often the
robot is located near the human, the lower is the warmth
and competence factors, and the greater is the discomfort.
Rjec has a trend similar to Rp,,,. The larger decrease in
speed in close proximity to the person corresponds to a worse
HCM. However, as with Ry, the highest speed of the robot
near the participants does not correspond to the best HCM.
Interestingly, Ry, does not reflect HCM. The reason might
be the low speed of the robot in the experiment, which made
collisions negligible to the participants.

Therefore, the following conclusions can be made:

o« TDP has the best HCM among the robot navigation
methods, because of its pedestrian prediction capability.

o HH interaction has higher values of HCM and therefore
higher SC.

« When people worked with the robot, they needed more
time to complete the tasks (i.e. R, < 1.00 for each
method).

o While R}, and Ry;y reflect the HCM and can be used

to judge SC, other RCM do not give a clear picture of

SC. Therefore, in the experiments with mobile robots,

especially when assessing human opinion is not possible,

it is highly advisable to record R}, and Rg;; to judge
the SC of the navigation method.

V. CONCLUSIONS

In this paper, we proposed a human-centered benchmark-
ing framework for socially-compliant robot navigation with
RoSAS and benchmarked four open-source approaches. The
benchmarking framework is end-to-end and explicitly provides
all parameters required for the reproduction of experimental
results. This benchmark aims to evaluate the social part of
a navigation method. Only the full survey of participants,
preferably conducted with a standard questionnaire such as
RoSAS, can provide the full picture of SC. However, in
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situations where it is not possible, one could record RCM like
R .., and Ry, that reflect the SC of navigation. We suggest

extra
to apply these two metrics for the comparison of state-of-the-

art and new socially-complaint robot navigation methods in
simulators.

Our future work will explore new approaches for socially-
compliant navigation and continue to evaluate them under the
proposed benchmarking framework. Furthermore, our objec-
tive is to develop dependence functions for socially-compliant
navigation methods from the most relevant RCM. This task
can be done using neural networks, but more training data
needs to be collected.
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Improved path planning algorithms for non-holonomic autonomous
vehicles in industrial environments with narrow corridors: Roadmap
Hybrid A* and Waypoints Hybrid A*

Alessandro Bonetti!, Simone Guidetti? and Lorenzo Sabattini!

Abstract—This paper proposes two novel path planning
algorithms, Roadmap Hybrid A* and Waypoints Hybrid A*, for
car-like autonomous vehicles in logistics and industrial contexts
with obstacles (e.g., pallets or containers) and narrow corridors.
Roadmap Hybrid A* combines Hybrid A* with a graph search
algorithm applied to a static roadmap. The former enables
obstacle avoidance and flexibility, whereas the latter provides
greater robustness, repeatability, and computational speed.
Waypoint Hybrid A*, on the other hand, generates waypoints
using a topological map of the environment to guide Hybrid
A* to the target pose, reducing complexity and search time.
Both algorithms enable predetermined control over the shape of
desired parts of the path, for example, to obtain precise docking
maneuvers to service machines and to eliminate unnecessary
steering changes produced by Hybrid A* in corridors, thanks to
the roadmap and/or the waypoints. To evaluate the performance
of these algorithms, we conducted a simulation study in an
industrial plant where a robot must navigate narrow corridors
to serve machines in different areas. In terms of computational
time, total length, reverse length path, and other metrics, both
algorithms outperformed the standard Hybrid A*.

I. INTRODUCTION

Mobile robotics and Autonomous Mobile Robots (AMRSs)
have been increasingly used in recent years, with applications
ranging from industrial automation to personal assistance and
transportation. In particular, wheeled non-holonomic AMRs
are becoming crucial for improving productivity and safety
in industrial and logistics environments, such as autonomous
forklifts or picking robots that operate independently in
warehouses and factories. Path planning [18] is one of
the main challenges of autonomous non-holonomic vehicle
navigation, as it involves finding a path from a starting
point to a goal, avoiding obstacles, and respecting kinematic
constraints. There are numerous algorithms that can be used
to solve this problem, such as Theta*-RRT [13] and Spline-
based Rapidly-exploring Random Tree (SRRT) [20] as they
combine the principle of RRT [10] in the sampling space
with efficient spline parameterization to meet the kinematic
and dynamic limitations of the robot and avoid obstacles.

*This work was supported by the COLLABORATION Project through
the Italian Ministry of Foreign Affairs and International Cooperation.
1TA. Bonetti and L. Sabattini are with Department of

Sciences and Methods for Engineering, University of Mod-
ena and Reggio Emilia, Via Amendola 2, Pad. Morselli -
42122 Reggio Emilia, Italy {alessandro.bonetti,
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unico, Via Ghiarola Nuova, 105, 41042 Fiorano Modenese (MO), Italy
simone_guidetti@tecnoferrari.it
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One of the most recent studies of this type that uses RRT to
solve the path planning problem for non-holonomic vehicles
is [3], where an RRT* [7] is combined with B-spline curves
to obtain quasi-optimal smooth paths.

The Hybrid A* [12] algorithm is also a popular path
planning method for car-like robots. It combines the clas-
sical A* algorithm [4] in discrete space with the vehicle’s
kinematic model and an analytic expansion using Reed-
Sheep curves to obtain a non-holonomic and feasible path
in continuous space. Several studies have been conducted
to improve Hybrid A* performance in a variety of mobile
robotics application fields. For example, in [16] a waypoint
generation method for Hybrid A* using visibility graph is
proposed for car parking applications in order to speed up
the computation time and increase the quality of the path.
Another research [17] addresses the theme of parking valet,
where a multistage Hybrid A* is used to reduce the runtime
required to obtain the path. The authors of [11] used a topo-
logical roadmap to implement a variable curvature approach
applied to Hybrid A* in order to improve the path quality and
success rate of an AMR operating in narrow known industrial
environments. This study [19] addresses a common problem
with Hybrid A* that produces an output that is too close to
obstacles and is characterized by unnecessary steering action
and oscillations. They solve the problem by applying an
artificial potential field to obstacles and using it to optimize
and smooth the Hybrid A* path.

Finally, [2] focused on improving the analytical expansion
part of the algorithm by generating multiple Reeds-Shepp
curves with different curvatures and choosing the best one
that makes it safer to pass near obstacles and reduces the
number of turning points.

In this paper, we present two new path planners for indus-
trial autonomous car-like vehicles called RoadMap Hybrid
A* and Waypoint Hybrid A*. RoadMap Hybrid A* combines
the traditional Hybrid A* with a route finding component
on fixed segments. The former provides flexibility in areas
populated by obstacles, while the latter ensures robust paths
in narrow corridors and for maneuvering in and out of
machines. Waypoint Hybrid A*, on the other hand, employs
fixed segments only for maneuvers and uses waypoints
to guide Hybrid A* within corridors. In this way, both
algorithms can improve the performance of Hybrid A¥*,
achieve accurate docking maneuvers, and solve the problem
of undesirable oscillations and unnecessary steering actions
in corridors, where this defect occurs very frequently. The



paper is structured as follows: Section II introduces the
operating environment of the mobile robot and the challenges
of Hybrid A* that led to this study. Section III describes the
Roadmap Hybrid A* and Waypoint Hybrid A* algorithms
and explains the steps taken to implement them. Section IV
outlines the method used for developing the simulations and
describes the metrics used to compare Hybrid A*, Waypoint
Hybrid A*, and Roadmap Hybrid A*. Hence, the results of
the simulation are presented and analyzed. Finally, section
V presents the conclusions and introduces some ideas for
future developments.

II. STATEMENT OF THE PROBLEM

The purpose of this study is to develop an effective path
planning solution for an autonomous car-like mobile robot
operating within an industrial plant environment.

We consider a plant consisting of four areas where 11
machines are located, which require servicing by the AMR
for loading and unloading payload operations. These zones
may have pallets or goods inside waiting to be sorted, making
it essential to employ a path planning algorithm that can
avoid obstacles and efficiently navigate the plant. In addition,
the vehicle must move between these areas through narrow
corridors with a width of 3 meters that are kept clear for the
robot’s passage. The plant is inspired by a real case study
but has been modified from the original so as to highlight
the main challenges addressed in this study and simplify the
stages of research development. The plant environment is
represented using a grid map with a size of 50 x 50 meters
and a resolution of 0.5 meters, as illustrated in Fig.1. The
working space of the robot is depicted by white cells on
the map, while black cells represent walls and obstacles that
cannot be crossed.

The AMR used in the simulation of this research is
characterized by a rectangular footprint of 2 meters long by 1
meter wide, a distance between the centers of the wheel axes
of one meter, and a maximum steering angle of 45 degrees.
To solve the path planning problem, we chose the Hybrid
A* algorithm from the PythonRobotics [15] library.

A. Hybrid A*

Hybrid A* [12] is a path planning algorithm used in
autonomous vehicle navigation. It is known as one of the
most efficient path planners for non-holonomic autonomous
vehicles. The goal of the algorithm is to produce an effective
and collision-free path that the vehicle can follow from the
start to the destination using two different phases: forward
search and analytic expansion. In the forward search phase,
the algorithm iteratively uses the kinematic model of the
robot to generate forward motions in continuous space that
depend on vehicle parameters like speed, direction, and
steering angle. These continuous motions are then converted
approximately to discrete coordinate nodes, i.e., the cells
of the grid map, and the cost associated with each node
is calculated as the maximum value from two different
heuristics. The first one is the shortest distance to the goal
among obstacles provided by the classic 2D A*, while the
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Fig. 1. Grid map of the industrial plant. The blue dots are the poses that
the vehicle must reach to serve the machines. The purple path is the output
of Hybrid A* that connects the start pose 21 with the end pose 16.

second is the length of the shortest path to the goal, ignoring
obstacles but taking into account the non-holonomic nature
of the vehicle. The latter includes the cost parameters related
to changing direction, reversing, steering, and changing di-
rection actions.

The node with the lowest objective value is then chosen
to start the next iteration of the forward search, and this
mechanism continues until the algorithm reaches the goal.
However, getting to the exact continuous coordinate goal
node is difficult due to the grid map’s resolution and the
smallest motion that the robot can take.

To overcome this issue, the analytic expansion phase of
Hybrid A* is used, as it guarantees that the algorithm reaches
the exact continuous coordinate of the goal state. This phase
consists of generating multiple Reeds-Shepp [14] curves that
respect the non-holonomic constraints of the vehicle in both
forward and reverse directions. Then, the lowest cost curves
based on a heuristic estimate of the remaining distance to
the goal are selected in order to connect the actual node
calculated by the Hybrid A* forward search phase with the
target node. Analytic expansion leads to significant benefits
in terms of accuracy and search speed and ensures that the
algorithm reaches the exact continuous coordinate of the
target state.

B. Hybrid A* issues

After we set the vehicle parameters in Hybrid A* and
carefully fine-tuned the various algorithm parameters, several
issues emerged. As shown in Fig. 1, the algorithm is produc-
ing an undesired oscillating path effect within the corridors,
despite a high steer change cost being set. This behavior
not only causes the vehicle to approach dangerously close
to the walls, but is also inefficient due to increased wheel
wear, energy consumption, and travel time resulting from
unnecessary turns. This path effect of Hybrid A* is caused by



the costs assigned to the expanded nodes: the two algorithm
heuristics with a relatively low resolution of the map, make
the path fluctuate around the optimum cost cells.

In order to avoid this problem, it is important to have
a well-designed objective function that accurately reflects
the goals of the navigation system, but it is really difficult
to find one that works efficiently both in large areas and
in narrow passages. It is also preferable to have a high
enough resolution to accurately represent the environment
and produce a smooth and efficient path, but this leads
to higher computational complexity. Because the AMR has
limited hardware resources, a resolution of less than 0.5
meters iS not possible in this case. Smaller cells result in
a higher number of iterations of Hybrid A* required to plan
a path, which is not feasible for the onboard computational
capabilities. In fact, industrial vehicles often operate in dirty
and dusty environments, requiring onboard PCs that can
passively dissipate heat and are very robust, such as those
used in the ceramic industry.

Another issue with Hybrid A* in this environment is the
excessive length of the reverse portion of the path generated
by the analytic expansion phase of the algorithm. Due to the
nature of the Reeds-Shepp curves, the generated portion of
the path can sometimes be characterized by a long reverse
section. It is usually preferable for industrial vehicles to
navigate in reverse as little as possible because this condition
is considered less safe. The cause is due to the presence
of loads and tools, which make the perception of sensors
more complex and computationally demanding. Because of
the limited processing power of the vehicle’s computer,
this situation must be minimized. For these reasons and
because of the high cost of the sensors, attempts are made
to concentrate the driving mostly in the forward direction.

Lastly, Hybrid A* does not provide a path that includes
highly precise and repeatable maneuvers for machine entry
and exit and battery charger docking. Due to the optimization
process, the algorithm will produce different path shapes
in the initial and final parts depending on the position of
obstacles within the environment. In the industrial field,
there are often non-functional requirements and demands
from customers regarding the docking of mobile vehicles. To
meet these requirements, it is necessary to define, control,
and modify the path in advance. Hence, it is important to
introduce the ability to manage the geometric shape of the
initial and final parts of the path.

In the following chapter, the Roadmap Hybrid A* and
Waypoints Hybrid A* algorithms will be proposed as solu-
tions to improve performance and solve the aforementioned
problems.

III. PROPOSED SOLUTIONS

In order to overcome the issues that have arisen from the
standard version of Hybrid A* in the industrial environment
described in Section II, two new global path planners are
presented: Roadmap Hybrid A* and Waypoint Hybrid A*.
For the development of both algorithms, some preliminary
steps were required. To begin, the map was divided manually
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Fig. 2. The image shows the topological map of the plant, highlighting
areas with green borders containing machines and narrow corridors marked
in pink. The map features Bezier curve segments, with the red curves driven
forward by the vehicle and the blue ones in reverse. Furthermore, the legend
identifies the different types of segments used in corridors and entry and
exit maneuvers.

into rectangular zones. This division aimed to provide a
topological representation of the environment, composed of
machine servicing areas and corridors. The former are repre-
sented by green rectangles, while the corridors are depicted
by pink rectangles, as shown in Fig. 2. A topological graph of
the plant was then set up using the NetworkX [6] library by
imposing the connections between these rectangular zones.

To complete the preliminary steps required for imple-
menting the algorithms, we manually designed the corridor
segments and the machine entrance and exit segments for
the AMR using Bezier curves. The corridor curves were
drawn in the center to maximize the distance between the
AMR and the walls, while machinery entry and exit curves
were designed in order to minimize the vehicle footprint
while maneuvering and ensuring safety. To accomplish this,
we carefully selected the control points of each Bezier
curve so as to obtain a collision-free and feasible path. The
former condition is achieved by applying a collision checking
algorithm that compares the bounding box of the vehicle
with the grid map cells on the traversed poses. The latter
condition is achieved by checking the maximum curvature of
each curve segment and ensuring that consecutive segments
have matching tangents to guarantee smoothness. In Fig. 2,
the red segments represent the forward fixed sections of the
path traveled by the AMR, while the blue segments represent
the reverse ones. The blue segments are only used for the
entrance to the machines, as the uploading and downloading
tool is located at the back of the vehicle.

Then we collected the connectivity relationships between
all the curves into a graph, on which a graph search algorithm
is applied to extract the fixed path parts needed to form
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Fig. 3. Roadmap Hybrid A* path planned from node 13 to 19.The legend
identifies the exit path, Hybrid A* path, corridor path and entry path parts.

the final path of the proposed algorithms. In conclusion, the
topological map graph and the Bezier curve segment graph
are obtained in order to implement the Roadmap Hybrid
A* and Waypoint Hybrid A* algorithms, as detailed in the
following subsections.

A. Roadmap Hybrid A*

In this subsection, we propose Roadmap Hybrid A*,
a novel path planning technique for autonomous mobile
vehicles subject to non-holonomic constraints. The technique
combines two different methods: a graph search algorithm
applied to fixed segments and the Hybrid A* algorithm. The
former is used in obstacle-free zones and for maneuvering
in and out of machines to guarantee a robust and predictable
path. The latter provides flexibility and the ability to navigate
around obstacles in more dynamic areas.

Roadmap Hybrid A* uses the start and goal nodes of the
vehicle, the Bezier segment graph, the topological graph, and
the grid map as input to initiate the planning process. The
first step is to identify the entry and exit paths as well as the
corresponding attachment and detachment nodes. The exit
path is the fixed segment curve that allows the vehicle to
safely exit the starting machine and whose end points are
the start and detachment nodes, as shown in 3. Following
the same principle, the entry path is the fixed curve that the
AMR must travel to enter the target station and whose end
points are the goal and detachment nodes. The attachment
and detachment nodes serve as transition points between the
free motion of the vehicle provided by Hybrid A* and the
fixed path during the exit and entry processes.

The next step involves determining the start and goal areas
using the Even-Odd rule [5], applying it to the rectangular
areas, and using the positions of the start and goal ma-
chine nodes. If the initial area matches the target area, the
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detachment pose is directly connected with the attachment
pose using Hybrid A*. If, on the other hand, the start and
goal areas are different, Roadmap Hybrid A* uses Dijkstra’s
algorithm to determine the sequence of areas that the vehicle
must traverse. The sequence of corridors, the Bezier curve
paths within them, and the corresponding ordered end point
list that the vehicle must traverse are also found at this stage.
Subsequently, the fixed-path segment endpoints, as well as
the attachment and detachment nodes, are connected using
standard Hybrid A*: the detachment pose is linked to the
first endpoint, the even-indexed endpoints are linked to the
odd-indexed ones, and the last endpoint is connected to the
attachment node.

Finally, the exit path, corridor path, Hybrid A* paths, and
entry path are concatenated to produce the final output of the
algorithm. An example of RoadMap Hybrid A* is shown
in Fig. 3. Further information and the pseudocode of the
algorithm can be found in [1].

B. Waypoint Hybrid A*

In this subsection, the Waypoint Hybrid A* path planner
is presented. The implementation of this algorithm aimed
to evaluate the cost-effectiveness of using waypoints in
narrow corridors compared to the static roadmap employed
in Roadmap Hybrid A*.

Waypoint Hybrid A* takes inspiration from the planner de-
scribed in [16], where waypoints were generated by applying
a visibility graph and then connected by means of Hybrid A*.
In [16], it has been found that using waypoints to guide the
Hybrid A* to its destination results in a 40% faster run-time.
In this research, we propose to adapt the waypoints principle
in a slightly different way in order to speed up computational
time while also trying to avoid oscillating paths produced by
Hybrid A*, as described in Section II.

Waypoint Hybrid A* uses the start and goal nodes of
the vehicle, the Bezier segment graph, the topology graph,
and the grid map of the environment as input. To begin the
planning process, as explained with Roadmap Hybrid A*
in Subsection III-A, the algorithm finds the entry and exit
paths as well as the attachment and detachment nodes. After
that, the initial and target areas are determined by applying
the Even-Odd rule to the rectangular shape zones and the
start and goal node positions. If the starting and target areas
are different, the algorithm employs Dijkstra’s algorithm to
determine the sequence of areas through which the vehicle
must pass. The ordered sequence of waypoints is then defined
as the sequence of midpoints of the free space connection
width between consecutive zones.

Subsequently, the waypoints, the attachment node, and the
detachment node are connected using standard Hybrid A*.
The detachment pose is connected to the first waypoint, and
then each waypoint is connected with its successor except
for the last one, which is connected with the attachment
node. If, on the other hand, the initial area matches the
target area, the detachment pose is directly connected with
the attachment pose using Hybrid A*. It is worth noting that,
if this condition is verified, the output of Roadmap Hybrid
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Fig. 4. Waypoint Hybrid A star path planned from node 13 to 19. The
legend identifies the exit path, Hybrid A* path and entry path parts.

A* and Waypoint Hybrid A* is exactly the same. Finally, the
exit path, Hybrid A* paths, and entry path are concatenated
to produce the final path of the algorithm, as shown in Fig. 4.
Further information and the pseudocode of the algorithm can
be found in [1].

IV. SIMULATION AND RESULTS

This section describes the simulation approach, compar-
ison metrics, and result analysis of Hybrid A*, Roadmap
Hybrid A* and Waypoint Hybrid A*, whose operating prin-
ciples have been described in the previous chapter. The
simulation was implemented using Python 3.10 and was run
on a laptop with the following hardware specifications: an
Intel I7 12700H processor and 16 GB of RAM.

To evaluate all potential routes a vehicle could take on this
map, all two-element permutations of machine nodes were
simulated as source and goal node pairs (¢s¢ar, Ggoar)- With
11 machine stations, the two-element permutations result
in 110 pairs, and for each pair, the three path planning
algorithms were executed, obtaining 330 total different paths.

A. Metrics

This subsection describes the metrics calculated to eval-
uate the simulation results and compare the three path
planners. First, the execution time of the algorithm is crucial
since the AMR has limited computational resources on
board and must perform multiple tasks in addition to route
planning. Therefore, it is desirable to keep this value as
low as possible. Total path length is an important metric
that should be minimized, as shorter paths generally lead to
greater energy efficiency for the robot and reduced mission
time. In addition, this metric gives us information about
the presence of oscillations as they produce longer paths
than necessary. Reverse length was also taken into account

135

11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

because the loads and tools placed at the back of AMR make
the perception of sensors more complex and computationally
demanding. It needed to be as short as possible in order to
increase safety and ensure low costs.

To obtain the last two metrics studied in this research, the
Model Predictive Controller (MPC) [8], [9] path tracking
algorithm was used. In particular, we choose the model
predictive speed and steering control version from the
PythonRobotics [15] library, which is based on a linearized
vehicle model. The MPC parameters were set to ensure
that the vehicle followed the planned routes as closely as
possible during the simulation. To achieve this behavior,
small values were set for the difference cost and input cost
matrices to avoid limiting the system’s inputs and make it
more responsive in following the trajectory. In addition, the
final state cost was also made very small to prevent the
vehicle from cutting corners and make trajectory tracking
more accurate.

From the MPC controller, the travel time and the maxi-
mum acceleration acting on the vehicle during the simulation
are obtained. The latter is obtained by summing, for each
instant, the tangential acceleration (a;) provided by the MPC
and the centripetal acceleration (a,) calculated from the
curvature (C) of the path, according to the following formula:

a=a;+a, = a; + v2C. (1)

It is desirable to minimize both of these metrics in order to
increase productivity and decrease the forces acting on the
vehicle and load during travel.

B. Results Analysis

After conducting the simulation, the result data was col-
lected, and the average values of the metrics were calculated,
which are shown in Table I. The results showed that, on
average, RoadMap Hybrid A* has a lower computational
time compared to that of standard Hybrid A* by 80 %. The
reason is that the use of fixed segments in narrow passages
allows for finding a robust path in a shorter amount of time,
while the original algorithm must expand the search through
many nodes before correctly finding the passage and building
a path that respects the non-holonomic constraints of the
AMR. The Waypoint Hybrid A* has an intermediate average
value that is still very good for this kind of application.
The use of waypoints tends to direct the algorithm towards
the optimal path, resulting in a reduction in the number of
searched nodes.

The total length of all three path planners is similar,
with RoadMap Hybrid A* and WayPoint Hybrid A* having
slightly shorter routes. This is because the two modified
versions of Hybrid A* eliminate oscillations in narrow
corridors, resulting in shorter paths. Both the use of fixed
curves in RoadMap Hybrid A* and the use of waypoints in
WayPoint Hybrid A* prove to be excellent ways to improve
the performance of standard Hybrid A*, which produces
longer indirect paths in tight spaces, as shown in Fig. 5.

It can also be observed in Table I that the standard
Hybrid A* is characterized by a longer reverse path for



TABLE I
AVERAGE VALUE OF METRICS CALCULATED ON THE PATHS GENERATED
BY HYBRID A*, WAYPOINT HYBRID A*, ROADMAP HYBRID A* FROM
START AND GOAL POSE PAIRS OBTAINED FROM THE PERMUTATION OF
MACHINE NODES IN THE PLANT CONSIDERED IN SECTION II.

HA*  Waypoint HA* Roadmap HA*
Computation Time [s] 0.26 0.11 0.05
Total length [m] 61.86 61.69 61.17
Reverse length [m] 13.93 6.93 6.93
Path time [s] 47.67 47.31 46.99
Max accel. [m/s2] 1.81 1.80 1.79
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TABLE II
AVERAGE VALUE OF METRICS CALCULATED ON THE PATHS GENERATED
BY HYBRID A*, WAYPOINT HYBRID A*, ROADMAP HYBRID A* FROM
START AND GOAL POSE PAIRS OBTAINED FROM THE PERMUTATION OF
MACHINE NODES IN THE LARGER INDUSTRIAL ENVIRONMENT.

HA*  Waypoint HA* Roadmap HA*
Computation Time [s] 0.37 0.29 0.13
Total length [m] 85.98 82.96 82.61
Reverse length [m] 20.25 6.52 6.52
Path time [s] 65.1 62.64 62.45
Max accel. [m/s2] 1.82 1.81 1.81

Aoadmap Hybrid A star
Hybrid A star
Waypaints Hybrid & stag

Fig. 5. Comparison between Hybrid A*, Roadmap Hybrid A* and
Waypoint Hybrid A* paths.

machine entry. This is evident in the table, where the average
value of reverse length for Hybrid A* is slightly more than
double that of the other two solutions. As explained earlier
in Subsection IV-A, this makes Roadmap Hybrid A* and
Waypoint Hybrid A* the preferred solutions. The reverse
path for both Roadmap Hybrid A* and Waypoint Hybrid
A* is given by the fixed segments, and for this reason, it has
the same length value.

The path time obtained by using the MPC follows the
same considerations as for total length, with a shorter time
obtained from RoadMap Hybrid A*. Finally, the maximum
acceleration experienced by the vehicle is very similar in
all cases. Although the differences are small, excessive load
acceleration can be a safety concern if objects are not
properly secured or if fragile materials are being transported.

To test the performance of the algorithms proposed in this
study more objectively, a new, larger industrial environment
was constructed. This allows for studying how performance
scales with increasing map complexity. The new environment
is characterized by dimensions of 100 meters in width and
50 meters in height, represented by a grid with a resolution
of 0.5 meters. The structure of areas with serving machines
and corridors remains the same as in the original facility, as
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Fig. 6. Comparison between Hybrid A*, Roadmap Hybrid A* and
Waypoint Hybrid A* paths in the larger scenario.

shown in Fig. 6.

In particular, there are 14 serving stations that translate
into 182 pairs (gstar> Ggoat), produced by two-element per-
mutations of the station nodes. For each of these pairs, the
three algorithms were simulated, and data related to a total of
546 different paths was collected. From the collected data,
the averages related to the computation time, total length,
reverse length, path time, and max acceleration metrics were
calculated. The values are reported in Table II.

Regarding computation time, it can be observed that the
results resemble those of the original environment. Roadmap
Hybrid A* confirms itself as the best of the three, while Way-
points Hybrid A* is positioned in an intermediate position.
However, the differences with respect to the previous results
have become smaller, with Roadmap Hybrid A* registering
a 65% reduction and Waypoint Hybrid A* a 22% reduction
compared to the result of the original version of Hybrid A*.

Regarding total length and reverse length, Roadmap Hy-
brid A* and Waypoint Hybrid A* are characterized by
much lower values than Hybrid A*. The roadmap and the
waypoints guided the node search, generating a path without
unnecessary steering actions and guiding the reverse phase
for the vehicle’s entry into the machine. Even in this case, the
reverse length value for Roadmap Hybrid A* and Waypoint
Hybrid A* is the same because the fixed reverse segments
for both algorithms are the same.

In this scenario, the path time also reflects the results ob-
tained with the original facility, with Roadmap and Waypoint
Hybrid A* showing lower values than those of the standard
Hybrid A*. Finally, all three algorithms record practically
identical values regarding the maximum acceleration.



In conclusion, the simulations conducted suggest that the
Roadmap Hybrid A* and Waypoint Hybrid A* algorithms
are more efficient and effective path planners compared to the
standard Hybrid A* algorithm in terms of computation time,
total path length, reverse length, and path time. By utilizing
knowledge of the map and plant topology to reduce route
complexity, Roadmap and Waypoint Hybrid A* algorithms
can generate better routes in less time while maintaining
flexibility and obstacle avoidance capability where needed.
Furthermore, both algorithms address the critical aspects of
eliminating Hybrid A* oscillations within the corridors and
controlling machine entry and exit trajectories.

However, one disadvantage of Roadmap Hybrid A* and
Waypoint Hybrid A* is that they require prior knowledge of
the robot’s operating environment. Additionally, the opera-
tion of these algorithms requires the design of a topological
map and fixed Bezier curves, which can be time-consuming
for large workspaces, particularly for Roadmap Hybrid A*.
Therefore, if the AMR does not have strict constraints on
the execution time of the path planning algorithm, the use of
Waypoint Hybrid A* can be more convenient as it eliminates
the need to draw the segments in the corridors by taking
advantage of the automatically generated waypoints from
the topological map. However, if drawing segments in the
corridors is not a problem, as it is a one-time operation that
needs to be performed, Roadmap Hybrid A* demonstrated
the best performance in the simulation of the two scenarios
studied in this research.

V. CONCLUSIONS

Two new global path planning algorithms for autonomous
mobile robots have been developed in this study. They are
both derived from the standard version of Hybrid A* and thus
are made to account for the nonholonomic constraints of the
robot. Both algorithms enabled the elimination of Hybrid A*
oscillations within the corridors by producing smooth paths,
as well as the control of machine entry and exit trajectories,
which are critical requirements in industrial settings.

In terms of computational time, total path length, re-
verse length, travel time, and vehicle acceleration, simulation
results in two industrial environments showed that both
Waypoint Hybrid A* and Roadmap Hybrid A* outperformed
the standard version of Hybrid A*. These results indicate
that knowledge of the topology of the environment and the
definition of fixed-segment curves can significantly reduce
the complexity and number of nodes sought to reach the
goal while improving the quality of the path and maintaining
flexibility and obstacle avoidance capability.

Future research will aim to validate the results found in
this research by testing Waypoint Hybrid A* and Roadmap
Hybrid A* in different environments. These algorithms have
the potential to enhance the performance of industrial AMR
and contribute to the development of more efficient and
reliable path planning methods.
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Assisted Localization of MAVs for Navigation in Indoor Environments
Using Fiducial Markers

André Kirsch!, Malte Riechmann' and Matthias Koenig?

Abstract— Micro aerial vehicles (MAVs) are often limited
due to weight or cost constraints. This results in low sensor
variety and sometimes even in low sensor quality. For example,
many MAVs only offer a single RGB camera to capture the
environment, apart from simple distance sensors. On the other
side, maps of complex environments are typically captured
using depth sensors like Lidar, which are not found on such
drones. For MAVs to still benefit from and use these maps,
it is necessary to implement a connection layer that enables
the localization of the MAYV in these maps. In this paper, we
propose to use fiducial markers that can be recorded by an
assisting device, e.g., a mobile phone or tablet, responsible for
map creation. These fiducial markers have a known pose in the
map and can be detected by a drone’s RGB camera to localize
itself. We show that the markers are localized in the map
creation process with high precision and that the drone is able
to determine its pose based on detected markers. Furthermore,
we present a ROS 2 based drone controller for a Ryze Tello
EDU MAV that uses an occupancy voxel map for navigation.

I. INTRODUCTION

When multiple robots or devices work together and ex-
change positional information, they need to operate in the
same coordinate frame. For example, vacuum cleaning robots
and mowing robots build their own maps. They are equipped
with the necessary sensors to construct such maps of the
working area in their initialization phase. When they are op-
erating, the same sensors are then used to localize themselves
in the previously created map. This is possible because the
initial and previous pose of the robot in the map is known.
But sharing the positional knowledge with other robots or
devices is not possible until their pose in the coordinate frame
of the map is also known. This problem is known as the
global localization problem. A popular method for solving
the problem is the particle filter, also known as Monte Carlo
localization [1], where sets of pose estimates are placed into
the map and evaluated in a Predict-Update-Resample loop.

But not all robots and devices share the same types of
sensors. For example, occupancy maps are typically gener-
ated using range sensors like Lidar, which are not present
in all devices. Micro aerial vehicles (MAVs) are often only
equipped with a single RGB camera due to weight constraints
that makes it unfeasible to create complex 3D occupancy
maps. Still, they might need such maps for path planning
and navigation. This is especially true in GPS-denied areas
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Fig. 1. Comparison of the real environment on the left and the generated
3D occupancy map including the localized fiducial markers and the localized
MAV on the right. The left image shows the markers printed on paper and
hung up on the walls as well as the MAV. In the right image, the markers
can be seen as the darker colored voxels in the occupancy map. The MAV is
shown as the coordinate frame in the center of the right image. The yellow
rays show the relation between the map origin and frame positions.

like indoor environments. A solution to this is to assist in the
map creation process by utilizing a second device with better
capabilities. The second device is able to create a much more
precise map with richer information that allows for global
localization of the MAV for navigation and path planning by
incorporating marker locations into the map data.

In this paper, we propose to use a tablet equipped with
a Lidar sensor to create a 3D occupancy map and localize
fiducial markers using the same sensor data as for the map
creation. A 3D occupancy map containing localized markers
in comparison to the real environment is shown in Figure 1.
The fiducial markers allow the MAV to estimate its position
by detecting and localizing the pose of the markers in its
own coordinate frame. Since the pose of a fiducial marker
is known for both coordinate frames, the MAV’s local frame
and the occupancy map frame, the pose of the MAV in the
occupancy map frame can be determined. The pose enables
the MAV to use the occupancy map for path planning and
navigation. In summary, the main contributions of this paper
are

1) a pipeline for localizing fiducial markers while creating
a 3D occupancy map using an assisting device and

2) a ROS 2 [2] package for autonomous navigation of
a Ryze Tello EDU MAV using fiducial markers for
localization and a voxel map for navigation planning.

The remaining of the paper is split into related work
(Section II) followed by Section III in which the process of
map creation and fiducial marker localization is described.



Section IV is about the MAV controller package for ROS 2. It
describes how it uses the information, generated as described
in the previous section, for localization and path planning. In
Section V, the proposed work is evaluated, and a conclusion
is given in Section VL.

II. RELATED WORK

In the following, we describe related work regarding robot
localization and fiducial markers.

A. Robot Localization

One major problem in robotics is localization, which is
often coupled with mapping to form the SLAM problem. But
in many cases, a map has already been captured and a robot
only needs to be localized in that map. A popular option is to
use visual natural or artificial features. For example, FAPM-
L [3] uses a feature-annotated polygon map to localize UAVs
in an indoor environment. The map was designed to allow
for localization. They extract keypoints from 2D images
and find matching 3D landmarks in the polygon map that
have been extracted from the map a priori. Similarly, Yu
et al. [4] obtain coarse 2D-3D line correspondences between
2D images and Lidar maps based on visual-inertial odometry,
which are refined in a second step. Wang et al. [5] employ
visual features known as ORB [6] to relocalize a mobile
robot to avoid drift in a 2D case. All three approaches use the
information that is available in the environment, but might
be susceptible to a low number of natural features.

A possible solution to this is to add artificial features
like fiducial markers to the environment, like in [7] and
[8]. Javierre et al. [7] use fiducial markers to assist in 2D
localization combined with omnidirectional vision. Houben
et al. [8] localize sparsely distributed fiducial markers while
building a map using a laser scanner mounted on an MAV.
The MAV is first localized through the laser scanner and can
later be localized through marker detection with the advan-
tage of much higher frequency compared to the laser scanner.
Our approach differs in that we require an assisting device
that is used for the map creation and marker localization
process. The MAV only relies on the fiducial markers for
localization in our case. Also, we go one step further and
create a voxel-based occupancy map for navigation.

B. Fiducial markers

Because of the possible lack of natural features in the
environment, fiducial markers are a popular method to
add artificial features into the environment. Some of their
biggest advantages compared to natural features is their
uniqueness and the ease of detectability. Many fiducial
marker implementations like ARTag [9], AprilTag [10], and
ArUco [11] have a square border, in which a unique ID
number is encoded. This ID number enables the distinct
identification of the marker. The individual implementations
typically differ in false detection rate, number of unique
IDs and their inter-marker distance, handling of occlusion,
and localization accuracy as well as their visual design.
While the inner image of a marker encodes the ID number,
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a square border of a fiducial marker is used for 6 DOF
localization. A marker commonly used in robotics is the
ArUco marker [11]. It is a highly configurable marker with
different code lengths, allowing either high marker count
or high inter-marker distance. Furthermore, it includes error
detection and correction. The pose is estimated using a
Perspective-n-Point algorithm.

In contrast to square markers, there also exist circular
markers like RUNE-Tag [12]. RUNE-Tag encodes its ID
numbers using smaller circles inside rings of a larger circle.
Circular fiducial markers have the downside, that they require
multiple markers to be detected for localization. The RUNE-
Tag marker has the disadvantage, that it can only be detected
at lower distances. On the other hand, ist has a more accurate
detection as well as better robustness against occlusion
because it does not rely on few geometrical features like
the corners of a square marker. STag [13] is a marker that
combines the advantages of the square and circular approach
by incorporating a circular encoding and a larger circular
border as well as a square border into the marker design.
Despite the advantages of STag, we use the ArUco marker
in our approach, as this is the more commonly used marker.

III. ASSISTING DEVICE

Due to the lack of required sensors, an MAV might be
unable to capture all the necessary information about the
environment. To provide such data, an assisting device can
be used to capture additional map data and make it available
to the MAV through a localization layer. We chose an
Apple iPad 2020 Pro as the assisting device, which features
a Lidar sensor. It runs an application that captures depth
images as well as corresponding RGB images and pose
information. This data is made available to a ROS 2 node
that is responsible for creating the 3D occupancy map and
localizing fiducial markers.

A. Map creation

The map that is created is a 3D probability-based occu-
pancy map. The map creation process is GPU-accelerated
and requires a depth image with a corresponding RGB image,
the intrinsic camera parameters, and the tablet’s pose infor-
mation. Based on the intrinsic camera parameters, the depth
image is transformed to a point cloud with attached color
information. The point cloud is inserted into a voxel grid
with regard to the tablet’s pose by updating the occupancy
probability of each voxel. To use the voxel map with ROS 2
and the MAV controller, it is converted into an octomap [14].

B. Fiducial marker localization

The main goal of the fiducial marker localization is to
make their global poses available to the MAV. The fiducial
marker localization is done using a three-step procedure:

1) First, the fiducial markers are detected on the RGB
images captured by the tablet. The detection is a
standard method that returns the image coordinates of
the four corner points of the ArUco marker and its ID.



2) Using the camera’s intrinsic parameters and the image
coordinates of the corner points, a Perspective-n-Point
(PnP) pose computation is applied to get the 3D pose
Tiabiet— fiducial.x of the detected marker relative to
the camera.

Since the tablet’s global pose T},qp—stabie: in the map
is known, the global pose of the detected markers can
be calculated using the formula

3)

Tmap—)fiducial,X = Tmap—}tablet XTtablet—)fiducial,X .
ey
While generating the 3D occupancy map, a second map
containing all detected markers is created as well. Both maps
share the same origin. For each marker, the pose and an ob-
ject (localization) error is known. When the fiducial marker
localization detects a new marker, it is directly inserted into
the map. If the map already contains that marker, its pose is
updated when the object error of the new detection is less
than the current object error. The object error e, is based
on the reprojection error e,, which is calculated using the
formula

4

er = i Zd(oi, i)

=1

(@)

where 4 refers to the number of outer corner points of the
fiducial marker, and with d(o;, r;) being the distance between
the original corner point o; and the reprojected corner point
r; based on the pose. The object error can be calculated using

e Nl

Co= T X T 3)

where d is the distance between two diagonal corners of
the fiducial marker, ¢ is the translational part of T\.c; marker
and L is the length of the marker. The poses and IDs of the
fiducial markers are made available to the MAV controller.

IV. MAV CONTROLLER

The MAV controller is a ROS 2 node that can control a
Ryze Tello EDU MAV. The Ryze Tello EDU is a small drone,
weighing only 80 grams and allowing up to 13 minutes of
continuous flight. It comes with a 5 MP front camera and
can be controlled through Wi-Fi. An official SDK that can
be accessed through UDP is provided by the manufacturer,
which supports sending text-based commands and receiving
status information and a video stream. The Ryze Tello EDU
supports the version 2.0 of the SDK by default, but can be
updated to support commands from the current version 3.0.
The library that the developed ROS 2 node uses internally is
CTello [15]. CTello is a small library written in C++, which
allows direct access to the SDK commands.

The ROS 2 node is split into three parts, where one is
responsible for publishing state information made available
by the drone. The drone publishes its state in 10 Hz intervals.
The state information contains IMU sensor data, battery
percentage, and height among others. This information is
made accessible through standard ROS topics, which im-
plement the publish—subscribe pattern. The second part, the
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camera publisher, handles the video stream of the MAV. It
updates the drone’s camera settings like resolution and fps
and starts the camera stream. A UDP socket is created to
listen for incoming video data and publish it through ROS 2.
Furthermore, the intrinsic camera parameters are published,
which have been determined prior using camera calibration.

The third part of the ROS 2 node is the movement
controller. It provides ROS topics to directly send SDK
commands like takeoff, land, or emergency to the drone.
Two additional features of the movement controller are
auto cooling to prevent automatic drone shutdown and auto
landing interrupt to prevent the drone from landing auto-
matically when it does not receive a new command within
ten seconds. Furthermore, it supports sending remote control
commands through a /cmd_vel topic for joystick control. An
additional ROS 2 node allows for converting button presses
into the other necessary commands that were mentioned
prior. Another ROS topic /move_to accepts global position
commands and makes the drone move to that location based
on its localized position. The third option for moving the
drone is to use the move action. The move action is capable
of handling more complex movement commands by using
path planning.

A. MAV localization

To localize the drone in the map, we use odometry data
provided by the drone and the fiducial markers detected in the
map creation process. The odometry data allows for smooth,
continuous pose determination which is described as the
relation between the odom and base_link frames, while the
fiducial markers ensure that the drone is correctly positioned
globally. This is shown by the relation between the map
and odom frames. The relation between map and base_link
therefore is the pose of the drone relative to the map.

a) odom — base_link: The SDK of the Ryze Tello
EDU makes available only an acceleration vector, a velocity
vector and the height with an update rate of 10 Hz. The
acceleration vector contains the unprocessed data of the
accelerometer. The velocity vector and height are measured
in dm/s and cm, with both having a resolution of ten
centimeters. The height value is relative to the height at
takeoff. We decided to use the velocity vector and the height
value for determining the translation from odom to base_link
because they are more accurate over a longer time period
than the acceleration data. With p; being the drone’s position
at time ¢ and v; being the velocity at that time, the position
at time ¢ + 1 is calculated by pyy1 = py + 4.

Since an absolute value for the height of the drone
is known, the calculated height value is replaced by the
measurement. As the roll, pitch, and yaw values are provided
by the gyroscope of the drone, they are published as the
rotational part of the transformation.

b) map — odom: The map — odom transformation
determines the global pose of the drone in the map and cor-
rects the odom — base_link transformation if necessary. For
calculating the transformation, fiducial markers are detected
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Fig. 2. The MAV captures RGB images, on which fiducial markers are localized. Since the global poses of the markers are known, the pose of the MAV
can be inferred. The center image shows a section of the map, in which the MAV is positioned. Fiducial markers can be seen on the walls. The yellow rays
in the image show the relation between individual markers and the map origin. On the right, an overview of the occupancy map with a size of 10 X 8 m

is shown, which is also used for evaluation.

and localized like described in Section III-B except that only
the relative pose to the drone’s camera is determined.

Because the global pose of the fiducial marker as well
as its pose relative to the drone camera is known, a loop
is formed. Within the loop, the transformation between map
and odom can be calculated using

Tmap—>odom = dmap— fiducial X (4)
x otiim—)fiducial-X’
where T),qom—s fiducial_x 18 calculated by
Todom—)fiducial-X = Todom—>base.link
X Tbase-link—)cameru (5)

X Tcamera%fiducial-X .

Every T is a transformation matrix describing the trans-
formation between the frames mentioned in the subscript.

We differentiate between two different methods to deter-
mine the final pose of the MAV, which will both be evaluated.
If only a single marker is detected in the image, both methods
lead to the same result. When multiple markers are detected,
the first method uses the fiducial marker with the lowest
object error for localization. The second method calculates
a weighted average pose for all fiducial markers based on
their object error. With both transformations map—odom
and odom—base_link given, the global pose of the drone
is known. This enables the use of the occupancy map for
path planning.

B. Path planning and navigation

The navigation part of the MAV controller allows a user
to define a goal position, to which the drone is able to fly
autonomously. To this end, three steps need to be executed.
The first step is to generate a costmap based on the occu-
pancy map provided by the assisting device. In the second
step, a path is planned based on the generated costmap. The
third step is to move the drone based on the planned path.

a) Costmap generation: The costmap is required for
global path planning for the drone. Its difference to the
occupancy map is that it has a lower resolution and occupied
areas are inflated. We decided to use a resolution of 0.2 m
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compared to 0.025 m of the occupancy map as this is the
minimum distance the Ryze Tello EDU drone requires to
execute the go command of the SDK. Also, it reduces the
time required for path planning and generated the costmap.
The inflation is done by calculating the distance of each
voxel that is not occupied to the nearest occupied voxel. If
the distance is less than 0.3 m, the current voxel is marked
as occupied in the costmap. Inflating ensures that the drone
does not move too close to obstacles and makes room for
localization errors. If a voxel is already marked as occupied
in the occupancy map, it is directly set as occupied in the
costmap as well. Voxels with a larger distance to the nearest
occupied voxel are marked as free. We do not differentiate
between free and unknown voxels, as we assume that the
occupancy map has been fully created and the goal position
is placed in known space.

b) Path planning: For path planning, we use the A*
algorithm, where the nodes are represented by the voxels of
the costmap. The standard A* algorithm is improved in the
following three ways:

1) When the drone is localized inside an occupied voxel,
a tunnel is created to find the nearest free voxel for
path planning. This is necessary for a drone that is
landed because the ground is inflated as well.

2) The generated path contains many positions with a
small distance between each other. To make the drone
movement more fluent, only the last position of a
straight line of unoccupied voxels are kept.

3) Since there is the possibility that no path can be found,
the path planning uses a timeout. If the path planning
takes too long, the current best path is returned even
if it is not finished.

¢) Navigation: The navigation is done by using the
provided move_to topic that accepts a single goal position. It
is required that the drone has already taken off. A flight state
is published by the MAV controller that contains information
about the flying and hovering state of the drone. After the
first movement command is sent, the navigation part waits
until the drone has entered the hovering state again. Then, it
sends the next movement command using the next position
of the path until the drone has reached its final destination.



V. EVALUATION

In this section, the accuracy of the fiducial marker localiza-
tion and the accuracy of the drone localization are evaluated.
For both parts, the method is described first. Then, the results
are presented and discussed.

A. Fiducial marker localization

For accurate drone localization, the fiducial markers need
to be positioned accurately in the map. Therefore, we first
validate the correct localization of the fiducial markers by
the assisting device. The goal of this experiment is to show
that the localization results in later experiments are valid for
both the occupancy map and the fiducial markers.

a) Method: We compare the poses of the fiducial mak-
ers based on the localization using RGB images as described
in Section III-B and their poses in the occupancy map. The
pose in the occupancy map is used as ground-truth. Because
the occupancy map we use is colored, the fiducial markers
are visible in the occupancy map and their center and rotation
can be determined. The resolution of the occupancy map is
0.025 m and the length of the markers is 0.135 m. Due to
the voxel-based structure of the occupancy map, we restrict
the placement of fiducial markers to only 90 degree angles in
the real world. When capturing an occupancy map, we make
sure that the assisting device is oriented correctly so that a
fiducial marker has a flat surface in the occupancy map.

For evaluation, we generate 10 maps, with each containing
76 markers. For every map, we randomly select 10 out of
the 76 markers for evaluation, resulting in a total of 100
evaluated markers. If the occupancy map visualization of a
marker is not sufficient for ground truth pose estimation, we
randomly select a new marker. For each marker, the trans-
lational and rotational error is determined. The translational
error is calculated using the Euclidean distance between the
marker position based on RGB image localization and the
position of the center of the marker in the occupancy map.
The rotational error is calculated using

(6)

where ¢; and ¢, are the orientations of the fiducial marker
as quaternions.

b) Results: The mean translational error is 0.083 m
with a standard deviation of 0.077 m. For the rotational error,
the mean is 0.22° with a standard deviation of 0.62°. The
median values are 0.064 m and 0.09°, respectively. These
results show that it is possible to localize the fiducial markers
with high accuracy. This enables the use of the occupancy
map for navigation, while for localization only the markers
are required.

d(Cha(IQ) =1- <q17QQ>2a

B. Drone localization

For the final evaluation, we test the accuracy of the
proposed drone localization. We compare both methods of
drone localization using a single marker selected based on the
object error and using the weighted average of all detected
markers in an image.
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a) Method: To evaluate the localization accuracy, we
simulate a drone flight by manually positioning a drone 200
times in the map and determining its pose based on the
fiducial marker localization using both methods and based
on the localization of the assisting device, which we use
as ground-truth data. We first create a map and localize the
fiducial markers using the assisting device. Then, we position
both the drone and the assisting device at the same random
locations in the environment and determine their pose. We
use a static offset for the pose of the assisting device, so
that we can position both the device and the drone at the
same time. We evaluate the localization of the drone by
determining a translational and rotational error using the
same formula as in the first experiment. Since we want to
manually position the drone as realistically as possible, we
first conduct an actual drone flight in the test environment
to determine the distribution of the marker counts in the
drone images. We then collect drone images that resemble
the distribution as close as possible.

M Actual drone flight
03 Est data (Simulated drone flight)

o
L8]

Percentage

(=1
=

Marker count

Fig. 3. Distribution of marker counts of the statically collected test data
compared to an actual drone flight. Zero markers were detected in 24.2 %
of all captured images of the drone flight.

b) Results and discussion: Test data has been captured
with a similar marker count distribution as shown in 3. The
mean distance between the drone and the markers is 2.18 m.

The results of the drone localization show that both meth-
ods have a similar overall accuracy for translation and rota-
tion. The mean translational errors are 0.26 m+0.40 m and
0.28 m=+0.42 m for single marker localization and weighted
average localization, respectively. The rotational errors are
2.0°4+3.8° and 2.4°45.2°, respectively. The median error is
lower for both methods, with 0.13 m and 1.1° for single
marker localization and 0.12 m and 1.1° for weighted average
localization. Figure 4 contains more detailed information
about the results. Our results are slightly better compared to
Houben et al. [8] who localized the markers while creating
the map using a drone instead of an assisting device. They
measured an accuracy of 0.50 m4-0.85 m (median: 0.19 m)
and 10°+15° (median: 4°) for images with a single marker
taken at distances between 0.61 m and 4.99 m in their test
environment.

We noticed that the accuracy in translation heavily depends
on the distance between the drone and the detected markers.
This is not the case with the rotation. Since a larger distance
to the markers is required to capture multiple markers, the
accuracy for images with multiple markers decreases for both
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Fig. 4. Translational and rotational error of the drone localization for a

single, two, and four markers. The figure shows the results for single marker
localization (Single) and weighted average localization (Avg.). The results
for one marker in an image is only shown once, since both methods share
the same results.

methods. Additionally, we noticed that the marker detection
algorithm started not detecting markers at a distance larger
than 5 m. Since the markers are mostly placed on the walls
of the room, this makes it impossible to localize the MAV
when it is looking towards the center of the test environment.

When comparing the two methods, we observed that
weighted average localization is more stable for subsequent
images, as shown in Figure 5. Both share the same accuracy
for lower distances towards markers, as this typically means
that only one marker is visible. But on further distances, the
single marker localization leads to unstable pose estimation.
On the other hand, both methods can lead to jumps in
position estimation when different markers are visible in
subsequent images. Therefore, instability can also occur in
weighted average localization.

<4
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-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Estimated x position (in m)

X

Estimated distance to marker wall (in m)
w
1

Fig. 5. Single marker localization (blue) and weighted average localization
(orange) of an image sequence of the drone flying with constant speed
towards (fromy =5 m to y = 0 m) a 3x3 marker matrix on a wall, with
the markers placed 1 m apart horizontally and 1 m (upper two rows) and
0.6 m (lower two rows) vertically. The x- and y-axis show the estimated
positions of the drone. The gray line is the ground truth.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a pipeline for assisted localiza-
tion for MAVs by pregenerating a 3D occupancy map and
detecting fiducial markers using a second device equipped
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with the necessary sensors. The occupancy map can be
used by the MAV for navigation and path planning, while
the fiducial markers enable the drone to localize itself in
the map. When the drone detects a known marker, it can
infer its pose based on the marker’s pose. We demonstrated
that the fiducial markers can be correctly localized by the
assisting device while it builds the occupancy map. Also,
we showed that a drone can then detect these markers
and localize itself in the environment. But we noticed that
the drone localization fails at larger distances between the
drone and the markers. Further, we presented a ROS 2
based MAV controller for localization, path planning and
navigation among other things.

Future work will focus on improvements in localizing
drones using fiducial markers, with the goal to reduce the
large variance in pose estimation using a Kalman filter and
enable localization at larger distances. A second research
path will concentrate on localizing a drone without the use
of artificial features like markers.
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Stable Yaw Estimation of Boats from the Viewpoint of UAVs and USVs

Benjamin Kiefer!, Timon Hofer! and Andreas Zell'

Abstract— Yaw estimation of boats from the viewpoint of un-
manned aerial vehicles (UAVs) and unmanned surface vehicles
(USVs) or boats is a crucial task in various applications such
as 3D scene rendering, trajectory prediction, and navigation.
However, the lack of literature on yaw estimation of objects
from the viewpoint of UAVs has motivated us to address
this domain. In this paper, we propose a method based on
HyperPosePDF for predicting the orientation of boats in the 6D
space. For that, we use existing datasets, such as PASCAL3D+
and our own datasets, SeaDronesSee-3D and BOArienT, which
we annotated manually. We extend HyperPosePDF to work
in video-based scenarios, such that it yields robust orientation
predictions across time. Naively applying HyperPosePDF on
video data yields single-point predictions, resulting in far-off
predictions and often incorrect symmetric orientations due
to unseen or visually different data. To alleviate this issue,
we propose aggregating the probability distributions of pose
predictions, resulting in significantly improved performance, as
shown in our experimental evaluation. Qur proposed method
could significantly benefit downstream tasks in marine robotics.

I. INTRODUCTION

Yaw estimation of objects from the viewpoint of un-
manned aerial vehicles (UAVs) and unmanned surface ve-
hicles (USVs) or boats is an essential task in various appli-
cations such as 3D scene rendering, trajectory prediction, and
navigation. Accurate pose estimation is crucial for safe and
efficient operations in the marine environment, where the
ability to locate and track objects such as boats and ships
is essential for collision avoidance, search and rescue, and
marine surveillance. Furthermore, it is vital to have robust
yaw predictions in augmented reality applications, to better
aid a human operator.

AIS (automatic identification system) data only helps for
boats that emit these signals. Smaller boats do not send AIS
data. Furthermore, radar is expensive and only provides a
very coarse position of boats. It requires a correct set-up of
the radar and is harder to interpret for non-experts. Computer
vision-based orientation prediction on the other hand offers
a cheap and direct method.

Furthermore, there is a lack of literature on heading
estimation of objects from the viewpoint of UAVs and
USVs. In particular, predicting the orientation of objects
far away from the camera is a challenging task due to the
inherent uncertainty in the visual data. Methods based on 3D
bounding box detection rely on precise box labels and are
inherently error-prone for distant objects [1].

In this paper, we propose a method based on Hyper-
PosePDF [2] for predicting the orientation of boats in the

LAll authors are with the Faculty of Computer Science, University of
Tuebingen, Germany. prename . surname@uni-tuebingen.de
979-8-3503-0704-7/23/$31.00 ©2023 IEEE
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Frame 71

Fig. 1. Ignoring the temporal domain results in false, near-symmetric
orientation prediction of a boat from frame 70 (top) to frame 71 (middle).
Tracking the probability distributions alleviates this problem (bottom).

6D space. HyperPosePDF is a recent method that models
the uncertainty of predictions and has shown promising
results in the field of 6D pose estimation. We train this
method on existing datasets, such as PASCAL3D+, and on
our own datasets, called SeaDronesSee-3D and BOArienT,
which we manually annotate with bounding boxes and pose
information for evaluation purposes.

To speed up the bounding box annotation, we develop an
annotation tool based on the recently published ’Segment
Anything” method [3]. We make this tool together with the
data publicly available.

We extend HyperPosePDF to work in video-based sce-
narios, where the prediction of the orientation of objects
across time is essential. Naively applying HyperPosePDF on
video data yields single-point predictions, often resulting in
far-off predictions and incorrect symmetric orientations due
to unseen or visually different data. Therefore, we propose
aggregating the probability distributions of pose predictions
over time, resulting in significantly improved performance,
as shown in our experimental evaluation.

Furthermore, naively predicting the yaw of boats based
on analyzing their trajectory in 3D space does not work
for standing or slowly moving boats. Moreover, formulating
yaw prediction in this way is error-prone due to an ill-posed
2D <— 3D projection, which is not reliable in heading
estimation as we will see in subsequent sections.

Lastly, we demonstrate a full pipeline with detection and
tracking of objects and subsequent orientation prediction for
a downstream synthetic rendering of a scene. Our proposed
method could significantly benefit downstream tasks in ma-
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rine robotics.
In summary, our contributions are as follows:

o We pose the novel problem of predicting the heading
of boats via purely vision-based methods.

« We propose a novel method to aggregate pose pre-
dictions by tracking the probability distributions to
capture uncertainties due to symmetries and ambiguous
appearances.

e We create a new dataset BOArienT, a benchmark
featuring 30 FPS manually annotated video, featuring
precise object detection and pose labels. Furthermore,
we annotate parts of SeaDronesSee-MOT with pose
data, which we call SeaDronesSee-3D.

e« We show in multiple experiments on diverse bench-
marks the utility of our method. Lastly, we demonstrate
the utility of our method on a full pipeline with detec-
tion and tracking to synthetically render a scene.

« We make code, data, and adapted labeling tools publicly
available on www.macvi.org.

II. RELATED WORK

Pose estimation of common or close industrial objects
has been explored in several methods [4]-[6]. Analyzing the
static images, they split the task into two stages - object
detection and subsequent 6D pose estimation of the predicted
bounding boxes. However, their focus is on close objects that
are dominant in the image plane. On the other hand, we focus
on yaw estimation of boats that are distant and occasionally
hardly visible. This makes an accurate yaw estimation hard as
many plausible predictions exist. Several works explored how
to model the uncertainty of pose predictions [2], [7]. They
output probability distributions over many different poses,
effectively capturing the symmetries inherent in the poorly
visible objects. While they only experiment with common
objects in static scenes, we aim to build on top of their
methods to predict stable yaw predictions across time.

The last years have shown a great influx in works in
maritime computer vision [8]-[11]. Most works focus on the
detection or tracking of objects from the viewpoint of UAVs,
USVs or boats. There is a great corpus of works working
on simulation and trajectory prediction [12], [13]. However,
these methods only operate on map data as opposed to
image/video data.

Likewise, the general UAV-/USV-based research focuses
on object detection and tracking, and anomaly detection [9],
[14]-[18], but neglects the yaw estimation aspect.

III. 3D GEOMETRY PREREQUISITES

There are three principal axes in any boat, called longitudi-
nal, transverse and vertical axes. Figure 2 shows the rotations
around these. These are absolute orientations, i.e. while our
method outputs an orientation estimation, it is relative to
our camera view. Therefore, we may obtain the absolute
orientation using an onboard magnetometer or dual GNSS
solutions.

We note that we focus on the case of zero roll and pitch
angle, i.e. only the orientation is predicted.
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Fig. 2. Rotation around the longitudinal, transverse and vertical axes, i.e.
roll, pitch, and yaw [19].

Fig. 3. Orientation relative to the camera. At 0°, the boat’s nose is facing
directly us. Note that we did not include the roll and pitch angles.

For downstream tasks, such as trajectory prediction for
collision avoidance but also for rendering synthetic scenes
visually smooth and stable, we need to map our predictions
to 3D space. For that, we compute 3D object coordinates
relative to the UAYV, and then use these to obtain actual world
coordinates via passive geolocation.

For the relative object coordinates, we consider a math-
ematical perspective projection camera model since this
resembles the common use case for cameras on UAVs and
USVs. We assume our camera to look down at a certain
angle, which may be a variable gimbal or static camera. A
gimbal balances a potential UAV roll angle so that we assume
there to be a zero camera roll angle. If there is no gimbal
in the USV case, we apply a CV-based roll correction by
levelling the horizon line using the IMU roll angle.

Using the relative coordinates of an object (z- and y-
ground distances to UAV), we compute its GPS coordinates
based on the UAV’s GPS coordinates as follows. Given the
camera heading angle 6, we compute the rotation matrix and
rotate the relative coordinates of an object to obtain

o cos(f) —sin(f) 0| |z
yr| = |sin(@) cos(d) 0] |y (1)
1 0 0 1] |1

Finally, we map the relative coordinates to GPS coordi-
nates via

. 1
laltect = |q + y_r_80’ 2)
rom
. - 180 1
lo°bect — Jo 4+ x——— 3)

r m cos(lat w/180)
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Fig. 4.

Left: Example orientation of a boat taken from 50m of altitude and looking down with a pitch angle of 40°. The highlighted boat has a yaw

angle of 280° relative to our viewpoint. Since the UAV’s heading is 170° (close to true south), we know that the boat has an absolute heading of 260°
(close to true west). Right: Cad overlays on a frame of one the videos we took. Note the very small objects in the left part of the frame.
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Fig. 5. Example view of pose labeling tool. First, we align the view coarsly
in steps of 5°, then we put the visible anchor points (see Figure 3) in the
image plane. These are used to obtain a better pose label. We optimize the
orientation to match these anchors (see [7]).

We refer the reader to [20] for a more comprehensive
derivation of the 2D <— 3D projection. Concretely, we
would like to note that the projection may especially be
critical for a distant object in the USV scenario as here, we
encounter a very acute viewing angle. Small errors in pixel
space result in large distance errors in world space. It is an
open problem of how to correctly project distant objects in
world space. For our consideration, we are mostly concerned
with obtaining correct heading estimations for either close
detections that may ultimately pose an immediate threat.
For distant objects, we mostly care about stable heading
predictions over time.

IV. DATA COLLECTION AND LABELING

Because of the lack of available datasets for yaw estima-
tion, we capture and annotate our own. For the UAV scenario,
we leverage the already existing SeaDronesSee-MOT [8]
dataset, which comes with bounding boxes and instance ids

for boats. Furthermore, we annotate the 6D pose of boats
from various sample scenes by adapting the annotation tool
provided in [21]. Figure 5 shows an example scene where
a boat is labelled from a viewpoint of a UAV. We leverage
the provided metadata from the UAV to automatically infer
coarse pitch and roll angles relative to the camera. Herein, we
assume the world pitch and roll angle of boats to be zero,
such that we only need to annotate the heading direction.
For that, we manually provide a coarse heading and, upon
selecting anchor points from the CAD in the corresponding
real objects, we optimize for the precise 6D pose using their
optimization procedure [21]. For annotation efficiency, we
only annotate every 10th frame and interpolate the pose in
between.

For the USV scenario, we capture our own data from the
viewpoint of a fixed camera installed on a small motorboat.
We use the ZED2 camera! with integrated IMU to infer
the orientation at which we look at the scene. As before,
we may also infer a coarse estimation of the roll and pitch
angle for subsequent finer annotating via pose optimization.
Before that, we annotate the scenes with bounding boxes
using our tool, which we built on top of SAM (Segment
Anything Model [3], see Fig. 6). We leveraged their largest
ViT-H (636M parameters) model and built a user interface
and labeling logic around it, such that objects can be
assigned their bounding boxes by just clicking on them.
Analogous to before, we annotate every 10th frame and
interpolate in between. Table I shows a timing comparison
between conventional labeling tools and our method. Every
method was required to yield precise bounding boxes as
rated by human experts. We repeated this experiment with
five experts knowledgeable in the field of object detection.
Each experiment lasted for half an hour. Our method clearly
outperforms the others by 8.7 FPM. We hypothesize that
fatigue symptoms occur later because annotating with a
single click already covers the entire object. In contrast, when
setting bounding boxes, precise outlining of the object is
required, which becomes more exhausting over time. While
this effort can be reduced by tracking, there are often errors

https://www.stereolabs.com/zed-2/
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TABLE I
ANNOTATION SPEED GIVEN IN FRAMES PER MINUTE USING OUR
ANNOTATION TOOL BASED ON SAM AND VIT-H.

Annotation method Labeling Speed (FPM)

DarkLabel [22] 3.8
DarkLabel + Interpolation 19.6
DarkLabel + Tracking 20.2
SAM-based 5.5
SAM-based + Interpolation 28.9

Fig. 6. Faster bounding box annotations by means of ”Segment anything”
[3]. We leverage this method to accelerate 2D bounding box labeling. A
user just needs to click on the object, the corresponding bounding box will
be set and saved automatically.

in tracking objects that are far away, requiring the annotator
to stay alert and relabel bounding boxes.

We want to note that this method can fail in scenarios
of low contrast or very distant objects. In this case, one
has to resort to standard bounding box detection. More-
over, it requires a GPU to process ViT-H (in our case an
RTX 2080Ti). Furthermore, a more exhaustive study on the
benefits of segmentation-based labeling needs to be done
to obtain a more comprehensive overview. In particular, a
more comprehensive experiment considering object number,
size, shape and movement needs to be done. We release both
(adapted) annotation tools for further studies.

V. METHOD: AGGREGATING PROBABILITY
DISTRIBUTIONS OVER TIME

Our approach is based on HyperPosePDF [7]. For an input
image x € X, it aims to obtain a conditional probability dis-
tribution p(-|z): SO(3) — R, representing the distribution
of the inherited pose of an object in the image x. For that, we
train a vision backbone network, e.g. ResNet to predict the
networks of a second network. While the vision network acts
as a hypernetwork, the architecture of the second network is
inspired by an implicit neural representation. The implicit
neural representation acts on the rotation manifold and
outputs for each pose, the corresponding probability of it
being the underlying rotation of the object present in the
image. Hence, it acts as an approximation of the probability
distribution p(R|xz) by marginalizing over SO(3). During
training, we maximize p(R|x) by providing pairs of inputs
z and corresponding ground truth R. To make a single pose
prediction, we solve arg maxgcgo(s) f(7, R) with gradient
ascent, projecting the values back into the manifold after each
step. To predict a full probability distribution, we evaluate
p(R;|x) over the SO(3) equivolumetric partition R;. This
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model can estimate complex distributions on the manifold
without prior knowledge of each object’s symmetries, and
appropriate patterns expressing symmetries and uncertainty
emerge naturally in the model’s outputs. This is indeed, the
most general way to conduct pose estimation. Specifically,
in our scenario where we want to predict the pose to predict
the trajectory it is possible to include uncertainty information
of the pose to improve the performance.
The posterior distribution

P(Ry41|Zk), “4)
based on the observations Zj, for time steps {1,...,%k} can
be approximated by

P(Rk+1|Zk) ~ P(Rk|Zk) + Aposea )

where Apq is defined as a weighted running average

=
Apose = 1 Swi(P(RiilZia) = P(RIZ)). (6)

k 1=0

For | < k + 1 the probabilities P(R;|Z;) are known and

approximated by the HyperPosePDF network. Therefore, the

calculation of the pose at a future time point is deterministic.

The weights w; fulfill Zz w; = 1. To reduce the effect of

earlier pose transitions, which have a lesser effect on the

current pose movement it is plausible to simply set the initial

weights as 0 and average the remaining over a smaller time

interval chosen such that 0 <t < k

for [ < t,

0
wr=19 )
T—t for [ 2 t.

This especially comes in helpful, when we try to predict
the movement of a boat that is in the middle of a turn
manoeuvre and the respective trajectory resembles a curve.
Furthermore, this allows us to detect false pose predictions
in the case that the pose prediction in the next time step
differs to much from the previous path. E.g., in the case of
nearly symmetric boats, we experienced the appearance of
180° miss-predictions, which now can be easily excluded.

VI. EXPERIMENTS

First, we conduct experiments on the single-image Pas-
cal3D+ set to illustrate the performance and expressiveness
of HyperPosePDF. Similar to [2], we choose a pretrained
ResNet-101 backbone for our vision module. Then, we train
the model to predict the weights of a one-layer network with
a width of 256. Using the Adam optimizer, we evaluate
our model after 150k iterations using a batch size of 16.
A learning rate of 1077 is used for the first 1000 iterations,
and then a cosine decay is applied. We choose a time horizon
window of k£ = 3 for our experiments.

We report the performance of the category boat using
the two commonly used metrics accuracy at 30° (Acc) and
median error in degrees (ME). Table II shows that this
method is on par with SOTA methods (ImplicitPDF [7]).

Naively applying HyperPosePDF on video data yields
single-point predictions (i.e. orientations) at each time step.



11*" European Conference on Mobile Robots — ECMR 2023, September 4—7, 2023, Coimbra, Portugal

1 2 El

Fig. 7.

[ Fl

Sample boat heading probability distribution predictions (given in radian). Ground truth values are 4.8, 0.4, 6.0, 4.0. Almost all the captured

distributions are uni-modal and the best single-point estimator would yield a fairly close prediction of the orientation. The first image already provides a
glance at the benefits of capturing the uncertainty. It is not clear whether the sailboat is sailing at an angle of 270° or slightly less.

TABLE 11
YAW ESTIMATION RESULTS ON PASCAL3D+, SEADRONESSEE3D AND
BOARIENT. NOTE THAT PASCAL3D+ ONLY FEATURES STILL IMAGES.

Method Dataset Acct ME]
ImplicitPDF PASCAL3D+ 56.0 234
HyperPosePDF PASCAL3D+ 562 228
HyperPosePDF  SeaDronesSee3D  65.6  20.1
+Run. Mean SeaDronesSee3D  71.9  16.7
HyperPosePDF BOArienT 425 41.8
+Run. Mean BOArienT  50.2 18.3

However, uncertainty due to unseen data yields far-off pre-
dictions, often resulting in wrong symmetric orientations. For
example, compare to Figure 1.

We evaluate on SeaDronesSee3D and BOArienT, where
we manually annotated the orientations. Table II shows that
our method yields higher accuracy at a maximum of 30°
error tolerance as well as lower median angle error. Figure 1
shows an example sequence of SeaDronesSee3D where the
single-image predictor miss-predicts the orientation by 180°
due to the slight symmetric shape of the boat.

To test our approach in a complete pipeline, we employ
a state-of-the-art multi-object tracker and apply the yaw
estimator on the predicted bounding boxes. For the UAV
scenario, we train on SeaDronesSee-MOT, and for the boat
scenario, we take a pre-trained tracker on COCO. We report
the performance of the trackers on SeaDronesSee3D and
BOArienT in Table III.

Now, we apply the yaw estimator on top of the predicted
bounding boxes with associated ids. Whenever a new track-
let is starting, we initialize a new probability distribution
running mean. We only measure the orientation estimation
performance on objects that have successfully been detected.

Table IV shows that our method still outperforms the
single-image approach since the multi-object tracker is quite

TABLE III
MULTI-OBJECT TRACKING ACCURACY ON SEADRONESSEE3D
(SDS3D) AND BOARIENT (BT). FOR SDS3D, WE USED THE METHODS
FROM THE WORKSHOP COMPETITION [11]. ADDITIONALLY, WE BUILT
ON TOP DEEPSORT A MEMORY MAP (MM) [20] TO BECOME MORE
ROBUST TOWARDS ID SWITCHES AND FRAGMENTATIONS. FOR BT, WE
USED OFF-THE-SHELF TRACKTOR & DEEPSORT.

Model HOTAT MOTAT IDs] Frag|
A ByteTracker 79.9 89.8 23 678
% DeepSORT 80.8 91.0 20 642
2 +MM 86 919 19 635
— Tracktor 65.6 67.0 69 876
A DeepSORT 66.2 80.0 51 801

robust already (only a few ID switches degrade our method
to effectively become a single-image method at these time
points). Remarkably, we can even improve the point pre-
diction over the naive mode running mean method, which
simply applies a running mean on the modes of the distribu-
tions. We note, that this is on top of the higher expressiveness
coming from our probability distributions: we may incorpo-
rate the uncertainty of heading estimations in downstream
tasks, such as trajectory prediction, collision avoidance or
for visualization purposes in augmented reality applications.

Finally, we compare our heading estimation approach with
a naive trajectory-based approach. For every detection in
every frame, we map its center box location to 3D via a
perspective projection camera model [20] and capture the
trajectory in world coordinates. We predict the next trajectory
point by a constant velocity model coming from the previous
three time steps. We take the resulting heading to be the final
prediction of this baseline. If an object is lost, we need to re-
initialize the heading which is a critical shortcoming of this
approach. Furthermore, Table IV shows that the trajectory-
based method fails on both scenarios due to stationary boats
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TABLE IV
YAW ESTIMATION RESULTS ON SEADRONESSEE3D AND BOARIENT.

Method+Tracking Acct ME]
A Trajectory-based 23.1 1233
%  HyperPosePDF 632 221
% +Mode Running Mean 643 216

+Distribution Running Mean 70.3 17.3
& Trajectory-based 202 726
‘£ HyperPosePDF 39.6 439
é +Mode Running Mean 40.1 420
A 4+Distribution Running Mean 49.8 19.5

mie Ego Boat

®m Trajectory-based
®e  Our method

Fig. 8. Sample synthetic rendering of the scene from Figure 4. Detected
boats and their heading are put into Google Earth. The big yacht on the
right was already contained in the Google Earth image. We add a slight
offset to the predicted locations (which are the same for the two methods)
for visualization purposes.

and a challenging and noisy 2D — 3D projection.

Figure 8 shows the predicted positions and headings in
BOArienT coming from our method and from this baseline
via 2D — 3D projection. Because some boats are stationary,
the heading information for the baseline is incorrect. Further-
more, the heading information from slowly driving boats is
very noisy as the underlying 2D <— 3D projection is error-
prone. Single-image predictions are better, but the smallness
of the objects makes these predictions also very noisy.

VII. CONCLUSION AND DISCUSSION

In this paper, we addressed the novel problem of predicting
the yaw of boats from the viewpoint of unmanned aerial
vehicles (UAVs) and unmanned surface vehicles (USVs)
or boats. We proposed a method based on HyperPosePDF,
which models the uncertainty of predictions and yields robust
orientation predictions across time in video-based scenarios.
To demonstrate the utility of our method, we created two
new datasets, SeaDronesSee-3D and BOArienT, manually
annotated with bounding boxes and pose information, and
made them publicly available. Our experimental evaluation
showed that our method significantly improves performance
compared to naive single-point predictions. Our proposed
method has potential applications in marine robotics, includ-
ing 3D scene rendering, trajectory prediction, and navigation.
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Graph-based Simultaneous Localization and Mapping with
incorporated dynamic object motion

Peter Aerts!*, Peter Slaets? and Eric Demeester!

Abstract— Over the last years, Simultaneous Localization and
Mapping (SLAM) in dynamic environments has received more
attention. This paper presents a SLAM algorithm in which
dynamic object information is included within the graph-based
optimization approach. By exploiting knowledge about the
object’s motion within the scene, the constructed map is a more
accurate representation of the environment. Using data from
simulation, we show that the robot’s trajectory and the dynamic
object’s trajectory better aligns with respect to the ground
truth. Real-world experiments, which includes human motion
within the optimization, show that the robot’s trajectory and
thus the environment map is improved. This is verified based on
the comparison between the constructed maps with and without
the incorporation of the human motion. The validity of the map
is obtained by evaluating three metrics from literature and a
comparison to the building plans of the environment.

I. INTRODUCTION

Simultaneous localization and Mapping, also known as
SLAM, refers to a robot determining its location and sur-
roundings within an unknown environment based on in-
formation gained from proprioceptive (i.e. wheel encoders,
IMU, etc.) and exteroceptive sensors (i.e. LIDAR, camera,
etc.).

In recent years, techniques have arisen attempting to inte-
grate the information of dynamic objects within the SLAM
optimization problem to simultaneously track and update the
map of the environment.

In 2019, Simas et al. [1] presented a SLAMMOT (Si-
multaneous localization and Mapping and Mobile Object
Tracking) approach based on an Extended Kalman Filter
(EKF) in uncertain dynamic environments. They incorporate
the EKF together with Multiple Hypothesis Tracking (MHT)
to identify the motion model of each object. Zhang et
al. [2] propose MOTSLAM. It uses sequential monocular
frames and extracts objects using 2D3D object detection
and semantic segmentation. The observations are split into
foreground and background features, determining the trans-
formation of objects based on fixed map points and using
bundle adjustment to find the camera poses as well as the
static and dynamic poses. Huang et al. [3] present a stereo
visual odometry to simultaneously cluster and estimate the
motion of the camera and surrounding objects. The ego
motion and dynamic object poses are estimated through
a sliding-window optimization. Zhang et al. [4] exploits
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semantic information to estimate the motion and tracking
of dynamic objects while building the map. They implement
bundle adjustment to estimate the motion of the dynamic
object within the map giving good results, but this is com-
putationally complex to run in real time. In 2021, Bescos
et al. [5] present DynaSLAMII. Here, bundle adjustment is
used together with the assumption of constant motion model
of the camera and dynamic objects to improve the ego motion
estimation together with those of the dynamic objects. We
previously published [6], which describes a graph-based
optimization technique to incorporate dynamic objects within
the graph structure assuming a constant velocity model of
the object. The estimation of the motion model parameters
was executed using an Unscented Kalman Filter. It was
shown that robot poses can be optimized using graph-based
optimization without using static objects in the graph and
solely using the pose measurement information of dynamic
objects when a constant motion model of the object is
estimated. However, the implementation of static features
within the experiments was considered future work. Within
this paper, we incorporate static features as well and simplify
the determination of the parameters of the dynamic object.

The paper is structured as follows: Section II describes the
construction of the graph for the optimization as well as the
determination of static landmarks and human poses. Section
IIT shows the experiments and results from simulation and
real world experiments. Section IV concludes this paper with
a short summary.

II. GRAPH CONSTRUCTION

The proposed 2D graph-based method builds upon the
pose-landmark-graph optimization algorithm. The basis of
this approach is well described by Grisetti et al. in [7].
Figure 1 shows a visual representation of the construction of
the graph to be optimized. The gray triangles represent the
robot while the white stars represent the static landmarks. In
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Fig. 1: Visualisation of general graph-based SLAM approach.
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this figure, the robot states are given by x; = [z, y, 0]T where
z and y describe the robot’s position and @ its orientation.
These states are referenced to a fixed reference frame,
generally the first robot state 2o = [0,0,0]. These poses
are consecutively linked via constraints. The constraints are
derived from the odometry of the robot w;. All landmark
positions are represented by I; = [z, y]T. The visible land-
marks are constrained to one or more robot poses derived
from the observation z;. The robot poses and landmark
positions of which the optimal state is to be determined
are called vertices or nodes. All constraints derived from
odometry and observations are referenced as edges. The goal
of graph-based SLAM is to find the optimal configuration
of nodes which represent the robot poses and landmark
locations. This can be obtained by minimizing equation (1).
Here e,;; represents the error function regarding the expected
measurement and actual measurement. €);; is the information
matrix and accounts for the uncertainty. We seek to find
the optimal state for all nodes X* which is obtained by
minimizing J(X) as described in (2).

J(X) ZeiTjQijeij

X* = argng}nJ(X)

6]

2)

Equation (3) represents equation (1) where each summation
is the constraint pertaining to a certain type of node (robot
pose or landmark). These constraints are also depicted in
figure 1. Here R~! and Q! are the information matrices of
their respective terms. The term JcOT Qoxo ensures that the first
pose of the robot is fixed. This creates an anchor position
for the optimization and is considered the starting point of
the path and subsequently the map.

J(X) =zl Qozo + Z e ()T R e, (t)+

t
3
S e (07 Q ena (1) @
t

The error function between consecutive poses is given by
equation (4) where the motion model g(-) describes the
robot’s next pose x; given the previous pose x;_; and some
form of odometry measurement u;:

“)

For the measurements of static objects, the error function
is given by equation (5) where k(-) represents the expected
measurement given the robot pose x; and landmark position
l; with z; being the actual sensor measurement:

elo(t) = ze — k(ly, ¢) ()

Minimizing equation (3) provides the optimal configuration
of nodes X*. This is the standard graph-based SLAM
approach using robot poses and landmarks.

em<t) =T — g(“hxt—l)

We extend on this 2D pose-landmark-graph optimization
with the implementation of dynamic objects within the
graph-based approach. Figure 2 shows the connected
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graph where static objects as well as dynamic objects are
registered. For the implementation of dynamic objects, the
following statements are assumed:
o The association of dynamic objects is known in consec-
utive data points;
« The motion models of the dynamic objects within the
scene resemble a constant velocity model.

__,DL [\:‘;} —'I'II—— i; “L/\% 2

Fig. 2: Visualisation of the dynamic SLAM approach. Here, dy-
namic objects as well as static objects are included in the optimiza-
tion algorithm. From every robot pose a constraint is made either to
the dynamic objects and/or the static features within the scene. An
additional constraint is created between consecutive object poses
based on their velocity model estimation.

Dynamic objects are represented as m; = [z,y,0,v,w].
For pedestrian motion, a constant velocity model is
considered. Scholler et al. [8] show that a constant velocity
model for pedestrian motion prediction yields good results
compared to more complex models. For such models, v and
w represent the linear and angular velocity of the object
and these two parameters are considered constant for each
instance of m;.

Extending on equation (3), equation (6) describes equation
(1) with the addition of the constraints pertaining to the
dynamic object poses. These constraints are also depicted in
figure 2. Here R~1,Q~!,0~! and S~! are the information
matrices of their respective terms.

J(X) = al Qoxo + Z e () TR e, (t)+
Z el,x(t)TQilel,m (t) =+ Z em,x(t)Toilem,x (t)+
> em®) S em(t)

t

(6)

The proposed technique includes two additional terms; those
of the measurements of the dynamic objects and the constant
velocity model of the dynamic objects linking their consec-
utive poses.

The error functions between consecutive robot poses and
measurements to static objects remain unchanged as repre-
sented in equation (4) and (5) respectively.

Equation (7) represents the error function of the measurement
to the dynamic object. Here w represents the measurement
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function given the poses of the robot and dynamic object
my and x; respectively with z; being the measurement of
the dynamic object:

em,x(t) =zt — w(mt; zt) (7)

The last term consists of the error function between the
estimated pose of the dynamic object m; and the pose of
the constant velocity model f(v;, m;—1) shown in equation
(8):

em(t) = my — f(ve,mi—1) 8

Here 14 represents the constant velocity parameters v; and

wy of the dynamic object. Parameters v; and w; describe the
constant linear and angular velocity respectively. Function
f(-) describes a straightforward constant velocity model
based on the object pose given by m = [my, m,,, mg.
To solve equation (6) the error (e;;) terms are derived. This
is shown in equation (9) where X represents the set of nodes
within the graph. The indices ¢ and j represent the relation
between the observations. The obtained Jacobian is a sparse
matrix as shown in equation (10).

(’)eij(X) _ 86”(X1) 8eij(Xj) 0 9
9X) (0, ..., a0 T TaeG) )]
J=(0,..., Aij, ..., Bij, ..., 0) (10)

Using the sparse Jacobian matrix, the coefficient vector b and
matrix H can be calculated as shown in equations (11) and

(12).
H=> Hj=> JiQ%J; (12)

Once the vector b and the sparse matrix H are calculated,
equation (13) can be solved.

HAX =-b (13)

Here, AX is the correction vector which is added to the
set of all nodes X. This process is executed iteratively
until the change in outcome of the minimization function
is below a predefined threshold as shown in algorithm 1.
In this algorithm the construction of H and b is formed
in the pseudo function buildLinearSystem(X) with X
being the set of nodes. After this, the solveSparse function
finds AX which is added to the node vector X. Lastly,
the function computeGlobal Error sums up all the errors
from the aforementioned error functions using the newly
corrected set X . The outcome of this error is compared to the
previous error. If the difference is below a certain threshold,
the optimization is complete.

A. Static features

In our proposed approach, we assume that a LiDAR
provides a perception of the environment. Using a Split-
and-Merge (SaM) approach, which originated from computer
vision [9] and used in works such as [10] and [11], the inter-
section points of two line segments within the environment

Algorithm 1 Graph-based optimization

1: optimize(X):
2: while !converged do

3: (H,b) = buildLinearSystem(X)
4: AX = solveSparse(HAX = —b)
5: X' =X+ Az

6: Fx = computeGlobal Error(X)

7 Fy/ = computeGlobal Error(X’)
8: if abs(Fx — F'x/) <= threshold then
9: converged = True

10: end if

11: end while

12: return X

are captured from the data as illustrated in algorithm 2. These
corners are considered to be the static features within the
graph, with the measurements being the constraints between
robot poses and these features. The algorithm splits the laser
scan data into sections based on a certain threshold.

Once the data are split into the smaller sections L =

Algorithm 2 Split-and-Merge corner detection

1: set so = {P},L ={s0},C=0,L" =0, R=10
2: while True do

3 L'=0

4 R=10

5 for s; in L do

6: ls = line(Py, Py) > P last point in cluster s;
7: add ls to R

8 dp, P, = max_distance(ls, s;)
9: if d, >= threshold then
10: Sj :{Po,...,Pp}

11: Sk:{Pp,...,Pk}

12: add s; and sy to L’

13: else if d, < threshold then
14: add s; to L’

15: end if

16: end for

17: if size(L) == size(L’) then
18: break from loop

19: end if

20: end while

21: for s; in L do

22: c = corner(s;,Si—1)

23: add corner c to list C

24: end for

25: return L, C

{s0,...,8;}, and the line parameters of each section
are saved in R, the algorithm determines the corners in
corner(s;, s;—1). The line parameters of s; and s;_; are
obtained from R and the intersection is calculated (14, 15).
Once the corner is known, it is added to a list of static corner
features (16).

bi —bi—1
Lcorner = : — (14)
mij—1 — My
Yeorner = Mi-Teorner + bz (15)
C= chorner,Ov ycorner,O]Tv ) [:Ccorner,ia ycorner,i]T} (16)

This process relates to line 13 of the algorithm 2. These
intersections are considered to be the static landmarks within
the scene and are incorporated as such.

B. Dynamic object

Dynamic objects can range from large rigid objects such
as cars or trucks, to people or other robots. Our focus lies
in detecting the pose of a person and incorporating this
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information into the graph-based optimization. A 3D camera
can provide a color and depth image of the environment.
Using Blazepose body tracking [12], we are able to detect
certain feature points of a person within the image. Assuming
that the torso of a person is oriented towards the movement
of the person, we can determine the pose of a person.
First, we consider all points within the plane described by
the two shoulder points and two hip points, obtained from
the body tracking algorithm, to be the torso. From this set of
points P50, the centroid ¢, is calculated. This represents
the position of the person:

1 & ,
=~ > _pi With pi € Piorso (17)

i=1

Here n is the number of points present within Pj,;.s0.
To determine the orientation of the person we first fit a plane
through all points P;,,s, using singular value decomposition
(SVD). From the SVD, the normal vector is determined
which is considered the orientation of the person. Given the
set of 3D points P;,.s, and the position of the plane is given
by the centroid c,, matrix A is introduced:

A:

[Ptorso] —Cp = [pO — Cpy -, Pk _cp] (18)

A=USVT (19)

Computing the singular value decomposition of A pro-
vides the normal n obtained from the third column of matrix
U:

n="U[,3| (20)
The normal n together with the centroid ¢, gives us the

pose of the detected person.

Figure 3 shows this pose extraction from the depth camera.

For our implementation, this 3D pose is reduced to a 2D

pose within the xy-plane for the implementation into the

graph-structure.

Fig. 3: Detection of pose of a person. The left: the body tracking
algorithm and area defined as the torso. On the right, the pose of
the person is given by the red arrow with origin at the centroid of
the torso of the person.
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C. Determining the motion parameters

In order to implement the constraints between consec-
utive poses of the dynamic objects, the necessary motion
parameters need to be estimated which, under the constant
velocity model assumption, are v and w. These linear and
angular velocity parameters are necessary for equation (8)
and represent v, = [v, w]”.

For this estimation a limited set of poses of a dynamic ob-
ject M = [m], ..., mY], registered together with at least one
landmark L = [1J), ..., 1?] and associated over the consecutive
time frames, is used. From these poses in M, v and w are
calculated using a mean average as illustrated in equations
(21, 22).

ey

t
> (me,i —ma,i-1)
1=0

w =

; (22)

Function d in equation (21) calculates the Euclidean
distance between the two given poses.
These calculations are executed and, the parameters are
updated every iteration of the algorithm until equation 6
is minimized. In our experiments, it is shown that this
calculation yields a significant benefit to estimate the pose.

III. EXPERIMENTS & RESULTS

The experiments are split into two sections. First, we eval-
uate the graph-optimization approach described in II through
simulation. A comparison is made between the standard
approach without dynamic objects and with dynamic objects.
Second, data from sensors are gathered and processed. From
the optimized robot poses, a 2D map is generated. These
maps (with and without incorporating dynamic objects) are
compared using metrics described by Filatov et al. [13].
Besides these metrics, the generated maps are evaluated
against the building plans.

A. Validation through simulation

Within the simulation, several landmarks are sparsely
distributed and a dynamic object moves at a constant speed.
Gaussian noise is added to all measurements within the
simulation. Table I shows the comparison between the
standard approach with and without dynamic objects. The
mean error of robot positions w.r.t. the actual positions are
given as well as those of the dynamic object. For the case
where the dynamic object is not incorporated within the
optimization, the object poses are only derived from the
direct measurements and not influenced by a motion model.

Figure 4 visualizes the output of the simulation. The
trajectory of the robot is visualized in dark blue while the
trajectory from odometry is given in red. The trajectory
is given by yellow dots. The path of the dynamic object
is represented by the purple dots. Figure 4a shows the
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TABLE I: Mean error (m) of robot and object positions w.r.t. the
actual positions. The error is calculated for the standard graph-
based optimization without dynamic objects and for the presented
approach.

Robot path error (m) run 1 run 2 run 3 run 4 run 5
SLAM without dynamic object  0.1156  0.7007  0.1275 0.2715 0.3088
SLAM with dynamic object 0.0780  0.2937 0.1020 0.0745  0.0624
Object path error (m) run 1 run 2 run 3 run 4 run 5
SLAM without dynamic object  0.2262  0.7886  0.3378  0.2861  0.3135
SLAM with dynamic object 0.1122  0.2531 0.2573 0.1397 0.1318
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Fig. 4: Figure a) shows the optimized path without incorporating
dynamic object. Figure b) shows the optimized path with the
dynamic object incorporated.

optimization without the inclusion of the dynamic object. It
can be seen that the estimation does approximate the actual
path, but a deviation is still present. Figure 4b shows the
results with the dynamic object included. The estimated path
is almost identical to the actual robot poses, which shows that
the incorporation of dynamic objects has its merits.

B. Validation through real-world experiments

In our experiments, data was obtained using a differential
drive robot containing a Hokuyo UTM-30LX 2D LiDAR
and an L515 RealSense depth camera. The platform is
equipped with magnetic wheel encoders providing odometry
information. The information of these measurements was
then implemented in our approach. Using the optimized
poses together with the LiDAR information, the 2D grid
maps are generated. For our experiments we focused on a
long hallway. This situation is prone to drift and leads to
corridors being represented by curved walls which is not
an accurate representation. During the collection of data, a
person is walking in front of the robot through the hallway.
The built maps are generated from a single pass through the
environment. This experiment is executed multiple times
Figure 8 shows the difference between the standard graph-
based SLAM approach and incorporating dynamic objects

within the graph optimization. The figures visually show
that by detecting, tracking and incorporating dynamic ob-
jects within the scene, the environment is represented more
truthfully. This was the case in all our experiments.

Besides the visual confirmation that including dynamic
objects is beneficial in map building, three metrics described
by Filatov et al. in [13] are calculated to compare the
generated maps. These metrics are:

« Proportion of occupancy;

o Number of corners present within the map;

o Number of enclosed areas present within the map.
Proportion of occupancy refers to the ratio between cells
of the 2D grid map considered to be occupied with high
probability and those with low probability. For the same
environment, a better representation is considered to have
a lower proportion value. In an ideal map, occupied space
is represented as a single grid cell with high probability
of being occupied rather than a cluster of cells with var-
ious probabilities of occupation. Figure 5 shows what the

(a) With blurry effect

(b) Without blurry effect

Fig. 5: The proportion metric calculates the amount of blur within
the map. The less blur effect the better the map [13].

proportion metric determines. The results of this metric are
given in table II. In order to calculate the proportion, the
Otsu threshold of the occupied cells is calculated. Using this
threshold, the amount of occupied cells above this value is
divided by the amount of occupied cells below this value.
Next to this, the standard deviation is also given.

Number of corners present within the map is a metric which
indicates the smoothness of the map. The less corners a map
has, the better the representation of the environment. For
our experiments, a Harris corner detection algorithm [14]
is implemented for calculating the corners within the map.
This does not represent physical corners, but every pixel
considered a corner by the algorithm. Figure 6 shows an
example of a partial map and its calculated corners.

.a-—ih.a-—‘

(a) More corners detected (b) Less corners detected

Fig. 6: The red dots represent the corners found by the Harris corner
detection.

Table II also shows the results for this metric between the
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maps generated with the standard approach and the proposed
approach.

Number of enclosed areas present within the map espe-
cially indicates misalignment. If fewer enclosed areas are
present within the map, the better the representation of the
environment. Misalignment of laser scan data will create
additional areas within the map. These contours are found by
implementing [15], which describes Suzuki’s contour tracing
algorithm. As these contours describe the enclosed areas
found within the map, the number of contours retrieved by
the algorithm is a measure of accuracy of the map. Figure 7
is an example of all contours found in a map. The result of
this metric is shown in the last column of table II.

Fig. 7: Example of finding all contours within a map. The green
lines form all enclosed areas.

(b)

Fig. 8: Figure a) is constructed with the standard graph-based
SLAM approach. The straight hall is represented as a curvature
within the map. Figure b) is constructed using the dynamic SLAM
approach. In both images, the robot path is given from its starting
point (red) to the end destination (green). All poses in between are
represented in blue.

Looking at table II, the proportion between occupied and
unoccupied space is similar for the maps created with and
without the incorporation of a walking person within the
scene. The difference between the values is rather small
and sometimes being a positive or negative difference. We
conclude that this metric does not provide a clear indication
which map is a more truthful representation of the envi-
ronment. The amount of Harris corners detected within the
maps clearly indicates that the proposed approach ensures
a smoother representation of the environment. In every run
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a significant decrease in number of corners is visible. The
number of enclosed areas also indicates that the described
approach has its merits. A decrease in the number of enclosed
areas is present within the evaluation of every run. This
indicates that there is less misalignment of the LiDAR data
during mapping, thus representing the environment more
accurately. Together with a visual inspection of the maps, it
is clear that incorporating dynamic objects within the graph-
based optimization provides an improved estimation of the
robot’s trajectory.

Points before and after motion

Algnment result over absigradient)

OptiMIZation result

0 By Nd

Fig. 9: Alignment of the constructed map with the building plans
based on the work of [16].

When matching the images against the building plans, it is
obvious that the generated map does represent the environ-
ment truthfully. This is visible in figure 11 especially when it
is compared to figure 10, which is the graph based optimiza-
tion without the incorporation of dynamic objects within the
optimization. In order to properly compare the constructed

Fig. 10: Comparing building plans to the generated map with the
standard graph-based optimization approach. The building plans,
visible in green, are overlaid on the map.

Fig. 11: Overlaying the building plan with the generated map of
the proposed approach shows that the constructed map represents
the environment more accurately.

map with the building plans, the plans are converted to an
occupancy grid image. After an initial manual alignment of
the generated maps, the affine transformation to match the
map to the building plans is found based on the work of
Shahbandi et al. [16] and is shown in figure 9. Once the map
is aligned with the image of the building plans, as shown in
figure 9, a binarization of the constructed map is executed.
From the binarized map, the pixel distance to its nearest
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TABLE II: Table showing the results of the metrics; proportion, corner count and number of enclosed areas.

X= without incorporation of dynamic object

v/= with incorporation of dynamic object

runs Otsu STD Proportion  Harris corners enclosed areas
X 1 70 0.9818 0.3849 5043 2725
v 1 78 0.9958 0.4372 4349 2683
X 2 68 0.8130 0.4372 6358 1726
v 2 63 0.7230 0.4663 4111 1601
X 3 69 0.8400 0.4260 5077 1229
v 3 66 0.7990 0.4414 4073 1143
X 4 63 0.7320 0.4630 5718 1641
v 4 58 0.4920 0.4924 4317 1559
X 5 76 0.9474 0.3930 4614 2915
v 5 77 0.9340 0.3950 4506 2723

neighbour on the image of the building plan is calculated as
a metric representing the similarity to the real environment.
Table III shows the results of this metric. The mean distance
error over several mapping runs is limited to around 2 pixels.
The standard deviation is also limited to around 3.5 pixels.
Considering that each pixel of the map and building plans is
equivalent to an area of 0.05 x 0.05 meters, and the hallway
describing a distance of 65 meters, we can conclude that the
maps represent the environment fairly accurate.

TABLE III: Table showing the comparison of the binarized map
w.r.t. the building plan expressed in pixel amount. Every pixel
represents an area of 0.05 x 0.05 meters.

run 1 2 3 4 5
mean error 211 px  198px 176 px 1.57px 2.32px
standard dev. 438 px 385px 320px 254 px 3.60 px

IV. CONCLUSION

This paper describes a procedure to include dynamic

objects within graph-based SLAM. A method is defined
to register a human pose together with a determination of
the constant velocity model parameters. Our experiments
show that the incorporation of dynamic objects can improve
the robots trajectory as shown in simulation I and that the
representation of the environment is can be more accurate as
shown in the real world experiments and based on several
metrics from literature II. Lastly, the constructed maps are
compared to the building plans of the hallway. An alignment
is performed between the maps and the building plan and
the mean distance error is calculated. These results shown in
table III confirm that the newly constructed maps represent
the environment with a high accuracy.
Future work can focus on eliminating the assumptions made
in this paper. An important aspect to further development
is the implementation of a detection and tracking algorithm
to register several dynamic objects. We would also like to
address the constant velocity model assumption and investi-
gate other motion models of the dynamic features. To this
end several examples in literature exist [17]- [19].

REFERENCES

[1] M. Simas, B.J. Guerreiro and P. Batista, "Preliminary Results on 2-
D Simultaneous Localization and Mapping for Aerial Robots in Dy-
namics Environments”, International Conference on Robot Intelligence
Technology and Applications, 2019

156

[2] H. Zhang, H. Uchiyama, S. Ono and H. Kawasaki MOTSLAM:
MOT-assisted monocular dynamic SLAM using single-view depth
estimation. IEEE/RSJ International Conference on Intelligent Robots
and Systems (pp. 4865-4872), 2022.

J. Huang, S. Yang, T. Mu, and S. M. Hu. Clustervo: clustering moving
instances and estimating visual odometry for self and surroundings.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.2020, pp. 2168-2177.

J. Zhang, M. Henein, R. Mahoney and V. Ila. "VDO-SLAM:
a visual dynamic object-aware SLAM system.” arXiv preprint
arXiv:2005.11052 (2020)

B. Bescos, C. Campos, J. D. Tardos and J. Neira. "DynaSLAMII:
Thightly-coupled Multi-object Tracking and SLAM” IEEE robotics
and automation letters, 2021, 6(3), 5191-5198.

P. Aerts, P. Slaets, and E. Demeester. Incorporating Moving Landmarks
within 2D Graph-Based SLAM for Dynamic Environments. In 6th
International Conference on Mechanical Engineering and Robotics
Research (ICMERR) (pp. 1-7). IEEE. 2021.

G. Grisetti and R. Kummerle and C. Stachniss and W. Burgard:
A tutorial on graph-based SLAM. IEEE Intelligent Transportation
Systems Magazine, 2(4). 31-43 2010

C. Scholler and V. Aravantinos and F. Lay and A. Knoll: The simpler,
the better: Constant velocity for pedestrian motion prediction. arXiv
preprint arXiv:1903.07933, 5(6), 7. 2019

T. Plavidis, S.L. Horowitz. Segmentation of plane curves. IEEE
transactions on Computers, 100(8), 860-870, 1974.

G.A. Borges, M.J. Aldon. Line extraction in 2D range images for
mobile robotics. Journal of intelligent and Robotic Systems, 40(3),
267-297, 2004.

L. Zhang, B.K. Ghosh. Line segment based map building and lo-
calization using 2D laser rangefinder. In Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH370645)(Vol.
3, pp.2538-2543), 2000

V. Bazarevsky and I. Grishchenko and K. Raveendran and T. Zhu and
F. Zhang and M. Grundmann. Blazepose: On-device real-time body
pose tracking. arXiv preprint arXiv:2006.10204. 2020

A. Filatov, K. Krinkin, B. Chen, and D. Molodan: 2D SLAM qual-
ity evaluation methods. IEEE 21st conference of Open Innovations
Association (FRUCT). 2017, pp.120-126

C. Harris and M. Stephens: A combined corner and edge detector. In
Alvey vision conference (Vol 15, No 50, pp10-5244) 1988

S. Suzuki and K. Abe: Topological Structural Analysis of Digitized
Binary Images by Border Following. In Computer vision, graphics and
image processing, 1985, 30(1), 32-46

S.G. Shahbandi and M. Magnusson and K Iagnemma: Nonlinear
optimization of multimodal two-dimensional map alignment with ap-
plication to prior knowledge transfer. IEEE Robotics and Automation
Letters, 3(3), 2040-2047 2010

D. Helbing and P. Molnar. Social force model for pedestrian dynamics.
Physical Review E, 1995.

R. Baxter, M. Leach, S. Mukherjee, and N. Robertson. An adaptive
motion model for person tracking with instantaneous head-pose fea-
tures. Signal Processing Letters, 2015.

M. Koschi, C. Pek, M. Beikirch, and M. Althoff. Set-based prediction
of pedestrians in urban environments considering formalized traffic
rules. In International Conference on Intelligent Transportation Sys-
tems (ITSC), 2018.

(3]

(4]

(5]

(71

(81

(91
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]



11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

Visual-LiDAR Odometry and Mapping with Monocular Scale
Correction and Visual Bootstrapping

Hanyu Cai!, Ni Ou! and Junzheng Wang!»*

Abstract— This paper presents a novel visual-LiDAR odom-
etry and mapping method with low-drift characteristics. The
proposed method is based on two popular approaches, ORB-
SLAM and A-LOAM, with monocular scale correction and
visual-bootstrapped LiDAR poses initialization modifications.
The scale corrector calculates the proportion between the depth
of image keypoints recovered by triangulation and that provided
by LiDAR, using an outlier rejection process for accuracy
improvement. Concerning LiDAR poses initialization, the visual
odometry approach gives the initial guesses of LiDAR motions
for better performance. This methodology is not only applicable
to high-resolution LiDAR but can also adapt to low-resolution
LiDAR. To evaluate the proposed SLAM system’s robustness
and accuracy, we conducted experiments on the KITTI Odom-
etry and S3E datasets. Experimental results illustrate that
our method significantly outperforms standalone ORB-SLAM2
and A-LOAM. Furthermore, regarding the accuracy of visual
odometry with scale correction, our method performs similarly
to the stereo-mode ORB-SLAM2.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
irreplaceable technique for mobile robots and autonomous
vehicles, providing reliable surrounding environment infor-
mation and real-time positions. According to the use of
sensors, this technique can be divided into two categories:
visual-based and LiDAR-based. Over the past two decades,
visual SLAM has made significant strides, resulting in
commercially available frameworks. Modern visual SLAM
algorithms develop into two branches: feature-based and
direct methods. Feature-based methods [1], [2] reduce the
reprojection error of matched feature points (keypoints)
through bundle adjustment (BA) [3]. On the other hand,
direct methods normally optimize the photometric error of
sparse keypoints without corresponding matchings [4], [5].
The advantage of visual SLAM is rich semantic information,
low cost and small size, which is an indispensable part of
the field of automatic driving and AR.

In most cases, LIDAR SLAM usually outperforms visual
SLAM. Most recent pure LiDAR SLAM methods are de-
veloped based on LOAM [6], a milestone LiDAR SLAM
framework combined with SCAN-to-SCAN and SCAN-to-
MAP registration modes. These LOAM-based techniques
yield superior performance compared to the baseline LOAM,
with improvements in efficiency [7], robust registration [8],
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motion compensation [9] and local optimization [10]. In ad-
dition, LiDAR-based loop closure detection techniques [11],
[12] have been widely employed for place recognition and
graph optimization to reduce the accumulated error of Li-
DAR SLAM further.

Nonetheless, standalone visual or LIDAR SLAM either
has intractable drawbacks. Visual SLAM systems are prone
to localization failure [1] in fast motions. On the other hand,
for LIDAR SLAM, motion distortion [6], [9] is still a tricky
problem for spinning LiDAR, and its loop closure detection
is more complicated and challenging due to lack of stable
features [12]. It has been a noticeable trend to fuse visual
and LiDAR SLAM to enhance the overall performance.

According to the fusion techniques, LIDAR-camera fused
SLAM can be divided into three categories: LiDAR-assisted
visual SLAM, vision-assisted LiDAR SLAM, and vision-
LiDAR coupled SLAM. The first two means rely mainly on
LiDAR or camera, and the other sensor takes the assistance
role. Moreover, the last type generally utilizes both visual
and LiDAR odometry in the system.

The first category tends to focus on image depth enhance-
ment [13] or combines with direct methods without estimat-
ing the depth of feature points [14]. The second category
has few related studies, and it often uses visual information
to help LiDAR SLAM perform loop closure detection or
render map texture [15]-[17]. Since this category is not the
research content of this paper, we will not describe it in
detail. The third category is the hot field of current research,
which can be subdivided into loosely coupling and tightly
coupling. Loosely coupling is to cascade the two or filter the
results of the two [18], [19]. Tightly coupling [20] focuses on
constructing a joint optimization problem, including vision
and LiDAR factors for state estimation.

Our work is deeply related to depth enhancement. Whereas
the error of depth enhancement is significant when the point
cloud is sparse, and the feature points with enhanced depth
may not be successfully tracked. Directly tracking projected
points with high gradients is a solution, but such points
cannot be tracked accurately and stably. In this study, we
combine the powerful tracking ability of the feature-based
method with optical flow and propose a novel scale correc-
tion method to address the monocular scale drift problem.
Moreover, considering the LOAM algorithm depends on the
constant velocity model, it is prone to failure in scenes with
excessive acceleration or degradation. Using the results of
the visual odometry to initialize the LIDAR odometry’s pose
can increase the LOAM performance.

The contributions of this paper are as follows:
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1) A visual-LiDAR loosely coupled odometry. Solve the
problem that LOAM fails in degradative scenarios, and
increase the performance.

2) A novel scale correction algorithm is proposed that
does not need to enhance the depth of the visual
feature point. It guarantees that the output of the visual
odometry will not have a significant drift.

3) Implement our system on a large-scale dataset and
verify its effectiveness.

This paper is organized as follows. Section II presents
studies related to our work. Section III introduces the
proposed loosely coupled system and our scale correction
algorithm. Section IV shows the experimental datasets and
results. Finally, Section V demonstrates our conclusion and
possible extensions to our work.

II. RELATED WORK

LiDAR-camera SLAM can be broadly classified into three
categories: LiDAR-assisted visual SLAM, vision-assisted
LiDAR SLAM, and vision-LiDAR coupled SLAM. Note that
vision-assisted LiDAR SLAM systems [16] are not compre-
hensively reviewed in this paper because this system usually
hinges on semantic information, which requires knowledge
of image recognition that is out of our scope.

A. LiDAR-assisted Visual SLAM

LiDAR-assisted visual SLAM generally aims to utilize
LiDAR’s point cloud data to obtain more accurate depth
information for image feature points. A typical method in
this category is LIMO, where LiDAR data is directly applied
to estimate the depth of feature points [13]. Yuewen et
al. proposed CamVox, an RGBD SLAM system combined
with Livox LiDAR [21]. The performance of outdoor RGBD
cameras is improved by depth enhancement, and the depth of
many enhanced feature points reaches 100 meters. Another
approach to using LiDAR data in visual SLAM is by pro-
jecting point clouds onto images and performing the direct
method on projected points [14]. Reproject the projected
points to the next frame image and then minimize the photo-
metric error to solve the pose. This method does not have the
error caused by depth enhancement, but it requires accurate
extrinsic parameters between the camera and LiDAR. LiDAR
points are too sparse compared to image pixels, and the
above methods can obtain the depth of a small number of
points. In order to increase the number of pixels with depth,
Varuna et al. used the Gaussian process regression on the
projected points from LiDAR to the image to improve the
depth estimation [22]. Within a local image patch, they use
the enhanced depth pixels as a priori to predict the depth
of the remaining pixels in the image patch. In addition to
depth enhancement, LiDAR can also improve the robustness
of visual SLAM to illumination, which is also reflected in
CamVox [21]. Jiawei Mo et al. proposed a method that
uses LiDAR’s descriptor to address the issue that visual
loop closure detection is heavily affected by illumination
changes [23]. They calculate the LiDAR point cloud into
three descriptors and store them. The stereo SLAM map

is also calculated as three descriptors and matched with
the LiDAR descriptors. This method only relies on three-
dimensional points to complete visual loop closure detection.

To summarize, depth enhancement is the most popular
technique in LiDAR-assisted visual SLAM. In this paper, we
propose a novel approach that can apply to the low-resolution
LiDAR case, where the density of LiDAR point clouds is
much lower than that of the camera images.

B. Vision-LiDAR Coupled SLAM

In contrast to LiDAR-assisted visual SLAM, vision-
LiDAR coupled SLAM integrates both visual and LiDAR
odometry modules to enhance the system’s accuracy. V-
LOAM is a loosely coupled system that combines visual
and LiDAR odometry modules [24]. In this study, visual
odometry recovers the depth of feature points from sur-
rounding projected LiDAR points, while LiDAR odometry
leverages high-frequency camera poses to mitigate drift.
However, V-LOAM still faces two significant issues: inef-
fective depth enhancement and non-negligible drift error on
the z-axis (also remains in its baseline [6]). Zikang Yuan
et al. proposed SDV-LOAM [19]. It tracks the high-gradient
projected LiDAR points as visual odometry and employs an
adaptive scan-to-map optimization method to constrain pose
in all six dimensions well. By contrast, TVL-SLAM [20]
does not enhance the visual odometry’s depth estimation nor
utilize the motion estimation from visual odometry as the
LiDAR odometry’s initial guess. Instead, it establishes a joint
optimization problem of visual and LiDAR features, thereby
establishing a tightly coupled system.

The advantage of loose coupling is that the system struc-
ture is simple and the precision is high, but the robustness
is not strong due to the influence of each module. Tight
coupling is generally more robust due to joint state estimation
but requires more computation.

Lidar
Odometry

Visual
Odometry

Fig. 1.

Overview of our method.

III. METHODOLOGY
A. System Overview

The overview figure of our method is shown in Fig. 1,
and the definitions of primary notations are present in Table
I. Our system synchronizes the camera and LiDAR data at
10Hz. During the first stage, a local vision map is generated
using the mono camera initialization or tracking. Subse-
quently, we utilize LiDAR data to estimate the monocular
scale factor that represents the ratio between the correspond-
ing vision local map and laser scan. However, due to the scale
drift of the monocular odometry, we correct the scale factor
periodically during the trajectory using the proposed scale
corrector. Following scale correction, the LiDAR odometry
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TABLE I
NOMENCLATURE
Notations Description
C; i frame of image keyframe
L; i frame of point cloud
{w;} keypoints projected from L; onto C';
{2%}  reserved keypoints of {x}} after optical flow tracking
{E;} reserved keypoints of{iz.} after keypoint culling
Tﬁ transformation of A with respect to B
P, coordinates of i map point with respect to the world
K camera intrinsic matrix
d; measured depth of the j projected point onto C;
v;. visual depth of the 5™ projected point onto C;
pj. LiDAR point corresponding to m;

generates the final pose with the initial guess from the visual
odometry (we call it visual bootstrapping), resulting in a
final localization frequency of 10 Hz. The visual odometry
and LiDAR odometry are implemented based on ORB-
SLAM2 [1] and A-LOAM [6], respectively, so we focus
on performance comparison with the two baselines in our
experiments part (Section IV).

The remaining parts (Section III-B and Section III-C)
jointly introduce the implementation of the proposed scale
corrector. The pipeline of our scale corrector is displayed
in Fig. 2. To start with, we project the last frame of point
cloud L;_; onto the corresponding image C;_; and select
keypoints {mé_l} among the projected points. Subsequently,
the optical flow algorithm is employed to track each mé‘l in
the current image C; and thus get {E;_l} and {Z'} simul-
taneously. Moreover, to guarantee the accuracy of keypoint
correspondence, we also design two criteria for keypoints
culling based on epipolar lines, which are further introduced
in (3) and (4). Based on this keypoint matching, we can
conduct triangulation between matched {E;-_l} and {z}} to

159

Pipeline of the Scale Corrector.

recover their depth in the local map. Finally, scale correction
is performed between the local map and the corresponding
laser scan periodically throughout the trajectory.

B. Scale Corrector: Keypoint Extraction

1) Projection and Matching: As outlined in Section III-A,
the content of this section includes the projection, matching
and culling steps of keypoints. For clarity, we did not take
image distortion into account. Then, the process of projection
between C;_1 and L;_; can be formulated in (1).

- 1 -
ol = FKT(LJp} ! ()
J

where p;-_l is the j point of L;_1, Tg is the extrinsic pa-
rameter between camera and LiDAR. Imprecise extrinsic will
cause a significant error, and the corresponding calibration

method is shown in our previous work [25].
Further, the following criteria are applied to filter out
distinctive {:c;-_l} through neighbouring image information.
a) :13;71 should meet the requirements of the FAST-9 [26]

corner. ‘
b) The image gradient at m}_l should be large enough.

H
I:H:ZI
L

Fig. 3. FAST-12 pre-testing process. The red point is the keypoint to be
tested. The blue points are domain image points.

However, the first criterion is not applicable to low-
resolution LiDAR due to the scarcity of projected points.
To resolve this issue, we lower the requirement to obtain
{w?il} as shown in Fig. 3. We adopt the FAST-12 pre-testing
process. Calculate the difference in the pixel values between
the keypoint and the surrounding four points, and if more
than three meet the threshold, our requirements are met. In
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addition, we employ non-maximum suppression to ensure a
uniform distribution of keypoints.

Regarding keypoint matching, we employ the Lucas-
Kanade [27] optical flow with the input of {:c;-*l} from the
last image to track corresponding points {Z}} in the current
image.

|
---"

——
g
)

€n

C,

i-1

(b) Error directions

(a) Epipolar line

Fig. 4. (a): The projection keypoint will theoretically lie on the epipolar
line. (b): The error between the tracked keypoint(black) and the theoretical
point(orange) is divided into tangential and normal errors.

2) Culling: Since many keypoints are not Fast corners,
tracking these keypoints by optical flow will cause significant
uncertainty. To further improve the accuracy of keypoint
matching, we conduct keypoint culling based on the epipolar
lines. Fig. 4(a) shows the conception of the epipolar line.
According to epipolar geometry, the keypoint Ej should be
located on the epipolar line. For one, it should be discarded
when its distance to the epipolar line is too large. For another,
in some special cases, the keypoint still should be culled
when its pixel gradient is perpendicular to the epipolar line
even though it is near the epipolar line. The reason is that
other points distributed along the pixel gradient direction are
also likely to be extracted to match this epipolar line, thereby
increasing the uncertainty of its distance to the epipolar line.
To cull the keypoints under the above circumstances, we
propose two errors indicated in Fig. 4(b), denoted as normal
error €, and tangential error ¢;. We will formulate them in
the following parts of this section.

According to the theory of epipolar line, fi;._
theoretically be constrained by (2).

L and :/E; can

K'z:'=0 2)

SiNTrer—T (+C C;
(mj) K (tC —1)><Rci—1 J

where Rgi_l and tgi_l are the rotation and transla-
tion parts of ng_l respectively, and (-)x represents an
antisymmetric matrix. More obviously, from the formula
(2), the equation of the epipolar line can be obtained as
Az + By+C =0.

Based on this definition, the quality of tracking points
can be evaluated quantitatively. As displayed in Fig. 4(b),
we propose two evaluation metrics of different directions.
Intuitively, as formulated in (3), the normal error ¢, is

evaluated through the distance between 5:\; and epipolar line.

Fig. 5. Two extreme cases of pixel gradient and epipolar line directions. The
yellow line is the epipolar line, and the red is the pixel gradient. Left: The
two are perpendicular; many similar pixels are on the epipolar line. Thus,
the matching uncertainty on the epipolar line is significant. Right: The two
are parallel; the boundary pixels have a higher degree of discrimination
than other pixels on the epipolar line. Thus, the matching uncertainty on
the epipolar line is small.

We also set a threshold (0.5) to filter out fine points subject
to this condition.

|Az:  + Bzi, + C|
= <05 (3)

are the = & y coordinates of Z,

where zcj ©
respectively.

Before explaining the tangential error, it is necessary to
introduce optical flow again. Optical flow relies on pixel
gradient to track the keypoint, usually using an image patch
around the keypoint to increase accuracy. The same trick
is used in the epipolar search [4]. Therefore, we can refer
to the epipolar search to give a qualitative description of
the tangential error. Inspired by [28], the angle between
the epipolar line direction and the pixel gradient can be
used to describe the matching uncertainty along the epipolar
tangential direction. Fig. 5 shows two extreme cases. The
larger the angle between the pixel gradient and the epipolar
line, the more considerable the uncertainty along the epipolar
tangential direction.

Consequently, for a keypoint a: tracked by optical flow,

i
& z,

we denote epz and d41> as the eplpolar line direction vector
and pixel gradient vector, respectively, as shown in Fig. 4(b).
Then, we can define the | cosf| and its threshold in (4).

—
o > 0.5 @)
HEPZH'HdiH

Where 6 is the angle between e—p% and ﬂ . The tangential
error ¢, may be more significant if | cos 6| is smaller than
the threshold according to the matching uncertainty from the
previous analysis.

At the end of keypoint culling, the points not subject to
(3) and (4) are discarded, thereby reserving reliable matched
points {E’} and {fi_l}

3) Scale Calculation: With matched keypoints {a: } and
{E’ 11, we can restore the depth of each point T 1 by
triangulation and calculate the scale factor sj -1 through
being dividing by the measured depth dl !, which is the
distance of LiDAR point p; previously prOJected to C; in
(.

|cosb| =

st = 6)
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Note that there are probably a considerable proportion of
outliers among {s;»_l}, so we introduce RANSAC [29] for
outlier rejection and output the mean of inliers as the final
scale factor.

C. Scale Corrector: Scale Correction

In this section, we detail how to apply scale correction
to the whole SLAM system. As mentioned in Section III-
A, our visual odometry is implemented based on ORB-
SLAM?2 [1]. We remove the loop closing thread and employ
scale correction during local mapping process. Without loop
detection and closure, the scale of local map is unstable, and
thus we periodically correct the scale of local map throughout
the trajectory.

At the first stage, denote {TC°, TG TG2... TS}
as the poses of keyframes in the local map and
{P% PL,P2...P"} as the constituent map points of the
local map. Note that these values are all with respect to
the world coordinate system. Therefore, we transform poses
and map points to reference frame Cp using (TS0)~1.
Subsequently, in the local map coordinate system, we can
correct the scale of the local map after local bundle adjust-
ment. Finally, the local map is transformed into the world
coordinate system again for the sake of compatibility with
ORB-SLAM2.

Notably, we do not frequently correct the scale, as this
can interfere with the local mapping thread and cause a loss
of efficiency. Instead, the scale correction is only triggered
when |scale — 1| > 2%, where scale is the final scale factor
calculated by the scale corrector.

IV. EXPERIMENTS

We evaluate the performance of the proposed system on
KITTI Odometry and S3E datasets. They both incorporate
data collected from visual and LiDAR sensors. Four chal-
lenging sequences with long distances are selected for eval-
uation. Regarding data setting, KITTI Odometry uses HDL-
64E LiDAR and FL2-14S3M-C cameras, while S3E uses
VLP-16 LiDAR and HikRobot MV-CS050-10GC cameras,
which is more challenging for scale correction due to the
vertical sparsity of reprojected LiDAR points. Note that we
have presented a solution to the sparsity issue in Section III-
B.1.

Given that our method is developed based on ORB-
SLAM2 [1] and A-LOAM [6], we focus on comparing
the localization performance of our system to that of these
two baselines. In addition, we also compared with SDV-
LOAM [19], one of the state-of-the-art algorithms introduced
in Section II-B. All SLAM systems are performed on a laptop
with a single-core AMD 6800H @3.2GHz.

A. Effectiveness of Scale Corrector

To verify the effectiveness of the proposed scale corrector,
we compare the absolute rotation and translation error (ATE
& ARE) between our visual odometry and the stereo-mode
ORB-SLAM?2. The formulation and implementation of the
two metrics can be found in evo [30] tool.
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Fig. 6.  Trajectories estimated by visual odometry. Other legends are
consistent with (a). In S3E, the pose of some frames cannot be estimated
due to monocular initialization.

It should be noted that the ground-truth poses of the S3E
dataset are provided by RTK without orientation (ARE is
not evaluated for S3E), which worked at a much lower
rate than the camera. In addition, the extrinsic calibration
between RTK and camera (left) is not given. To solve
these problems, we interpolate the trajectory of the visual
odometry using timestamps to synchronize the predicted
poses to the ground truth values using evo and meanwhile
employ Umeyama [31] alignment between the predicted
and ground-truth trajectories. Quantitative results on five
representative sequences are shown in Table II while cor-
responding qualitative results are drawn in Fig 6. When
loop closure is banned for both, our visual odometry yields
better performance than stereo-mode ORB-SLAM?2 in most
cases, indicating the effectiveness of our scale correction
module. Regarding underlying reasoning, we assume that our
method is more capable of correcting the depth of distant
keypoints due to the assistance of scale corrector, which is
challenging for stereo vision as the parallax is not sufficient
enough in this case. Moreover, we change the reference
coordinate system during local optimization to the earliest
keyframe in the local map, which reduce the value during
optimization compared to the original solution and bring a
slight performance improvement.
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TABLE 11
TRAJECTORY ERRORS OF SLAM METHODS

Sequence / Length Ours VO  ORB-SLAM2(Stereo) Ours VLO A-LOAM  SDV-LOAM
KITTLOO/3724m  \oicn) 1701 120 rotatonal cmordegm) 00061 00075 0.0041
KITTLOZ/ S0 \prdey) 1821 3500 roatonal emordegm) 00105 00307 0.0024
KITTLOS /2205m (bl 019 100 rowtionsl eroxdegim) 00065 0015 00030
KITTLOS/322m (et 1503 i rotions eroxdegim) 00075 00187 00097
1S3E_College / 920m AfEE((dlzé ) 1'6_73 5‘3_74 A’;TEE((C;:;) 3"197 5‘5_05 2Failed
! The ground truth of the S3E dataset has only the translation part, and the rotation part is the unit quaternion.
2 SDV-LOAM fails on S3E_College.
(a) GT (b) A-LOAM (c) Ours

Fig. 7.

B. Effectiveness of Visual Bootstrapping

As for the verification of the effectiveness of Visual
Bootstrapping for the LiDAR odometry, we compare it with
the baseline A-LOAM [6] and SDV-LOAM [19] on the same
datasets shown in Section IV-A. However, there is a slight
difference in evaluation. For the KITTI dataset, we replace
the evo tool with the official KITTI evaluation tool [32] for
localization evaluation since it better demonstrates the drift
degree in a long distance. Table II illustrates that our system
achieves significantly lower translation drift and slightly
lower rotation drift than the A-LOAM. In the KITTI dataset,
our performance is not as good as SDV-LOAM, but SDV-
LOAM does not adapt to the VLP-16 LiDAR and thus fails
on the S3E dataset.

For qualitative results, we present a partial view of LiIDAR
map in Fig 7, which is part of a curved road with only trees
around. In this case, A-LOAM suffers degradation while our
LiDAR odometry works well. Therefore, both qualitatively
and quantitatively, our method outperforms A-LOAM. As
for the reasons, A-LOAM lacks constraints on the z-axis,
and the loss function easily falls into a minimum value in
a degraded scene. Using the results of visual odometry to
compensate for the initial value of A-LOAM can reduce the
number of iterations and avoid the problem that the loss
function falls into a minimum value due to the significant
difference between the initial value and the actual value.

Performance of degraded scenes. On a big detour with a degraded scene, A-LOAM makes wrong pose estimates, while ours works well.

V. CONCLUSION AND FUTURE WORK

In this study, we propose a loosely coupled monocular-
LiDAR SLAM technique with a novel scale corrector. Its
pose prediction derives from monocular odometry with scale
correction and LiDAR odometry with visual bootstrapping.
Concerning localization performance, our visual odometry
achieves better performance than stereo-mode ORB-SLAM?2
when loop closure for neither is available, while our LiDAR
odometry significantly outperforms baseline A-LOAM [6].
It is illustrated by quantitative results that the whole system
yields markedly lower translation drift and moderately lower
rotation drift. Qualitative results also show that our system
is more robust than A-LOAM [6] in degraded scenes. On
the other hand, as for limitations, the proposed system relies
heavily on the stability of visual odometry. In other words,
a severe drift of visual odometry can cause a great loss
of performance to our system, which deserves our deeper
investigation.

In our future study, we are expected to refine the proposed
framework, including enhancing the robustness of visual
odometry through back-end optimization, adding trouble-
detection and troubleshooting tragedies for visual odometry
failure and involving LiDAR points in constructing visual
map.
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Difficulty-Aware Time-Bounded Planning under Uncertainty
for Large-Scale Robot Missions

Michal Staniaszek, Lara Brudermiiller, Raunak Bhattacharyya, Bruno Lacerda, Nick Hawes

Abstract— We consider planning problems where a robot
must visit a large set of locations to complete a task at each
one. Our focus is problems where the difficulty of each task,
and thus its duration, can be predicted, but not fully known in
advance. We propose a general Markov decision process (MDP)
model for difficulty-aware problems, and propose variants on
this model which allow adaptation to different robotics domains.
Due to the intractability of the general problem, we propose
simplifications to allow planning in large domains, the key
being constraining navigation using a solution to the travelling
salesperson problem (TSP). We build a set of variant models
for two domains with different characteristics: UV disinfection,
and cleaning, evaluating them on maps generated from real-
world environments. We evaluate the effect of model variants
and simplifications on performance, and show that our models
outperform a rule-based baseline.

I. INTRODUCTION

Many real-world mobile robot applications such as cleaning,
visual inspection, and environmental monitoring involve
missions where the robot must execute tasks to service each
of a set of locations within a time bound.

In this paper, we identify and model a general class of
such problems where the duration of actions required to
make progress on a specific task is influenced by its difficulty.
Because the factors which typically make a robotic task
difficult, such as environment dynamics or state estimation
uncertainty, can only be observed at execution time, we
use probabilistic models to predict the difficulty at each
location. This yields a problem which requires planning under
uncertainty. To keep within the time bound, the system must
take into account the fact that difficulty affects task duration.
Time bounds may be imposed by various sources, such as
operational requirements to complete tasks before a certain
time, times when humans are in the environment, or weather.
We refer to difficulty-aware planning problems as those where
1) difficulty of tasks can be modelled probabilistically, 2) task
duration depends on difficulty and can also be modelled
probabilistically, and 3) a location’s task difficulty can be
observed online when the robot reaches it.

The class of difficulty-aware problems naturally captures a
wide range of current robotics applications: 3D reconstruction
of human spaces, where difficulty is due to scene complexity
and dynamics [1]; underwater asset inspection, due to
uncertain communication and currents moving the vehicle

All authors are with the Oxford Robotics Institute, University
of Oxford, Oxford, UK. {michal, larab, raunakbh, bruno,
nickh}@robots.ox.ac.uk. This work was supported by the EPSRC
Programme Grant “From Sensing to Collaboration” (EP/V000748/1), the
UKAEA/EPSRC Fusion Grant (EP/W006839/1), and a gift from Amazon
Web Services. 979-8-3503-0704-7/23/$31.00 ©2023 IEEE.
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as it captures data [2], [3]; and UV disinfection, due to
localisation uncertainty [4], [5].

To solve a difficulty-aware planning problem, the planner
has to jointly consider two problems: the order in which to
visit locations (ordering), and how much time to spend ser-
vicing each location (time allocation). The ordering problem
requires the planner to implicitly solve a TSP, so planning
for difficulty-aware missions is computationally challenging
even for small problems. As originally proposed by Lane
and Kaelbling [6], we exploit the fact that these two problem
aspects can be decoupled to apply a hierarchical planning
approach. We solve the TSP to produce a tour of locations,
following that tour while solving the difficulty-aware time
allocation problem. Decoupling ordering in this way reduces
both the action and state spaces of the MDP and allows our
models to scale to much larger problem instances.

Our main contribution is a novel model for difficulty-aware
time-bounded planning problems under uncertainty, which
allows a wide range of mobile robot missions to be expressed
as a reward maximisation problem in an acyclic MDP with
a set of terminal states. We present variants of the model to
indicate its adaptability to robotics problems, and use state
space reduction methods to scale to large problem instances
of over 250 tasks, showing that using a TSP to constrain
ordering has the greatest effect. We validate our approach
through a systematic evaluation of planning and simulated
execution in two robotics domains.

II. RELATED WORK

The core of our paper is a time-bounded planning problem
under uncertainty. Such problems are commonly formulated
as finite-horizon MDPs [7]. We consider a variation where
we include time in the state and allow actions to take variable
amounts of time. We are specifically interested in problems
where reward-generating actions have stochastic duration, but
the duration distribution for each action depends on the task
difficulty, which is an observable state factor. Prior work has
formulated related time-bounded planning problems using
MDPs, such as an approach for speeding up the solution of
time-bounded planning problems with multiple objectives,
minimising time taken while maximising reward [8]. While
we do not consider multiple objectives, our model could
encode their example and handle larger problem instances.
When action duration distributions are not known in advance,
a Gaussian process (GP) can be used to maintain a belief over
environmental features which influence the distributions, and
sampled from when planning [9]. As we assume difficulty is



a discrete set of values which do not influence each other, a
GP is overly complex for our needs.

Including uncertainty as a state factor is a way of avoiding
formulating problems as a more complex and harder to
solve partially observable Markov decision process (POMDP),
instead creating an Augmented MDP [10], [11]. Those works
consider localisation uncertainty, and we represent difficulty
a similar way in our UV disinfection example domain. We
discretise a distribution on the location variance and use it
as a state factor representing different degrees of uncertainty.

Visiting a set of locations under a time-bound has been
investigated in the literature on the orienteering problem
(OP) [12]. In the OP, the goal is to visit a subset of a given
set of locations that provides the maximum reward given a
time bound. Probabilistic extensions to the OP have also been
investigated where the associated reward with each location
is stochastic [13], [14]. Both robotic exploration [15] and
persistent monitoring problems [16] have been approached
using solutions to the OP. However, our problem differs in that
the reward is not obtained simply by visiting each location.
It depends on the actions performed, and consequently the
time spent, at a location.

Prior work has used a TSP to simplify practical robotics
navigation problems by forcing an ordering of tasks [6]. They
use a TSP to enforce ordering on a set of navigation macro-
actions, considering uncertainty only at the macro-action
level, and do not consider time as a factor in the model.
We show that the same technique can be useful without
the macro action decomposition, and in MDPs which must
consider uncertainty in time coming from multiple sources.
More formal hierarchical planning methods can be used to
reduce the state space of a large MDP by breaking it into
sub-problems. Some methods use new algorithms to convert
and solve a problem in a hierarchical manner [17], [18],
while others use standard MDP solution methods on hand-
designed or learned hierarchies [19]-[21]. Both approaches
impose an additional burden on the model designer, requiring
either implementation of non-standard solution algorithms,
or manual design and building of hierarchies. Our models
are standard MDPs, with domain-specific simplification
approaches.

III. PRELIMINARIES

A Markov decision process (MDP) is a tuple M =
(S,t,A,T,R,7), where S is a finite set of states; ¢ is a
probability distribution over the initial state; A is a finite
set of actions; T : S x A x S — [0,1] is a probabilistic
transition function returning the probability of arriving at
state s’ after taking action a in state s; R: Sx A — R a
function returning a reward for performing a in state s; and
~ € (0,1] is a discount factor. The aim for an MDP is to find
an optimal policy 7 : S — A that maximises the expected
cumulative discounted reward:

7 = argmax, E}, | Z Y'R(si, a;)] (1
i=0
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The optimisation objective may diverge when v = 1, but
if all runs of the MDP reach a terminal state from which no
more reward can be gathered, the objective converges to a
finite value regardless. All runs of our model reach a terminal
state as mission duration is bounded, so we consider v = 1.

IV. PROBLEM FORMULATION

We consider a mobile robot that navigates in a discrete
topological map. A topological map is a tuple 7 =
(V,E, durpay), where V.= {vy,...,v,} is a set of loca-
tions in the environment represented by poses of the form
(z,y,2,0) in a global frame; E C V x V encodes a set of
directed edges the robot can traverse; and dur,., : £ — N
is a function which maps edges to travel durations. The goal
is for the robot to navigate around the locations and service
them by executing an action (e.g. clean or take a sensor
reading). The action set available to the robot is to service
its current location v, or traverse an edge (v.,v’) € E.

Service actions increase the service level at the robot’s
current location. Service levels are denoted by [ € N, where
L eNand N;, ={0,...,L}. These actions have a difficulty,
modelled as a function diff : V — Np, where D € N,
Np = {0, ..., D}, which can vary according to the location.
This function is unknown a priori, but we have access to a
discrete distribution over the difficulty level at each location.
For v € V and d € D, P(diff (v) = d) is the probability of
the difficulty at node v being d. There is also a utility function
U :VxNpxNpxNp — Rxq such that U(v, 1,1, d), known
a priori, is the utility of moving the service level at v from
level [ to level I/, I’ > I, given that the difficulty at v is d.

The difficulty level at a location impacts the service
duration. We assume a discrete set A = {Ay,--- , A5} CN
of |A| representative durations, obtained by discretising a
continuous distribution over possible durations. The exact
mapping between difficulty and duration is unknown, but
we assume that we have access to the probability of the
robot taking duration A to change the service level at v
from [ to !’ under difficulty d, where v € V, [l € N
with I’ > I, d € Np and A € A. We denote this as
P(dursery (v, 1,1, d) = X).

Note that we make two core assumptions, neither of which
reduce applicability to practical robotics problems. 1) The
deterministic duration set A requires that possible durations be
known in advance. 2) Difficulty distributions are independent,
so difficulty at one location cannot influence that at another.

Mission Goal: Given an initial node v € V' and time
bound B € N, find a policy which decides the navigation
and servicing actions to execute to maximise the expected
sum of gathered utility U, while ensuring the robot returns
to ¥ within B units of time.

V. MODELLING

A. General MDP Model

We start by defining a general MDP model of the time-
bounded mission described above. We define n = |V| and,
for set X, denote the Cartesian product of X with itself n
times as X"™. Given a set of discrete durations A and a time



bound B, we define AE as the set of all sums of elements
of A that are less than or equal to B.

States: The state space is of the form S =V x N7 x
Np x Af. A state s = (vi, 11, -+ , 1y, d;, 7) means that robot
is at location v;, for some 1 < ¢ < n; the service level at
each location v; is [;, for each 1 < j < n; the difficulty
level at the current location v; is d;; and the elapsed time
since the start of the mission is 7. The probability of the
initial state being (0,0,---,0,d,0) is P(diff (v) = d), i.e.
the robot starts at initial location v, the service level at every
location is initialised as 0 and the mission starts at time O;
the difficulty at v is defined according to P(diff (v) = d).

Actions and Transitions: In state s, the robot can move
between locations using a topological map edge with action a.
Taking a. to traverse e = (v;,v’) € E, the current location
changes to v/, and the time component of the state changes
to 7 = 7 + dur,a, (). The difficulty changes stochastically
to d’, according to P(diff (v') = d’).

The robot can increase the service level at its current loca-
tion to some !’ > I; with action a;, ;-. Taking service action
ay,,» with target service level I/, the current service level I;
changes to I, and the time component is updated to 7/ =
7+ A stochastically, according to P(dur e (v, 1;, ', d) = N).
Service actions can only increment the service level, such
that for all a;, p € Al =1; + 1.

To ensure the robot returns to ¥ within time bound B, we
disallow actions that have some probability of transitioning to
a state from which it is not possible to return to v in time. For
some action a € A, let A% denote the maximum possible
time increment according to the duration model of a; and let
A(v®, D) be the time to travel to ¥ from the location the robot
will be at after executing a, according to the shortest path in
T.If 74+ A%, + A(v® ¥) > B, then a is not enabled in s.
States with no action enabled have a return to start action
which moves the robot from v; to v by the shortest path in
T, and puts the model into a terminal state from which no
more reward can be gathered.

Reward Function: The reward function returns a reward
based on the utility U, known a priori, of service actions,
which may have different utility depending on the difficulty,
service level, or location. Other actions do not give a reward.

U”Ul',li,l/,di ifa:a1 ’
R((vial17"'7lnadi77—))a) = { 0 ( ) OtherWiSléjl
(2)

Optimisation Objective: Optimise the expected cumula-
tive reward on the proposed MDP according to Equation 1.
We construct the MDP to ensure all policies return to the start
node within the time-bound B, after which no more reward
can be gathered. Thus, maximising the cumulative reward
matches the mission goal stated in the problem formulation.

B. Variants

Our model makes assumptions about how difficulty should
be tracked and how the time component is incremented. We
now discuss some variations on those assumptions which can
be used to model different types of problems.
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Endogenous/Exogenous Difficulty: The difficulty of
servicing a task can be internal or external to the robot. For
example, the difficulty of tasks based on accurate localisation
depends on the robot’s quantification of its localisation
uncertainty, while the difficulty of cleaning an area can be
related to the amount of dirt detected there. The former is an
example of endogenous difficulty and the latter of exogenous
difficulty. Assuming a static world, once the robot observes
a level of exogenous difficulty at a given location, that level
remains the same until the end of the mission. Difficulty in
endogenous processes changes whenever the robot observes
the value of that internal process again. The model in
Section V-A assumes endogenous difficulty, so the state only
tracks the difficulty value at the current node. Exogenous
difficulty can be specified by adding a difficulty state feature
for each location, replacing d; by a set of state factors
{dy,---,dn}. This changes the state factor for difficulty
from Np to N',. The difficulty for each location is initialised
to 0, indicating unknown difficulty. When the robot visits the
location for the first time, the difficulty is set to the value
retrieved from diff (v). After the difficulty for a location is
set, it does not change.

Informative Action Durations: In our general model, we
assume that the execution of a service action at a node v
does not provide extra information on the duration of further
service actions on v. However, there are situations where the
duration of a service action in a node informs the duration
of further actions there. For example, when applying UV
radiation to a surface, how long it takes to apply a certain
dose depends on the pose of the robot and is stochastic. Once
the time taken is observed, the time to apply the dose again
in the same pose does not change. In these cases, the value
of P(durser (v,1,1',d) = \) depends on the duration values
previously observed when servicing v. We consider a special
case of this, where the observed duration A of an initial
service action determines the duration for subsequent service
actions at a location. One additional state factor is required,
which starts as 0 to indicate an unknown duration, and is
set to A once a service action is executed and its duration
observed. If the uncertainty over the duration is exogenous,
it is necessary to keep a factor for each location. The value
of the factor is the deterministic duration for further service
actions there. In the endogenous case this value is reset when
revisiting a location. In the exogenous case, its value can be
fixed once it is observed as it is a feature of the environment.

VI. EXAMPLE DOMAINS

We define two domains to show how our proposed models
can be adapted to robotics problems with different properties.
UV disinfection: In the UV disinfection problem, the
aim is to use a robot to disinfect a series of locations by
irradiating surfaces with UVC light in the 100-280nm range
to apply a dose which will achieve log reductions in microbial
activation [4]. A 1-log reduction indicates 90% inactivation
of a microbial colony, 2-log 99%, and so on.
We assign four service levels, 0 indicating the location
has not been cleaned, the other levels corresponding to 1,



2, and 3-log reductions in activation. The dose applied to a
surface is proportional to the inverse square of distance to the
UV source, which means that small variations in the robot’s
position can have a significant effect. As such, we define
the difficulty as the robot’s metric localisation uncertainty,
discretised into three levels representing high (0), medium
(1), and low (2) confidence in its location.

To generate difficulty distributions diff (v) we use empirical
localisation uncertainty data from navigation of a Scitos X3
robot in Oxfordshire County Library (the library map in
Fig. 1). We cluster the data using a Gaussian mixture model
for each confidence level. A location’s distribution is based
on how often the localisation uncertainty there is matched
by each mixture model. This data is used over all maps by
randomly sampling from the set of location distributions.

The service duration distribution dure,, is generated by
sampling poses from the GMM and using an irradiation
simulation to determine the duration required to apply the
dose required to reach service level 1 for each difficulty. We fit
a categorical distribution to these samples with a discretisation
of 5s. As the service levels are log-linear, we can multiply the
durations for dur e, (v, 0,1, d) by two to get the distribution
for level 2, and multiply by 4 to get the durations for level
3. This domain has rewards with diminishing returns, to
encourage higher coverage. 100 reward is given for service
level 1, 50 for 2, and 25 for 3. For further details, see the
supplementary material! or our previous work [22].

Cleaning: In the cleaning domain, the robot must fully
clean floors in various locations, which may have different
sizes and dirtiness levels. There are only two service levels,
as a location is either clean or not clean. A location’s dirtiness
corresponds to the difficulty, affecting how long the robot
takes to clean it. We track the difficulty for each location,
as it is exogenous. A location can have no dirt (0), or low
(1), medium (2) or heavy (3) dirt. The robot only knows how
dirty a location is after visiting it, and could be determined
using computer vision or human input. During model building
diff (v) for each location is sampled from a set of 3 artificially
generated distributions by uniform random selection. Each
location is randomly designated as a small, medium, or large
room. durgser, is deterministic, found by multiplying the
duration for the difficulty by the location’s size. For servicing
a location with difficulty d, the system receives 100d reward.

VII. STATE SPACE REDUCTION STRATEGIES

As our model has state factors which depend on the
number of locations, the resulting MDP is impractical to
solve for anything more than trivial problems. Combining
simple strategies can greatly reduce the state space.

A. Fixed Navigation

The most drastic state space reduction comes from limiting
navigation on the topological map to a tour generated by
solving a TSP [6]. Let Vj,ept : V — V be the mapping from
a location to the next location to visit. It is defined by a

Irobots.ox.ac.uk/ michal/papers/difficulty-aware-supp.pdf
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TSP tour constrained to the topological graph, generated by
an optimal TSP solver [23], which visits all locations. This
prunes possible edge transition actions a. at location v; by
making the only valid edge ¢ = (v;, Viert(v;)). It can be the
case that (v;, Viert(vi)) € E, as to get from v; to Vierr(v;)
requires traversing through an intermediate location in the
topological map. We redefine duryq, : V x V — N to give
the shortest duration path between any two locations. This
simulates a fully connected map and means that a. can be
used to jump directly from one location to another without
having to traverse individual edges along the shortest path.
The tour takes time Brgp, based on the sum of dur,q.,
for the traversed edges. The remaining budget to service
all locations is By;pp = B — Brgsp. By pruning actions
according to V) .., it is impossible for the model to return
to any previous location, so the state only needs to track
state factors relevant for the current location. The service
level state factors for all nodes go from N7 to Ny. The state
s = (vi,l1,-++ ,ln,d;, 7) becomes s = (vy,l;, d;, T), greatly
reducing the number of dimensions in the Cartesian product.

B. Single Service Action

We change the action a;;7 such that [ must be 0. This
compresses actions for incrementally increasing the service
level at a location into a single action to go from service
level O to any service level [’.

The probability distributions P(durser, (v,1,1',d)) for
incremental actions must be collapsed to represent a transition
from service level 0 to I’ without reaching intermediate
service levels. This can be done by taking the product of the
probability distributions for eac/h incremental service level,
ie. P(dur sery(v,0,1,d)) = TT'23" P(durser (v, 1,1+ 1,d)).
This leads to a reduction of choices available at each location.
With incremental actions there is a choice at each service
level increment to either continue servicing or leave. With
single actions, it is only necessary to choose which (if any)
service level to achieve, without having to make the same
decision again at each increment. This is limiting, as the
policy cannot choose to abort servicing early if the service
time observed from dur e (v,1,1',d)) is unfavourable, and
if service times are favourable it cannot exploit the extra time
to return to locations for further servicing.

The state factor for the service level at each location [;,
which contributes N7 to the state space, can become Boolean
Nz = {0,1} instead of an integer value N, = {0,1,...,L},
greatly reducing the model’s state space. The outcome of any
action ag  is that [; = 1. The simplification relies on implicit
encoding of the service level I’ in the action. We maintain
the reward by summing values of U for each increment.

VIII. EXPERIMENTAL EVALUATION

We will refer to models based on which variants and
reduction strategies they use: incremental (I) or single (S)
actions; stochastic (ST), informative action duration (AD), or
deterministic (D) service duration distributions (in the deter-
ministic case, for a given level of difficulty, durger, (v,1,1',d)
has a single outcome A € A with probability 1); and free (FN)
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Fig. 1. Topological maps used in experiments. From left to right and top
to bottom: tiny (6 locations), tiny_fc (6), warehouse (10), foyer (19), library
(70), hall (107), oilrig (138), plant (172), fence (257). See supplementary
material for examples of environment pointclouds.

or fixed (TSP) navigation. For example, the model described
in Section V-A has incremental service actions, stochastic
action transitions, and free navigation, so is written as I-ST-
FN. For the UV domain there are six models with endogenous
difficulty. Single action and informative action duration
models are mutually exclusive, so we have three free (I-AD-
FN, I-ST-FN, S-ST-FN), and three fixed navigation models
(I-AD-TSP, I-ST-TSP, S-ST-TSP). The cleaning domain has
only a single service level, and its service duration distribution
is deterministic, so it has two models, S-D-FN and S-D-
TSP, with exogenous difficulty. Models are evaluated by
solving their MDP with the PRISM model checker [24],
which generates an optimal policy using value iteration. All
models were solved using 64GB RAM, 16GB of swap space,
and an Intel Core i7-8700 CPU at 3.20GHz. Models are
evaluated on the maps in Fig. 1, with all except the tiny map
generated from visits to real environments.

A. Domain Baselines

We compare our models to a rule-based baseline behaviour
to quantify performance and highlight the benefits of planning.

1) UV Baseline: Allocates uniform service duration 8 =
Buipp/|V] to all locations in the map, and follows the TSP
tour. With no stochasticity in difficulty or time, constant
service time per node should always reach the same service
level. In practice this is not the case and the level reached at
different locations will vary.

2) Cleaning Baseline: Follows the TSP tour, greedily
cleaning each location for the deterministic service time
computed from its size and dirtiness, while ensuring it can
return to the start location within the time bound.

B. Time Bound Selection

Models are evaluated with three different time bounds
B = Brsp+ Bupp. Bupp is defined by a4, as, and as,
where ) . o; = 1, as described below. The purpose of the «
values is to generate time bounds proportional to the number
of nodes in a map, and to use knowledge of the service levels
and expected times to define how constraining the bound is
on the service level and number of nodes that can be serviced.
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Fig. 2. Number of states in MDPs for the UV domain across topological
maps of different sizes. Models which we are unable to solve due to memory
constraints are omitted. B for each map is defined by o = a3 = 0.5.
tiny_fc is omitted as it is identical to tiny, except I-AD-FN is unsolvable.

1) UV Time Bound: Values of « correspond to what
proportion of locations should be serviced to level s in the
ideal case, e.g. if a; = 0.5, and as = 0.5 we expect half
of nodes should be serviced to level 1 and half to level 2.
ts is the time to reach level s at all locations assuming a
deterministic setting. The bound is then By;pp = E§:1 aqty.

2) Cleaning Time Bound: The time to service a location
depends on the difficulty. We compute the expected number
of locations for each difficulty level, and the expected time
to clean a location with a specific difficulty regardless of
the size of the location. The dot product of the resulting
vectors gives the total expected time E(ts) to clean the
expected number of nodes at each difficulty. The bound is then
Bypp = 2321 asE(ts), with values of « controlling the
bound according to the proportion of locations each difficulty
we might expect to be serviced, e.g. setting a; = 0.5 and
ag = 0.5, the model should have enough time to clean half
of locations with low dirt, and half with medium dirt.

C. Results

1) State Space and Solution Time: Figure 2 shows the
states for models across all maps in the UV domain. The
number of states required to represent the I-AD-FN on the
smallest map is larger than that required for S-ST-TSP on the
largest map. We were unable to generate solutions for any
free navigation models for maps larger than 19 nodes due
to memory limits. In the cleaning domain, with the largest
time bound on the tiny map, S-D-FN has around 1.02 x 107,
while S-D-TSP has 457. Even in the 257 node map with
the largest bound S-D-TSP has only 1.17 x 10° states. The
growth of the state space for free navigation models appears
approximately log-linear in the number of nodes, but also
depends on the average degree of the topological map.

TABLE I
SOLUTION TIME IN SECONDS FOR FIXED NAVIGATION MODELS ACROSS
SELECTED MAPS WITH HORIZON a2 = a3 = 0.5.

Model foyer library  hall oilrig.  plant  fence
I-AD-TSP 14 773 2767 6378 16431 N/A
I-ST-TSP 4 125 555 974 1956 7540
S-ST-TSP 2 74 269 570 1181 4074



Table I shows solution time across selected maps. The
number of states is closely related to solution time of the
MDP. In the map with 6 locations, for the longest horizon
PRISM required 30m to solve I-AD-FN, the most complex
model, but less than 0.2s to solve S-ST-TSP, the simplest.
The disparity between the fixed navigation models becomes
clearer on the library map, where the horizon is around 50
minutes. For the largest map of 257 locations, with the time
bound defining 3 hours of robot operation, solution time for
S-ST-TSP is a little over an hour. Computation time on the
tiny_fc map for free navigation models is over twice that of
the same models on the tiny map, as a result of increased
choices and transitions in the MDP.

2) Service levels: We evaluate our models by executing
the policies they generate in a discrete event simulator which
evolves the state according to the dynamics of a model without
simplifications. Any variation in reward should show the
effects of the simplifications which do not directly map to the

behaviour of the world represented by the unsimplified model.

To represent the world, we use the world model 1-AD-FN
for the UV domain, and S-D-FN for the cleaning domain, as
they are closest to how we expect the real world to evolve.
The simulator does not require solution of the MDP of the
world model, so we are able to run simulations of even the
largest maps. We run policies generated from other models
on the simulator. We can only compare all models on the tiny
map as we are unable to solve the full set of free navigation
models on larger maps due to memory constraints.

Fig. 3 shows the difference in service levels achieved
between the baseline and models. In the UV domain, models
always achieve a higher average service level across all nodes,
and are much closer to achieving the service levels we would
expect based on «. Compared to the rule-based baseline,
planning always achieves higher average service levels across
all nodes in the UV domain. In a deterministic setting, with
time bound from o = 1, the baseline should always reach
service level 1, but the majority of locations are not serviced as
the time allocated is insufficient. Planning achieves cleaning
level 1 in almost all locations.

The cleaning domain has only two service levels, so we
show the average number of nodes at each dirtiness level
after the policy has been executed (Fig. 4). The baseline and
models have access to the same service duration information,
but after policy execution the S-D-TSP model receives more
reward on average for shorter time bounds. As the time bound
increases, there is less difference between planning and the
baseline, as slack in the budget allows the baseline to gather
reward at every location regardless of uncertainty.

3) Rewards: Table II shows the mean reward for various
models on the library map for the UV and cleaning domains
over 1000 simulations. Our models always outperform the
baselines, even in the cleaning domain with deterministic
service action duration. On the 6 node map, mean rewards
across all models are within approximately 1.5% of each
other. This is also the case for the subsets of models we can
solve for larger maps. This indicates that for small maps the
state reduction strategies enable scalability while retaining
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Fig. 3. Average number of locations at specific service levels achieved in
the UV domain on the tiny (top) and library (bottom) maps. Other maps
have similar results. 1000 policy executions per model on each time bound
as specified by « values. Standard error is less than 1% in all cases.
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Fig. 4. Average number of locations with specific dirtiness after policy
execution in the cleaning domain by baseline and S-D-TSP model on the
library map. 1000 policy executions per model for each time bound specified
by « values. Standard error is less than 1% in all cases.

performance. We performed this evaluation with uniform and
non-uniform probability distributions to test whether more
uncertainty has a large effect. Uniform distributions show a
slight increase in variation, but all models are still within
approximately 2% of each other. The result of simulating
policies gives very similar reward values to the expected
policy value from PRISM. Over 1000 policy executions, the
mean reward for all models in simulation is within 1% of
the expected value of the policy, with the largest standard
deviation equivalent to a difference of fully servicing at most
two locations. On the tiny map, the only one where we can
run all models, we see very little difference in reward values
for fixed and free navigation variations. This is likely due to
the simplicity of the map, where there is little advantage to
free navigation models in making choices about navigation.



TABLE II
TOTAL REWARD ON THE LIBRARY MAP OVER 1000 POLICY EXECUTIONS.

uv ar =1 a1 =a2 =05 az2=a3=05>5
Baseline 804 + 261 4104 + 211 9058 + 107
S-ST-TSP 6781 + 78 8608 + 65 11302 + 32
I-ST-TSP 6783 + 75 8609 + 63 11305 + 34
I-AD-TSP 6784 + 79 8662 4+ 67 11329 £+ 30
Cleaning ar =1 a1 =a2 =05 a2=a3=05>5
Baseline 2666 + 169 5534 4+ 298 12094 + 511
S-D-TSP 4615 + 117 8092 + 188 12151 4+ 302

On the warehouse map, the mean reward for the S-ST-FN
model over 1000 simulations for the shortest time bound was
1088, while the three fixed navigation models were between
905 and 912. For the foyer map, solving the MDP for the
shortest time bound took 32 hours. The expected reward value
was 1873, as opposed to the fixed navigation models having
reward of approximately 1790. Both of these differences are
significant according to a two-sided Kolmogorov-Smirnov test,
which further indicates that models with free navigation may
be able to get more reward on larger maps. Comparing results
on the tiny maps, connectivity also affects reward distribution,
with free navigation models performing up to 2% better for
some models. We hypothesise that this difference may be
clearer on larger maps, but we are unable to test this due to
memory constraints on the free navigation models.

IX. CONCLUSIONS

We propose a general MDP for robot task planning
under uncertainty which considers task difficulty, and apply
simplifications to solve it for large topological maps in two
representative robotics domains. We greatly reduce the state
space of the MDP by constraining the navigation with a TSP,
decoupling the ordering and time allocation problems. On
small maps, this simplification results in similar expected
reward to policies generated by unsimplified models. We show
that our models always outperform a rule-based baseline.
Unconstrained navigation with the general model should
outperform simplified models on larger maps, but even with
our simplifications, evaluating this will require different
solution approaches.

Future work will investigate the use of approximate
techniques such as Monte Carlo tree search [25] and labeled
real-time dynamic programming [26], or further simplification
through hierarchical planning methods to find solutions. We
aim to implement our models on a physical robot, where
the time bound might be set using expected battery life. A
potential difficulty is that real world task execution times
may not easily map onto our assumption of a fixed set of
possible task durations.
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Robust Multi-Agent Pickup and Delivery with Delays

Giacomo Lodigiani®, Nicola Basilico?, and Francesco Amigoni!

Abstract— Multi-Agent Pickup and Delivery (MAPD) is the
problem of computing collision-free paths for a group of agents
such that they can safely reach delivery locations from pickup
ones. These locations are provided at runtime, making MAPD
a combination between classical Multi-Agent Path Finding
(MAPF) and online task assignment. Current algorithms for
MAPD do not consider many of the practical issues encountered
in real applications: real agents often do not follow the planned
paths perfectly, and may be subject to delays and failures. In
this paper, we study the problem of MAPD with delays, and
we present two solution approaches that provide robustness
guarantees by planning paths that limit the effects of imperfect
execution. In particular, we introduce two algorithms, k.~TP and
p-TP, both based on a decentralized algorithm typically used
to solve MAPD, Token Passing (TP), which offer deterministic
and probabilistic guarantees, respectively. Experimentally, we
compare our algorithms against a version of TP enriched with
online replanning. k~TP and p-TP provide robust solutions,
significantly reducing the number of replans caused by delays,
with little or no increase in solution cost and running time.

I. INTRODUCTION

In Multi-Agent Pickup and Delivery (MAPD) [1], a set
of agents must jointly plan collision—free paths to serve
pickup—delivery tasks that are submitted at runtime. MAPD
combines a task-assignment problem, where agents must be
assigned to pickup—delivery pairs of locations, with Multi—
Agent Path Finding (MAPF) [2], where collision—free paths
for completing the assigned tasks must be computed. A
particularly challenging feature of MAPD problems is that
they are meant to be cast into dynamic environments for long
operational times. In such settings, tasks appear at any time
in an online fashion.

Despite studied only recently, MAPD has a great relevance
for a number of real-world application domains. Automated
warehouses, where robots continuously fulfill new orders,
arguably represent the most significant industrial deploy-
ments [3]. Beyond logistics, MAPD applications include also
the coordination of teams of service robots [4] or fleets of
autonomous cars, and the automated control of non—player
characters in video games [5].

Recently, the MAPF community has focused on resolution
approaches that can deal with real-world—induced relax-
ations of some idealistic assumptions usually made when
defining the problem. A typical example is represented by
the assumption that the planned paths are executed without
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Milano, Milan, Italy giacomo.lodigiani@mail.polimi.it,
francesco.amigoni@polimi.it

2Nicola Basilico is with the Department of Computer Science, University
of Milan, Milan, Italy nicola.basilico@unimi.it
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

171

errors. In reality, execution of paths might be affected by
delays and other issues that can hinder some of their expected
properties (e.g., the absence of collisions). One approach is
to add online adaptation to offline planning, in order to cope
with situations where the path execution incurs in errors [6].
Despite being reasonable, this approach is not always desir-
able in real robotic applications. Indeed, replanning can be
costly in those situations where additional activities in the
environment are conditioned to the plans the agents initially
committed to. In other situations, replanning cannot even be
possible: think, as an example, to a centralized setting where
robots are no more connected to the base station when they
follow their computed paths. This background motivated the
study of robustness [1], [7], [8], generally understood as the
capacity, guaranteed at planning time, of agents’ paths to
withstand unexpected runtime events. In our work, we focus
on robustness in the long—term setting of MAPD, where it
has not been yet consistently studied.

Specifically, in this paper, we study the robustness of
MAPD to the occurrence of delays. To do so, we introduce
a variant of the problem that we call MAPD with delays
(MAPD—d for short). In this variant, like in standard MAPD,
agents must be assigned to tasks (pickup—delivery locations
pairs), which may continuously appear at any time step,
and collision—free paths to accomplish those tasks must be
planned. However, during path execution, delays can occur
at arbitrary times causing one or more agents to halt at some
time steps, thus slowing down the execution of their planned
paths. We devise a set of algorithms to compute robust solu-
tions for MAPD—d. The first one is a baseline built from a de-
centralized MAPD algorithm, Token Passing (TP), to which
we added a mechanism that replans in case collisions caused
by delays are detected when following planned paths. TP is
able to solve well-formed MAPD problem instances [9], and
we show that, under some assumptions, the introduction of
delays in MAPD-d does not affect well-formedness. We then
propose two new algorithms, k—TP and p—TP, which adopt
the approach of robust planning, computing paths that limit
the risk of collisions caused by potential delays. kTP returns
solutions with deterministic guarantees about robustness in
face of delays (k—robustness), while solutions returned by p—
TP have probabilistic robustness guarantees (p—robustness).
We compare the proposed algorithms by running experiments
in simulated environments and we evaluate the trade—offs
offered by different levels and types of robustness.

In summary, the main contributions of this paper are:
the introduction of the MAPD-d problem and the study
of some of its properties (Section III), the definition of
two algorithms (kTP and p-TP) for solving MAPD-d



problems with robustness guarantees (Section IV), and their
experimental evaluation that provides insights about how
robustness and solution cost can be balanced (Section V).

II. PRELIMINARIES AND RELATED WORK

In this section, we discuss the relevant literature related
to our work and we introduce the formal concepts we build
upon in the following sections.

A basic MAPF problem assigns a start—goal pair of
vertices on a graph G = (V, E) to each agent from a set
A = {a1,a9,...,a;} and is solved by a minimum-cost
discrete—time set of paths allowing each agent to reach its
goal without collisions [2]. We shall define agent a;’s path
as m; = (Wi, Mit+1,-- -, Tit+n), Damely a finite sequence
of vertices ;) € V starting at some time ¢ and ending at
t+n. Following 7;, the agent must either move to an adjacent
vertex (¢, T ¢+1) € F) or not move (7 441 = i ¢).

MAPD extends the above one—shot setting to a time—
extended setting by introducing tasks 7; € 7, each spec-
ifying a pickup and a delivery vertex denoted as s; and
g;, respectively. A task has to be assigned to an agent
that must execute it following a collision—free path from its
initial location to s; and then from s; to g;. A peculiar
characteristic of this problem is that the set 7 is filled at
runtime: a task can be added to the system at any (finite) time
and from the moment it is added it becomes assignable to any
agent. An agent is free when it is currently not executing any
task and occupied when it is assigned to a task. If an agent is
free, it can be assigned to any task 7; € T, with the constraint
that a task can be assigned to only one agent. When this
happens, the task is removed from 7 and, when the agent
completes its task eventually arriving at g;, it returns free.
A plan is a set of paths, which are required to be collision—
free, namely any two agents cannot be in the same vertex
or traverse the same edge at the same time. Each action
(movement to an adjacent vertex or wait) lasts one time
step. Solving MAPD means finding a minimum—cost plan
to complete all the tasks in 7. Cost usually takes one of two
possible definitions. The service time is the average number
of time steps needed to complete each task 7;, measured as
the time elapsed from 7;’s arrival to the time an agent reaches
g;. The makespan, instead, is the earliest time step at which
all the tasks are completed. Being MAPD a generalization
of MAPF, it is NP-hard to solve optimally with any of the
previous cost functions [10], [11].

Recent research focused on how to compute solutions
of the above problems which are robust to delays, namely
to runtime events blocking agents at their current vertices
for one or more time steps, thus slowing down the paths
execution. The MAPF literature provides two notions of
robustness, which we exploit in this paper. The first one is
that of k-robustness [8], [12]. A plan is k-robust iff it is
collision—free and remains so when at most k delays for each
agent occur. To create k—robust plans, an algorithm should
ensure that, when an agent leaves a vertex, that vertex is not
occupied by another agent for at least k£ time steps. In this
way, even if the first agent delays % times, no collision can
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occur. The second one is called p—robustness [7]. Assume
that a fixed probability p, of any agent being delayed at any
time step is given and that delays are independent of each
other. Then, a plan is p—robust iff the probability that it will
be executed without a collision is at least p. Differently from
k-robustness, this notion provides a probabilistic guarantee.

Robustness for MAPD problems has been less studied.
One notion proposed in [9] and called long—term robustness
is actually a feasibility property that guarantees that a finite
number of tasks will be completed in a finite time. Authors
show how a sufficient condition to have long—term robustness
is to ensure that a MAPD instance is well-formed. This
amounts to require that (i) the number of tasks is finite;
(i1) there are as much non-task endpoints as agents, where
non-task endpoints are vertices designated as rest locations
at which agents might not interfere with any other moving
agent; (iii) for any two (task or non-task) endpoints, there
exists a path between them that traverses no other endpoints.

In this work, we leverage the above concepts to extend
k— and p-robustness to long—term MAPD settings. To do
so, we focus on a current state—of—the—art algorithm for
MAPD, Token Passing (TP) [9]. This algorithm follows
an online and decentralized approach that, with respect to
the centralized counterparts, trades off optimality to achieve
an affordable computational cost in real-time long—term
settings. We report it in Algorithm 1. The token is a shared
block of memory containing the current agents’ paths {m;},
the current task set 7, and the current assignment of tasks
to the agents. The token is initialized with paths in which
each agent a; rests at its initial location loc(a;) (line 1). At
each time step, new tasks might be added to 7 (line 3).
When an agent has reached the end of its path in the token,
it becomes free and requests the token (at most once per
time step). The token is sent in turn to each requesting agent
(line 5) and the agent with the token assigns itself (line 9) to
the task 7 in 7 whose pickup vertex is closest to its current
location (line 8), provided that no other path already planned
(and stored in the token) ends at the pickup or delivery
vertex of such task (line 6). The distance between the current
location loc(a;) of agent a; and the pickup location s; of a
task is calculated using a (possibly approximated) function
h (for the grid environments of our experiments we use the
Manhattan distance). The agent then computes a collision—
free path from its current position to the pickup vertex, then
from there to the delivery vertex, and finally it eventually
rests at the delivery vertex (line 11). Finally, the agent
releases the token (line 17) and everybody moves one step
on its path (line 19). If a, cannot find a feasible path it stays
where it is (line 13) or it calls the function /dle to compute
a path to a non-task endpoint in order to ensure long—term
robustness (line 15).

Note that other dynamic and online settings, different
from ours, have been considered for MAPF and MAPD. For
example, [13] introduces a setting in which the set of agents
is not fixed, but agents can enter and leave the system, [14]
proposes an insightful comparison of online algorithms that
can be applied to the aforementioned setting, and [15] studies



Algorithm 1: Token Passing

1 initialize token with path (loc(a;)) for each agent a;
(loc(a;) is a;’s current (eventually initial) location);
2 while frue do

3 add new tasks, if any, to the task set T ;

4 while agent a; exists that requests token do

5 /* token assigned to a,; and a; executes now */;
6 T' «+ {7 € T | no path in token ends in s; or

93 15

7 if 7' # {} then

8 T < argmin_ 0 h(loc(ai), s5);

9 assign a; to T;

10 remove 7 from T

11 update a;’s path in token with the path

returned by PathPlanner(a;, T, token);
12 else if no task 7; € T exists with g; = loc(a;)
then
13 update a;’s path in foken with the path
{loc(ax):

14 else

15 | update a;’s path in roken with Idle(a;, token);
16 end

17 /* a; returns token to system */;

18 end

19 agents move on their paths in token for one time step;
20 end

a related problem where the actions have uncertain costs.

III. MAPD WITH DELAYS

Delays are typical problems in real applications of MAPF
and MAPD and may have multiple causes. For example,
robots can slow down due to some errors occurring in
the sensors used for localization and coordination [16].
Moreover, real robots are subject to physical constraints,
like minimum turning radius, maximum velocity, and maxi-
mum acceleration, and, although algorithms exists to convert
time—discrete MAPD plans into plans executable by real
robots [17], small differences between models and actual
agents may still cause delays. Another source of delays is
represented by anomalies happening during path execution
and caused, for example, by partial or temporary failures of
some agent [18].

We define the problem of MAPD with delays (MAPD—d)
as a MAPD problem (see Section II) where the execution of
the computed paths 7; can be affected, at any time step ¢, by
delays represented by a time—varying set D(¢) C A. Given
a time step ¢, D(t) specifies the subset of agents that will
delay the execution of their paths, lingering at their currently
occupied vertices at time step ¢. An agent could be delayed
for several consecutive time steps, but not for indefinitely
long in order to preserve well-formedness (see next section).
The temporal realization of D(t) is unknown when planning
paths, so a MAPD-d instance is formulated as a MAPD
one: no other information is available at planning time. The
difference lies in how the solution is built: in MAPD-d we
compute solutions accounting for robustness to delays that
might happen at runtime.

More formally, delays affect each agent’s execution trace.
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Agent a;’s execution trace e; = {(€;0,€i1,...,e;m)" for a
given path m; = (m; 0,7 1,...,Tin) corresponds to the
actual sequence of m (m > n) vertices traversed by a; while
following 7; and accounting for possible delays. Let us call
idx(e;+) the index of e;; (the vertex occupied by a; at time
step ¢) in m;. Given that e; o = m; o, the execution trace is
defined, for ¢ > 0, as:

€it—1 if a; € D(t)
€it = ) .
! min | h=idx(e;1—1) +1 otherwise

An execution trace terminates when e; ,, = m;, for some
m.

Notice that, if no delays are present (that is, D(t) = {}
for all t) then the execution trace e; exactly mirrors the path
m; and, in case this is guaranteed in advance, the MAPD-
d problem becomes de facto a regular MAPD problem. In
general, such a guarantee is not given and solving a MAPD-d
problem opens the issue of computing collision—free tasks—
fulfilling MAPD paths (optimizing service time or makespan)
characterized by some level of robustness to delays.

The MAPD-d problem reduces to the MAPD problem as
a special case, so the MAPD—-d problem is NP-hard.

A. Well-formedness of MAPD-d

In principle, if a problem instance is well-formed, delays
will not affect its feasibility (this property is also called long—
term robustness, namely the guarantee that a finite number
of tasks will be completed in a finite time, see Section II).
Indeed, well-formedness is given by specific topological
properties of the environment and delays, by their definition,
are not such a type of feature. There is, however, an exception
to this argument corresponding to a case where a delay does
cause a modification of the environment, eventually resulting
in the loss of well-formedness and, in turn, of feasibility.
This is the case where an agent is delayed indefinitely
and cannot move anymore (namely when the agent is in
D(t) for all t > T for a given time step 7). In such
a situation, the agent becomes a new obstacle, potentially
blocking a path critical for preserving the well-formedness.
The assumption that an agent cannot be delayed indefinitely
made in the previous section ensures the well-formedness of
MAPD-d instances. More precisely, a MAPD-d instance is
well-formed when, in addition to requirements (i)—(iii) from
Section 1II, it satisfies also: (iv) any agent cannot be in D(t)
forever (i.e., for all ¢t > T for a given T).

In a real context, condition (iv) amounts to removing
or repairing the blocked agents. For instance, if an agent
experiences a permanent fail, it will be removed (in this
case its incomplete task will return in the task set and at
least one agent must survive in the system) or repaired after
a finite number of time steps. This guarantees that the well—-
formedness of a problem instance is preserved (or, more
precisely, that it is restored after a finite time).

'For simplicity and w.l.o.g., we consider a path and a corresponding
execution trace starting from time step 0.



Algorithm 2: TP with replanning

1 initialize token with the (trivial) path (loc(a;)) for each
agent a;;
2 while true do

3 add new tasks, if any, to the task set T

4 R < CheckCollisions(token);

5 foreach agent a; in R do

6 retrieve task 7 assigned to a;;

7 m; < PathPlanner(a;, T, token);

8 if 7; is not null then

9 | update a;’s path in token with m;;

10 else

1 | recovery from deadlocks;

12 end

13 end

14 while agent a; exists that requests token do

15 \ proceed like in Algorithm 1 (lines 5-17);

16 end

17 agents move along their paths in foken for one time

step (or stay at their current position if delayed);

18 end

B. A MAPD-d baseline: TP with replanning

Algorithms able to solve well-formed MAPD problems,
like TP, are in principle able to solve well-formed MAPD-d
problems as well. The only issue is that these algorithms
would return paths that do not consider possible delays
occurring during execution. Delays cause paths to possibly
collide, although they did not at planning time. (Note that,
according to our assumptions, when an agent is delayed at
time step ¢, there is no way to know for how long it will be
delayed.)

In order to have a baseline to compare against the al-
gorithms we propose in the next section, we introduce an
adaptation of TP allowing it to work also in presence of
delays. Specifically, we add to TP a replanning mechanism
that works as follows: when a collision is detected between
agents following their paths, the token is assigned to one of
the colliding agents to allow replanning of a new collision—
free path. This is a modification of the original TP mech-
anism where the token can be assigned only to free agents
that have reached the end of their paths (see Algorithm 1).
To do this, we require the token to include also the current
execution traces of the agents.

Algorithm 2 reports the pseudo—code for this baseline
method that we call TP with replanning. At the current time
step a collision is checked using the function CheckCollisions
(line 4): a collision occurs at time step ¢ if an agent a;
wants to move to the same vertex to which another agent a;
wants to move or if a; and a; want to swap their locations
on adjacent vertices. For example, this happens when a;
is delayed at ¢ or when one of the two agents has been
delayed at an earlier time step. The function returns the
set R of non—delayed colliding agents that will try to plan
new collision—free paths (line 7). The PathPlanner function
considers a set of constraints to avoid conflicts with the
current paths of other agents in the token. A problem may
happen when multiple delays occur at the same time; in
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Fig. 1.  An example of TP with replanning. The figure shows a grid
environment with two agents and two tasks at different time steps. At time
step O (top), the agents plan their paths without collisions. At time steps 6
and 7 (middle) a2 is delayed and at time step 7 a collision is detected in
the token. Then, a1 regains the token and replans (bottom).

particular situations, two or more agents may prevent each
other to follow the only paths available to complete their
tasks. In this case, the algorithm recognizes the situation
and implements a deadlock recovery behavior. In particular,
although with our assumptions agents cannot be delayed
forever, we plan short collision—free random walks for the
involved agents in order to speedup the deadlock resolution
(line 11). An example of execution of TP with replanning is
depicted in Figure 1.

IV. ALGORITHMS FOR MAPD WITH DELAYS

In this section we present two algorithms, k~TP and p—
TP, able to plan paths that solve MAPD—-d problem instances
with some guaranteed degree of robustness in face of de-
lays. In particular, k-TP provides a deterministic degree of
robustness, while p—TP provides a probabilistic degree of
robustness. For developing these two algorithms, we took
inspiration from the corresponding concepts of k— and p—
robustness for MAPF that we outlined in Section II.

A. k-TP Algorithm

A k-robust solution for MAPD-d is a plan which is
guaranteed to avoid collisions due to at most k consecutive
delays for each agent, not only considering the paths already
planned but also those planned in the future. (By the way,
this is one of the main differences between our approach
and the robustness for MAPF.) As we have discussed in
Section III, TP with replanning (Algorithm 2) can just react
to the occurrence of delays once they have been detected.
The k-TP algorithm we propose, instead, plans in advance
considering that delays may occur, in the attempt of avoiding
replanning at runtime. The algorithm is defined as an exten-
sion of TP with replanning, so it is able to solve all well-
formed MAPD-d problem instances. A core difference is an
additional set of constraints enforced during path planning.



Algorithm 3: k-TP

1 initialize foken with the (trivial) path (loc(a;)) for each
agent a;;

2 while true do

3 add new tasks, if any, to the task set T ;

4 R < CheckCollisions(token);

5 foreach agent a; in R do

6 \ proceed like in Algorithm 2 (lines 6-11);

7 end

8 while agent a; exists that requests token do

9 /* token is assigned to a; and a; executes now */;

10 T’ < {r; € T | no path in token ends in s; or in

i}

1 if 7' # {} then

12 T < argming o h(loc(ai), s;);

13 assign a; to T;

14 remove 7 from T ;

15 m; < PathPlanner(a;, T, token);

16 if m; is not null then

17 | update roken with k-extension(m;, k);

18 else if no task 7; € T exists with g; = loc(a;)

then
19 update a;’s path in token with the path
{loc(a:));

20 else

21 m; < ldle(a;, token);

22 if 7; is not null then

23 | update roken with k-extension(m;, k);

24 end

25 /* a; returns token to system */;

26 end

27 agents move along their paths in token for one time
step (or stay at their current position if delayed);

28 end

The formal steps are reported in Algorithm 3. A new path
m;, before being added to the token, is used to generate the
constraints (the k—extension of the path, also added to the
token, lines 17 and 23) representing that, at any time step ¢,
any vertex in
<y T t+k }

{Wi,tsza cee sy Tt —15 Tty T4t 41,5 - -

should be considered as an obstacle (at time step t) by
agents planning later. In this way, even if agent a; or agent
a; planning later are delayed up to k times, no collision
will occur. For example, if m; = (v1, vy, v3), the 1-extension
constraints will forbid any other agent to be in {vy,vo} at
the first time step, in {v1,v2,v3} at the second time step, in
{vq, v3} at the third time step, and in {v3} at the fourth time
step.

The path of an agent added to the token ends at the
delivery vertex of the assigned task, so the space requested in
the token to store the path and the corresponding k—extension
constraints is finite, for finite k. Note that, especially for large
values of k, it may happen that a sufficiently robust path for
an agent a; cannot be found at some time step; in this case,
a; simply returns the token and tries to replan at the next
time step. The idea is that, as other agents advance along
their paths, the setting becomes less constrained and a path
can be found more easily. Clearly, since delays that affect
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the execution are not known beforehand, replanning is still
necessary in those cases where an agent gets delayed for
more than & consecutive time steps.

B. p—TP Algorithm

The idea of k-robustness considers a fixed value k for
the guarantee, which could be hard to set: if k is too low,
plans may not be robust enough and the number of (possibly
costly) replans could be high, while if k is too high, it will
increase the total cost of the solution with no extra benefit
(see Section V for numerical data supporting these claims).

An alternative approach is to resort to the concept of p—
robustness. A p-robust plan guarantees to keep collision
probability below a certain threshold p (0 < p < 1). In
a MAPD setting, where tasks are not known in advance, a
plan could quickly reach the threshold with just few paths
planned, so that no other path can be added to it until the
current paths have been executed. Our solution to avoid this
problem is to impose that only the collision probability of
individual paths should remain below the threshold p, not of
the whole plan. As discussed in [19], this might also be a
method to ensure a notion of fairness among agents.

We thus need a way to calculate the collision probability
for a given path. We adopt a model based on Markov
chains [20]. Assuming that the probability that any agent
is delayed at any time step is fixed and equal to pg, we
model agent a;’s execution trace e; (corresponding to a path
;) with a Markov chain, where the transition matrix P is
such that with probability p, the agent remains at the current
vertex and with probability 1 —p,; advances along 7;. We also
assume that transitions along chains of different agents are
independent. (This simplification avoids that delays for one
agent propagate to other agents, which could be problematic
for the model [19], while still providing an useful proxy for
robustness.)

This model is leveraged by our p—TP algorithm reported as
Algorithm 4. The approach is again an extension of TP with
replanning, so also in this case we are able to solve any well—
formed MAPD instance. Here, one difference with the basic
algorithms is that before inserting a new path 7; in the token,
the Markov chain model is used to calculate the collision
probability cprob,. between m; and the paths already in
the token (lines 18 and 30). Specifically, the probability
distribution for the vertex occupied by an agent a; at the
beginning of a path m; = (m; ¢, T 441, .., Ti4n) IS given
by a (row) vector sy with length n that has every element
set to 0 except that corresponding to the vertex ; ¢, which is
1. The probability distribution for the location of an agent at
time step ¢ + j is given by sqPJ (where P is the transition
matrix defined above). For example, in a situation with 3
agents and 4 vertices (v1,ve,vs,v4), the probability distri-
butions at a given time step ¢ for the locations of agents a;,
as, and a3 could be (0.6,0.2,0.1,0.1), (0.3,0.2,0.2,0.3),
and (0.5,0.1,0.3,0.1), respectively. Then, for any vertex
traversed by the path 7;, we calculate its collision probability
as 1 minus the probability that all the other agents are not
at that vertex at that time step multiplied by the probability



Algorithm 4: p-TP

1 initialize token with path (loc(a;)) for each agent a;;
2 while true do

3 add new tasks, if any, to the task set T
4 R <+ CheckCollisions(token);
5 foreach agent a; in R do
6 | proceed like in Algorithm 2 (lines 7 - 13);
7 end
8 while agent a; exists that requests token do
9 /* token assigned to a; and a, executes now */;
10 T’ < {7 € T | no path in token ends in s; or in
9i}:
1 if 7' # {} then
12 T ¢ argmin_ h(loc(as), s5);
13 assign a; to T;
14 remove 7 from T
15 7+ 0;
16 while j < itermax do
17 m; < PathPlanner(a;, T, token);
18 cprob,., < MarkovChain(m;, token);
19 if cprob,., < p then
20 update a;’s path in foken with 7;;
21 ‘ break
22 j1+<— 7+ 1
23 end
24 else if no task 7; € T exists with g; = loc(a;)
then
25 update a;’s path in foken with the path
| ey
26 else
27 7+ 0;
28 while j < itermax do
29 m; < Idle(a;, token);
30 cprob,.. < MarkovChain(m;, token);
31 if cprob,. < p then
32 update a;’s path in token with 7;;
33 break
2 J<i+L
35 end
36 end
37 /* a; returns token and system executes now */;
38 end
39 agents move along their paths in token for one time
step (or stay at their current position if delayed);
40 end

that the agent is actually at that vertex at the given time
step. Following the above example, the collision probability
in vy for agent aq at t (i.e., the probability that at least
one of the other agents is at v; at t) is calculated as
1 —-(1-03)-(1-05)]-06 = 0.39. The collision
probabilities of all the vertices along the path are summed
to obtain the collision probability cprob . for the path ;. If
this probability is above the threshold p (lines 19 and 31),
the path is rejected and a new one is calculated. If an enough
robust path is not found after a fixed number of rejections
itermax, the token is returned to the system and the agent will
try to replan at the next time step (as other agents advance
along their paths, chances of collisions could decrease).
Also for p—TP, since the delays are not known beforehand,
replanning is still necessary. Moreover, we need to set the
value of pg, with which we build the probabilistic guarantee
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according to the specific application setting. We deal with
this in the next section.

V. EXPERIMENTAL RESULTS
A. Setting

Our experiments are conducted on a 3.2 GHz Intel Core i7
8700H laptop with 16 GB of RAM. We tested our algorithms
in two warehouse 4—connected grid environments where the
effects of delays can be significant: a small one, 15 x 13
units, with 4 and 8 agents, and a large one, 25 x 17, with
12 and 24 agents (Figure 2). (Environments of similar size
have been used in [9].) At the beginning, the agents are
located at the non-task endpoints. We create a sequence of
50 tasks choosing the pickup and delivery vertices uniformly
at random among a set of predefined vertices. The arrival
time of each task is determined according to a Poisson
distribution [21]. We test 3 different arrival frequencies A
for the tasks: 0.5, 1, and 3 (since, as discussed later, the
impact of A\ on robustness is not relevant, we do not show
results for all values of \). During each run, 10 delays per
agent are randomly inserted and the simulation ends when
all the tasks have been completed.

We evaluate k-TP and p—TP against the baseline TP with
replanning (to the best of our knowledge, we are not aware of
any other algorithm for finding robust solutions to MAPD—
d). For p—TP we use two different values for the parameter
pd, 0.02 and 0.1, modeling a low and a higher probability
of delay, respectively. (Note that this is the expected delay
probability used to calculate the robustness of a path and
could not match with the delays actually observed.) For
planning paths of individual agents (PathPlanner in the
algorithms), we use an A* path planner with Manhattan
distance as heuristic.

Solutions are evaluated according to the makespan (i.e.,
the earliest time step at which all tasks are completed, see
Section II). (Results for the service time are qualitatively
similar and are not reported here.) We also consider the
number of replans performed during execution and the total
time required by each simulation (including time for both
planning and execution). The reported results are averages
over 100 randomly restarted runs. All algorithms are imple-
mented in Python and the code is publicly available at an
online repository?.

B. Results

Results relative to small warehouse are shown in Tables I
and II and those relative to large warehouse are shown in
Tables IIT and IV. For the sake of readability, we do not
report the standard deviation in tables. Standard deviation
values do not present any evident oddity and support the
conclusions about the trends reported below.

The baseline algorithm, TP with replanning, appears twice
in each table: as k—TP with & = 0 (that is the basic
implementation as in Algorithm 2) and as p—TP with p; =

2https://github.com/Lodz97/Multi-Agent_Pickup_
and_Delivery



Fig. 2. Large warehouse with 24 agents, obstacles (black), pickup (colored
squares) and delivery (triangles) vertices, and endpoints (green circles)

TABLE I
SMALL WAREHOUSE, A = 0.5, AND 10 DELAYS PER AGENT

=4 =38
korp makespan | # replans | runtime [s] | makespan | #replans | runtime [s]

0 364.88 7.26 0.85 234.59 16.04 2.11

1 374.48 1.4 0.91 240.69 3.85 227

E 2 390.82 0.1 1.16 241.14 0.73 2.15
3 411.09 0.01 1.59 259.38 0.09 3.12

4 436.12 0.0 2.0 278.33 0.04 4.49

_ 1 364.88 7.26 1.14 234.59 16.04 2.63
N 0.5 369.5 6.29 1.81 237.27 12.59 5.0
5; 0.25 395.07 4.29 2.88 255.21 5.63 6.11
E 0.1 409.17 29 3.16 268.99 3.23 6.32
0.05 428.64 2.93 342 279.26 2.76 6.48

a | 05 366.72 7.34 1.29 238.83 12.81 3.87
I | 0.25 378.42 6.8 1.57 236.21 10.21 4.38
5 0.1 391.63 4.53 2.37 250.39 6.73 5.57
Z 0.05 405.53 351 2.66 256.24 425 5.34

TABLE II

SMALL WAREHOUSE, A = 3, AND 10 DELAYS PER AGENT

=4 =8
korp makespan | # replans | runtime [s] | makespan | # replans | runtime [s]

0 354.77 83 0.6 217.79 14.67 1.93

1 363.22 1.47 0.77 219.87 4.01 1.81

E 2 383.59 0.2 0.95 226.75 0.58 1.89
3 400.77 0.01 1.33 250.23 0.12 3.02

4 429.12 0.0 1.68 263.47 0.01 432

~ 1 354.77 8.3 0.86 217.79 14.67 2.53
H. 0.5 360.29 6.7 1.45 22431 11.06 4.93
,Zi 0.25 381.98 5.12 23 24524 6.46 5.83
E 0.1 404.92 2.93 2.81 251.42 3.55 5.66
0.05 417.04 2.65 3.05 262.73 3.65 6.11

a 0.5 358.14 8.05 1.25 219.58 13.19 3.61
Hl 0.25 372.92 7.02 1.57 228.25 10.93 3.77
E 0.1 380.31 4.41 2.12 233.97 6.89 4.65
E 0.05 393.55 3.45 2.5 244.62 4.81 4.98

0.1 and p = 1 (which accepts all paths). The two versions of
the baseline return the same results in terms of makespan
and number of replans (we use the same random seed
initialization for runs with different algorithms), but the total
runtime is larger in the case of p—TP, due to the overhead of
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TABLE III
LARGE WAREHOUSE, A = 0.5, AND 10 DELAYS PER AGENT

£=12 =24
korp makespan | # replans | runtime [s] | makespan | # replans | runtime [s]

0 283.62 17.18 2.8 269.25 20.71 8.32

1 276.7 3.88 3.27 264.96 5.37 5.78

E 2 285.32 1.18 4.89 275.48 1.62 9.54
3 304.05 0.24 7.54 300.55 0.4 15.55

4 310.59 0.01 10.9 300.45 0.1 22.11

~ 1 283.62 17.18 4.12 269.25 20.71 11.2
H‘ 0.5 286.95 10.02 11.3 291.78 17.09 38.61
3} 0.25 305.13 5.38 17.26 313.63 9.59 58.95
E 0.1 330.58 4.51 19.6 322.26 4.51 54.92
0.05 337.33 3.56 20.27 348.89 3.89 57.24

o 0.5 289.86 14.51 741 290.05 20.3 28.74
Hl 0.25 287.72 9.92 10.19 286.77 14.15 39.47
E 0.1 311 6.53 13.76 304.24 8.94 49.04
E 0.05 313.38 6.41 14.91 308.1 7.02 49.96

TABLE IV
LARGE WAREHOUSE, A = 3, AND 10 DELAYS PER AGENT
(=12 =24
korp makespan | # replans | runtime [s] | makespan | # replans | runtime [s]

0 265.23 18.96 291 258.49 30.83 8.12

1 269.78 422 3.28 254.56 8.98 9.81

i 2 274.78 1.19 4.75 261.3 1.71 12.03
3 279.02 0.18 7.31 273.56 0.59 19.43

4 290.59 0.04 10.76 282.07 0.17 30.91

_ 1 265.23 18.96 4.16 258.49 30.83 10.78
N 0.5 268.74 11.31 9.04 257.64 17.21 36.74
5? 0.25 298.01 7.39 14.58 287.75 9.96 48.14
%1 0.1 318.37 53 16.33 310.46 6.32 47.11
0.05 331.1 3.83 16.83 334.06 4.42 47.62

a 0.5 259.64 12.47 7.22 247.76 20.47 26.21
H- 0.25 289.75 12.05 9.23 264.6 15.72 39.68
5: 0.1 280.07 6.78 11.59 290.65 9.88 42.76
%-_ 0.05 298.34 6.21 12.98 293.68 8.81 4223

calculating the Markov chains and the collision probability
for each path.

Looking at robustness, which is the goal of our algorithms,
we can see that, in all settings, both k-TP and p-TP
significantly reduce the number of replans with respect to the
baseline. For kTP, increasing k leads to increasingly more
robust solutions with less replans, and the same happens for
p—TP when the threshold probability p is reduced. However,
increasing k& shows a more evident effect on the number of
replans than reducing p. More robust solutions, as expected,
tend to have a larger makespan, but the first levels of robust-
ness (k = 1, p = 0.5) manage to reduce significantly the
number of replans with a small or no increase in makespan.
For instance, in Table IV, k-TP with & = 1 decreases the
number of replans of more than 75% with an increase in
makespan of less than 2%, with respect to the baseline.
Pushing towards higher degrees of robustness (i.e., increasing
k or decreasing p) tends to increase makespan significantly
with diminishing returns in terms of number of replans,
especially for k—TP.



Comparing k-TP and p-TP, it is clear that solutions pro-
duced by kTP tend to be more robust at similar makespan
(e.g., see kTP with £k = 1 and p-TP with p; = .1 and
p = 0.5 in Table I), and decreasing p may sometimes lead
to relevant increases in makespan. This suggests that our
implementation of p—TP has margins for improvement: if
the computed path exceeds the threshold p we wait the next
time step to replan, without storing any collision information
extracted from the Markov chains; finding ways to exploit
this information may lead to an enhanced version of p—TP
(this investigation is left as future work). It is also interesting
to notice the effect of pg in p—TP: a higher py (which, in
our experiments, amounts to overestimating the actual delay
probability that, considering that runs last on average about
300 time steps and there are 10 delays per agent, is equal
to % = 0.03) leads to solutions requiring less replans, but
with a noticeable increase in makespan.

Considering runtimes, k—TP and p-TP are quite different.
For k-TP, we see a trend similar to that observed for
makespan: a low value of £ (k = 1) often corresponds
to a slight increase in runtime with respect to the baseline
(sometimes even a decrease), while for larger values of k the
runtime may be much longer than the baseline. Instead, p—TP
shows a big increase in runtime with respect to the baseline,
that does not change too much with the values of p, at least
for low values of p (p = 0.1, p = 0.05). Finally, we can see
how different task frequencies A have no significant impact
on our algorithms, but higher frequencies have the global
effect of reducing makespan tasks (which are always 50 per
run) are available earlier.

Finally, we run simulations in a even larger warehouse
4—connected grid environment of size 25 x 37, with 50
agents, A = 1, 100 tasks, and 10 delays per agent. The
same qualitative trends discussed above are observed also
in this case. For example, k~-TP with k£ = 2 reduces the
number of replans of 93% with an increase of makespan
of 5% with respect to the baseline. The runtime of p—TP
grows to hundreds of seconds, also with large values of p,
suggesting that some improvements are needed. Full results
are not reported here due to space constraints.

VI. CONCLUSION

In this paper, we introduced a variation of the Multi-Agent
Pickup and Delivery (MAPD) problem, called MAPD with
delays (MAPD-d), which considers an important practical
issue encountered in real applications: delays in execution. In
a MAPD-d problem, agents must complete a set of incoming
tasks (by moving to the pickup vertex of each task and then
to the corresponding delivery vertex) even if they are affected
by an unknown but finite number of delays during execution.
We proposed two algorithms to solve MAPD—d, k-TP and
p-TP, that are able to solve well-formed MAPD-d problem
instances and provide deterministic and probabilistic robust-
ness guarantees, respectively. Experimentally, we compared
them against a baseline algorithm that reactively deals with
delays during execution. Both k-TP and p—TP plan robust
solutions, greatly reducing the number of replans needed
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with a small increase in solution makespan. k—TP showed
the best results in terms of robustness—cost trade—off, but p—
TP still offers great opportunities for future improvements.

Future work will address the enhancement of p—TP accord-
ing to what we outlined in Section V-B and the experimental
testing of our algorithms in real-world settings.

REFERENCES

[1] H. Ma, “Target assignment and path planning for navigation tasks with
teams of agents,” Ph.D. dissertation, University of Southern California,
Department of Computer Science, Los Angeles, USA, 2020.

[2] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar, R. Bartdk, and E. Boyarski, “Multi-
agent pathfinding: Definitions, variants, and benchmarks,” in Proc.
SoCS, 2019, pp. 151-159.

[3] P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” in Proc. IAAI,
2007, pp. 1752-1759.

[4] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal, “Cobots: Robust
symbiotic autonomous mobile service robots,” in Proc. IJCAI, 2015,
pp. 4423-4429.

[5] H. Ma, J. Yang, L. Cohen, T. Kumar, and S. Koenig, “Feasibility
study: Moving non-homogeneous teams in congested video game
environments,” Proc. AIIDE, pp. 270-272, 2017.

[6] H. Ma, T. Kumar, and S. Koenig, “Multi-agent path finding with delay
probabilities,” in Proc. AAAI, 2017, pp. 3605-3612.

[7]1 D. Atzmon, R. Stern, A. Felner, N. Sturtevant, and S. Koenig,
“Probabilistic robust multi-agent path finding,” in Proc. ICAPS, 2020,
pp. 29-37.

[8] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Bartdk, and N.-F.
Zhou, “Robust multi-agent path finding and executing,” J Artif Intell
Res, vol. 67, pp. 549-579, 2020.

[91 H. Ma, J. Li, T. Kumar, and S. Koenig, “Lifelong multi-agent path

finding for online pickup and delivery tasks,” in Proc. AAMAS, 2017,

pp. 837-845.

J. Yu and S. LaValle, “Structure and intractability of optimal multi-

robot path planning on graphs,” in Proc. AAAI, 2013, pp. 1443-1449.

P. Surynek, “An optimization variant of multi-robot path planning is

intractable,” in Proc. AAAI, 2010, pp. 1261-1263.

Z. Chen, D. Harabor, J. Li, and P. Stuckey, “Symmetry breaking for

k-robust multi-agent path finding,” in Proc. AAII, 2021, pp. 12267-

12274.

J. Svancara, M. VIk, R. Stern, D. Atzmon, and R. R. Bartdk, “Online

multi-agent pathfinding,” in Proc. AAAI, 2019, pp. 7732-7739.

H. Ma, “A competitive analysis of online multi-agent path finding,” in

Proc. ICAPS, 2021, pp. 234-242.

T. Shahar, S. Shekhar, D. Atzmon, A. Saffidine, B. Juba, and R. Stern,

“Safe multi-agent pathfinding with time uncertainty,” J Artif Intell Res,

vol. 70, pp. 923-954, 2021.

E. Khalastchi and M. Kalech, “Fault detection and diagnosis in multi-

robot systems: A survey,” Sensors, vol. 19, no. 18, pp. 1-19, 2019.

H. Ma, W. Honig, T. Kumar, N. Ayanian, and S. Koenig, “Lifelong

path planning with kinematic constraints for multi-agent pickup and

delivery,” in Proc. AAAI, 2019, pp. 7651-7658.

P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “Roboads:

Anomaly detection against sensor and actuator misbehaviors in mobile

robots.” in Proc. DSN, 2018, pp. 574-585.

G. Wagner and H. Choset, “Path planning for multiple agents under

uncertainty,” in Proc. ICAPS, 2017, pp. 577-585.

D. Levin and Y. Peres, Markov chains and mixing times.

Mathematical Society, 2017, vol. 107.

K.-K. Tse, “Some applications of the Poisson process,” Appl Math,

vol. 05, pp. 3011-3017, 2014.

[10]
(1]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20] American

[21]



11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

On Improvement Heuristic to Solutions of the Close Enough Traveling
Salesman Problem in Environments with Obstacles

JindfiSka Deckerova

Abstract—1In this paper, we present a novel improvement
heuristic to address the Close Enough Traveling Salesman
Problem in environments with obstacles (CETSP.,s). The
CETSP.,s is a variant of the Traveling Salesman Problem
(TSP), where the goal is to find a sequence of visits to
given disk-shaped regions together with the points of visits to
the regions. We address challenging instances in a polygonal
domain with polygonal obstacles, where the final path con-
necting the regions must be collision-free. We propose a novel
Post-Optimization procedure using Mixed Integer Non-
Linear Programming (MINLP) to improve existing heuristic
solutions to the CETSP,,,;. We deploy the method with existing
heuristic solvers and based on the presented evaluation results,
the proposed Post—-Optimization significantly improves the
heuristic solutions of all examined solvers and makes them com-
petitive regarding the solution quality. The statistical evaluation
reveals that the sequence found using relatively sparse sampling
of the disk regions yields the best solutions among the evaluated
solvers. The results support the benefit of the proposed MINLP-
based solution to the continuous optimization of the CETSP,.

I. INTRODUCTION

The studied problem is motivated by multi-goal path
planning [1] that is a robotic variant of the well-known
combinatorial Traveling Salesman Problem (TSP) [2], where
paths connecting the given set of locations are collision-free
among possible obstacles in the environment. In the TSP,
we search for a cost-efficient closed-loop tour visiting the
locations, and we thus determine an optimal sequence of
visits to the locations. Hence, the TSP represents a suitable
problem formulation for various robotic sequencing tasks [3].
Furthermore, in remote data collection missions [4], [5], it is
sufficient to visit a close region around the particular location
and thus save the travel cost. In such scenarios, the TSP
becomes the TSP with Neighborhoods (TSPN), where we
need to determine the optimal sequence to visit the regions
and also the optimal point of the visit to each region.

The neighborhoods in the TSPN can be represented as
continuous regions [4], [6], [7], [8], or as clusters of re-
gions [9], [10], [11], [12], or as clusters of locations [13]. In
general, the TSPN is an APX-hard [14], and many heuristic
approaches [15], [16], [17], [18], and approximation algo-
rithms [19], [20], [14], [21] have been proposed. Further, the
TSPN with disk-shaped neighborhoods has been introduced
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Fig. 1. Instances of the CETSP,s with found solutions depicted in blue.

as the Close Enough TSP (CETSP) in [4]. Although exact
methods have been proposed to solve the CETSP [22], [23],
they do not account for possible obstacles, and connections
between the regions are only straight line segments with the
length determined as the Euclidean distance between points
of visits to the regions.

In this paper, we address the robotic variant of the CETSP
in the polygonal domain with polygonal obstacles, further
referred to as the CETSP,,s; see examples of instances
in Fig. 1. When compared to the CETSP, the main chal-
lenge of the CETSP,s is determining collision-free paths
between points of visits to the regions that can be arbitrarily
located in the regions while finding the optimal sequence.
Thus, the shortest paths connecting the regions need to be
determined quickly, as many queries can be expected during
the optimization of the sequence and points of visits to the
regions. For the regular TSP with point locations or sampled
regions to a discrete set of points, visibility graph can be
constructed [24], [25] for shortest path queries; however, it
is not the case of the CETSP,,s with continuous regions.

Only two approaches explicitly address the CETSP,s (to
the best of the authors’ knowledge). The first is based on
the shortest-path approximation employed in an unsuper-
vised learning-based solution of the TSP in the polygonal
domain [26], [27]. The second is the GLNSC [28] based on
the decomposition of the CETSP,s to the continuous opti-
mization of the CETSP and the point-to-point optimization
using Delaunay triangulation. Besides, the discretized variant
of the CETSP.,s can be solved as the Generalized TSP
(GTSP) [13] using pre-computed shortest paths among the
obstacles and each sampled location of the regions. However,
the optimal solution of such a discretized instance would
be only the approximate solution of the original CETSPp¢
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depending on the sampling density.

We propose to address approximations of existing so-
lutions to the CETSP.,s by the Post-Optimization
procedure that improves any existing heuristic solution. The
procedure is based on formulating the problem as Mixed
Integer Non-Linear Programming (MINLP) and exploits the
given sequence of visits to the regions. We employed the
procedure to existing solvers GLNSC [28] and unsupervised
learning of the Self-Organizing Map (SOM) [27]. In addition,
we adopted GTSP-based approach [18] to the Generalized
TSPN (GTSPN), which first determines the sequence of visits
to the regions’ centers and then computes the points of visits
using the local iterative optimization. Based on the empirical
evaluation, the proposed Post-Optimization procedure
improves solutions found by the existing solvers and makes
the sampling-based GTSP the best-performing solver.

The rest of the paper is organized as follows. The
CETSP,}s is formally defined in Section II. The examined
SOM and GTSP-based solvers are briefly described in Sec-
tion III. The proposed Post-Optimization procedure
is presented in Section IV. The results of the empirical
evaluation are summarized in Section V, and the paper is
concluded in Section VI.

II. PROBLEM STATEMENT

The studied CETSP,y,;s is to find the shortest multi-point
path that visits each of the n disk-shaped regions S =
{S1,...,5,} while avoiding m polygonal obstacles O =
{01, ...,0.,}. Each region S; € S is defined by its center
¢; € R2, radius §; > 0, and it is entirely inside the free
space of the polygonal domain. A polygon obstacle O; € O
is defined by a sequence of [; vertices represented as points
in R2, 0; = (0},...,07), ot € R? for 1 <t <1

A solution of the CETSP, is defined by a sequence ¥ of
visits to regions together with the points of visits P further
referred to as waypoints. The final multi-point path is formed
by a sequence of (shortest) paths among obstacles connecting
‘P according to 3. Hence, for the purpose of finding a path
among obstacles connecting two waypoints, we consider a set
of obstacles’ points Q denoting the vertices of the obstacles’
borders. Thus, the multi-point path is denoted (X,P, Q),
where the terms can be defined as follows.

e X — Sequence of visits defining the order of visits to the

regions: ¥ = (01,...,0p), 0; # 0j for i # j.

e P — Waypoints are the points of visits to the regions:
P ={py,.--,P,}> P; € R2 For each waypoint p,, it
holds ||¢; — p;|| < 6.

o Q — Obstacles’ points forming the final path connect-
ing P according to X, Q = UL 1{qz,...,qff‘}, where
k; > 0 denotes the number of obstacles’ points of the
path connecting consecutive waypoints p,,, and p, .
Note that for a closed multi-point path, p, is the
consecutive waypoint of p, .

The length £* of the path between two waypoints p; and
p; can be defined according to the number of obstacles’
points k;. If the straight line connection of the waypoints is
collision-free, the length is directly the Euclidean distance

Fig. 2. A solution of the CETSP,}s instance with n = 4 regions and one
obstacle, m = 1. Regions’ centers are small green disks. Vertices of the
obstacles are small red disks, while obstacles’ points Q are in orange. The
determined waypoints P are visualized as small blue disks.

L*(p;, p;) ||pl —p,v|| and k; = 0; for k; = 1, it is
L*(p;py) = ||pt q%ﬂ+ i —
pl’pj sz qu—i_Z qu in_pj

&)
The used notation is visualized in an example of the solution
instance in Fig. 2. The CETSP,,s is formulated as the
optimization problem in Problem 1.

Problem 1 (CETSP with polygonal domain (CETSPops)):

n—1
L5 = min £5(pg,Po,) + Y L (PoisPary) @)
=1
S.t.
22(017"'70n)70i7é0jifi#j71§0i§na (3)
P:{pal?"'vpan}v pz €R27 (4)
|p,, — ¢ Vie {1,...,n}. (5)

III. BACKGROUND

The studied CETSP,s is solved using existing heuris-
tics and applying the proposed Post-Optimization
procedure to their provided solution. In addition to the
GLNSC [28] that directly solves the addressed CETSPgys,
an unsupervised learning approach has been proposed to
solve the CETSP,y,s with polygonal regions in [27]. Besides,
the GTSP-based approach [18] can be utilized to solve a
discretized variant of the CETSP,,s. Therefore, the two
additional methods are briefly overviewed with the relatively
straightforward modifications for the CETSP,ps to make the
paper self-contained.

A. SOM-based Unsupervised Learning for the CETSP s

The unsupervised learning approach presented in [27] is
based on the SOM for the TSP [29] and has been deployed
in the polygonal domain in [26] using an approximation of
the shortest path based on the underlying convex partition-
ing of the polygonal domain. Although there are multiple
improvements of the SOM-based unsupervised learning for
various routing problems, such as [30], [31], [32] and its
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generalization Growing Self-Organizing Array (GSOA) [17]
deployed in [18], we directly utilize the available solver [27].

The unsupervised learning [27] is an iterative procedure
in which a ring of 2n nodes (representing the multi-point
path) is adapted to the regions during learning epochs. For
each region, the closest node of the ring is determined as
a winner node. Then, the winner node is adapted (moved)
toward the region together with its neighboring nodes with
the decreasing power of adaptation based on the neighboring
function. The adaptation’s power is controlled by the learning
gain decreased every learning epoch to converge the ring to a
stable solution. Note that the adaptation (movement) is along
the shortest paths (or their approximation) among obstacles.
Besides, the regions are examined in a random order in each
epoch to avoid local minima [26].

After a finite number of epochs, the ring represents a
multi-point path as each region has a unique winner node
because of inhibition of the winners for each epoch [27].
Since the ring is represented as an array of nodes, the se-
quence of visits to the regions can be retrieved by traversing
the ring. Besides, the winner node is associated with the
point of the visit to the polygonal region.

*

Fig. 3. Illustration of the winner node v* for the region Sy, and its point
of visit to the region p* determined in the SOM solver [27]. The ring of
nodes is represented as connected small blue disks.

The main modification of [27] for the herein addressed
CETSP,},s with disk-shaped regions is to represent each disk
as the polygonal region with [ vertices. However, unsuper-
vised learning can still benefit from continuous regions. It is
because the point of the visit to the region p* is determined
as the point on the region’s boundary that intersects the
shortest path between a node v* and disk’s center, see Fig. 3.
If the winner node is already inside the region, which can be
caused by the adaptation of other nodes, its position is used
as p*. The final multi-point path is retrieved by traversing
the ring and connecting the associated points to the winner
nodes. The reader is referred to [27] or [26] for further details
on the utilized unsupervised learning.

B. GTSP-based Solver to the CETSP g1,

The GTSP-based solver [18] has been proposed to solve
a continuous variant of the GTSPN by discretization to
the GTSP using regions’ centers and deploying the heuris-
tic GTSP solver [33] to determine the sequence of vis-
its. Deploying the GTSP-based solver to the CETSP,s is
straightforward. The disk-shaped regions are discretized into
a finite set of samples on the disks’ boundaries. Then, the
visibility graph [34] is employed to determine the shortest
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Fig. 4. An example of the GTSP-based solution of the CETSP,,s using
visibility graph. The found solution is depicted in blue.

paths between the samples; see Fig. 4. The following four
steps summarize the usage of the GTSP-based solver [18].

o Step 1. Sample each region S; into [ samples = on the
region’s border.

o Step 2. Construct visibility graph G in the polygonal
domain for the samples =.

o Step 3. Create an instance of the GTSP for the GTSP
solver [33] using samples = as a set of locations and
the shortest paths between samples determined with G
as the lengths between sets.

o Step 4. Use the GLKH solver [33] to find a sequence
of visits and G to determine the solution (X, P, Q).

IV. PROPOSED POST-OPTIMIZATION PROCEDURE

The proposed Post-Optimization procedure is based
on the MINLP mathematical model to find locally optimal
solutions of the studied problem using the given sequence
of visits ¥ from some feasible solution (X,P,Q). The
optimization idea is to minimize the path connecting the
waypoints; however, we need to account for the obstacles’
points through which a path among obstacles connects the
waypoints. Therefore, in the MINLP model, we have two
types of waypoints. The first waypoints are denoted P, fur-
ther also called the disks” waypoints, and are being optimized
according to the problem statement in Section II. The second
type of waypoints are the obstacles’ points Q, further referred
to as the obstacles’ waypoints.

We do not need to include all obstacles’ points in the
model, but only those connected with a region’s waypoint
by a straight line segment in the multi-point path. A con-
nection between two consecutive obstacles’ points (vertices)
is guaranteed to be collision-free (e.g., using a visibility
graph), and we do not change the topology of the multi-
point path. Thus, depending on the number of obstacles’
vertices of the path connecting two consecutive waypoints
p; and p;, we add zero, one q} or two obstacles’ waypoints
q} and ¢? as defined in (1). Furthermore, if an obstacle’s
point (vertex) is included in two (or multiple) paths, such as
the (orange) vertex in Fig. 4, the point is added to the model
as the obstacle waypoint multiple times. Thus, the number
of waypoints n’ in the model can be n’ > n.

Since all the waypoints have disk-shaped regions in the
MINLP formulation, we consider zero disk’s radius for
obstacles’ waypoints, and we get a sequence of regions
S’. Hence, a position of the waypoint with d; = 0 is not
effectively optimized in the MINLP solution. The model is
summarized in Model 1 with the following variables.
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o Decision variables x € R™ *2 represent the optimized
waypoints Popy = (D1, - - Py )-

o Auxiliary variables f € R" and w € R" %2 are used
to minimize the squared difference of two consecutive
waypoints (6-8).

o Further auxiliary variables v € R™*2 are used to
ensure that each waypoint p; is within §; distance from
the particular region’s center ¢; (9-10).

Model 1 (MINLP model):
merﬁglxz; fi 6)
S.t.
2> w! w;, Vie{l,...,n'} (D)
Vie{l,...,n' =1}  (8)
Vie{l,...,n'} (9
Vie{l,...,n'} (10)

In solving the created Model 1, we aim to optimize the
position of the disks’ waypoints within the particular disk.
However, the optimized position might yield a collision
of the straight line segment connecting two consecutive
waypoints (regions of S’) and an obstacle. Therefore, three
constraints are added if and only if there is an obstacle O;
between two consecutive regions of S’ as follows.

The first constraint

di =Ty —x; (11)
uses auxiliary variables d; € R™ %2 to express a straight
line segment of two consecutive waypoints as the difference
in coordinates. The second and third constraints are for [;
obstacle’s vertices

—d; 2 05,1 +d;in 03’2 +dipxin —diiwio < My, ; (12)
and
—dip0hy +dig oo+ dipmin —dinwio > —M(1—y;;)

13
for 1 < [ < I; to ensure that the straight line segn(lenz
expressed as d; does not intersects the obstacle O, repre-
sented by a sequence of points O; = (ojl-, ...,0;). The
constraints express that two waypoints are on the same half-
plane. Therefore, only one of the constraints (12) or (13) is
activated in the model. That is achieved by using the Big-
M method (we use M = 100000), and binary variables
y € {0, 1}"/ are used to activate the particular constraints.

The proposed Post-Optimization is based on the
MINLP model’s construction, summarized in Algorithm 1.
Adding constraints (11-13) corresponds to Lines 9, 11 and
12 of Algorithm 1, respectively. Note that the implementation
of isObstacleBetween() depends on the type of the regions
as a determination of an obstacle between two disk regions
or between a disk and a point (disk region with zero radius
for the obstacle’s waypoint), as depicted in Fig. 5.

The proposed improvement procedure is a relatively
straightforward adjustment of the waypoints within the disk-
shaped regions. The procedure has been applied to the ex-
isting solutions of the CETSP,;,s and examined empirically.
The results are reported in the following section.

Wi = Tiy1 — T,
62 > vl v,

Vi =T — C,

Algorithm 1: Post-Optimization of the given
CETSP,y,s solution (X, P, Q)

Input: S = {S1,...,Sn} — a set of the regions.

Input: O = {O1,...,0n} — a set of the obstacles.

Input: (3, P, Q) — ¥ is a sequence of visits to S with the
corresponding waypoints PP and obstacles’ points Q.

Output: (3, Popt, Q) — optimized solution.

S ()
for o; in ¥ do
S’ + insert(S’, Sy;)
for [ in 0: k;, do
S’ « insert(S’, S(c =q,,;6 =0))  // Insert

obstacle’s point as a new region with zero

// Regions ordered by X

[ SR

radius.

6 M <+ createModel(S’)

decision variables @

7 forall consecutive regions (S;, Si+1) € S’ and O; € O do
8

// According to Model 1 with

if isObstacleBetween((S;, Si+1),O;) then

9 M <+ addConstraint(M, d; = ©i4+1 — x;)

10 forl in1:1; do

11 M <+ addConstraint(M, —d; 2 02,1 +
dinoho+dipmin —din iz < My

12 M < addConstraint(M, —d; 2 0}, +
di1 Oé,z +dipxin —digxi2 >
=M (1 —yi;))

13 Popt ¢ solveMINLP (M)
disks’ waypoints

14 return (X, Popt, Q)

// Extract the optimized

S’ g 81
\ x S’ I
o °

(b) Disk with zero radius of the ob-
stacle’s waypoint and disk region.

(a) Two disk regions.

Fig. 5. Visualization of the detecting obstacles between two consecutive
regions. For two disk regions (left), the tangents are determined from the
connection of the disks’ centers. The disk has zero radius for the obstacle
waypoint; thus, tangents are determined from the cone. Each obstacle’s
vertice must be on one side of the tangents, ensuring no obstacle between
the regions.

V. EMPIRICAL EVALUATION

The proposed Post-Optimization procedure has
been evaluated with the existing GLNSC [28], SOM [27],
and GTSP [18] adjusted as described in Section III.
All the methods are examined with and without the
Post-Optimization procedure. The optimized solutions
are denoted as GLNSC™*, SOM™, and GTSP*. The evalua-
tion has been performed for a set of 32 randomly generated
instances of the CETSP,s, and one instance based on a real
data collection scenario using a wheeled vehicle in an elec-
trical substation depicted in Fig. 6. Each instance is named
tn_x, where n € {5,6,7,8,9,10,26} denotes the number
of regions, and x denotes the instance label, where = &
{1,...,6}forn=5andn =8,and z € {1,...,5} for each
n € {6,7,9,10}. The SOM-based and GTSP-based solvers
depend on the discretization [, selected to [ = 6 providing
the best trade-off between the computational requirements
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TABLE 1

PERFORMANCE INDICATORS OF THE EXAMINED CETSP 1, SOLVERS INSTANCES AGGREGATED BY THE NUMBER OF NODES 7.
Instance GLNSC [28] GLNSC* SOM (i = 6) [27] SOM* (I = 6) GTSP (I = 6) GTSP (I = 6) GTSP (I = 1) GTSP+ (1= 1)

%PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM
5 000 3275 000 3198 166 3549 008 3291 137 3398 000 3267 1538 519 000 3313
6 000 3835 000 3833 072 4097 000 3876 040 3894 000 3833 1959 5560 000 3899
a 000 4891 000 4891 044 5191 000 4951 025 4939 000 4560 1599 6604 016 4891
§ 000 2720 000 2720 070 2560 000 2398 058 2294 008 2253 1607 3823 000 2359
© 000 1574 000 1574 167 17173 000 1615 096 1608 000 1545 1811 3040 115 1684
1o 056 2068 000 2014 169 2070 056 18.93 165 1940 056 1848 1712 4001 056 2141
06 000 158 000 109 195 446 000 274 246 246 189 189 3089 3089 847 2192

(a) Map of an electrical
substation with buildings L

(b) GLNSC,
1507.44, £+
1480.38.

= L
1465.32.

as obstacles.
Fig. 6.

(c) SOM (I = 6),
1517.5, £+

(d) GTSP (I = 6),
= L 1470.69, L+
1462.57.

(e) GTSP (I = 1),
= L 1878.87, L+
1557.07.

A map of an electrical substation utilized as an real-world CETSP,, instance t26_001. Solutions of this instance CETSP,}¢ instance found

by the particular solver are depicted in blue, and the optimized solutions by the Post-Optimization procedure are in red.

and solution quality among ! € {6, 12,24, 64, 128}. Besides,
we include the GTSP solver with [ = 1 using the disks’
centers in the evaluation to highlight the benefit of the
proposed Post-Optimization to improve the solution
quality even for sparse sampling.

The proposed Post-Optimization procedure and
the GTSP solver are implemented in Julia v1.7. using
JuMP and the MINLP solver Juniper [35]. The GLNSC
and SOM are implemented in C++, and the GLNSC uses
SOM-based initialization in a fast mode [28]. Each solver
was executed for 20 trials on the Intel 17-9700 pro-
cessor running at 3 GHz, and two performance indicators
are used for the evaluation. The solution quality %PDB
for each instance is measured as the percentage deviation
from the best overall solution L} ., of the best solution £*
among all performed trials of the particular method %PDB =
(L* = L5 ost)/ L3 o5t 100%. The solution robustness %PDM
for each instance is measured as the percentage deviation
from the best overall solution L; ., of the mean solution
value £* among all performed trials of the particular method
%PDM = (L* — L} )/ L} s 100%. Besides, we report the
computational times T in milliseconds.

60 GLNSC
—— GLNSC+

—— SOM (I=6)
— SOM+ (1=6)

—%— GTSP (1=6)
—— GTSP+ (1=6)

GTSP (1=1)
—— GTSP+ (I=1)

11‘:5 n‘:G 11;7 n‘:S 11;9 n:‘l[) 11:‘26
Fig. 7. Median computational times T aggregated from instances with the

size m with standard deviation visualized as area around the medians.
The aggregated results are reported in Table I. The results

support the expected improvement of the CETSP,,¢ solutions

and make the examined solvers competitive regarding the
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solution quality. Although the robustness varies and there is
no clear winner, regarding the %PDB, the best-performing
method is GLNSC, which can be considered the most
complex algorithm. On the other hand, solutions of the very
straightforward GTSP with [ = 1, which can be solved as
an instance of the TSP, are significantly improved by the
proposed Post-Optimization.

The computational requirements of all solvers are expo-
nential with n; see Fig. 7. Here, it is worth noting that the
GLNSC method requires preprocessing the input instances
by creating supporting structures, which is not included
in the presented results, and similarly for the SOM-based
solver. However, in both cases, the preprocessing time is
competitive with the reported times, but the GLNSC becomes
very demanding for larger instances.

TABLE II

STATISTICAL EVALUATION RESULTS OF THE CETSP,},5 SOLVERS.
a1: GLNSCT _ a1: GLNSC [28] , @1 GLNSC [28] _ a1: GLNSC [28] .
az: GLNSC [28] - az: SOM (I = 6) [27] az: GTSP (I = 6) az: GTSP (I = 1)
ay: SOM* (1 = 6) _ ay: SOM (I = 6) [27] . a1: SOM (1 =6) [27] ay: SOM (1 = 6) [27]
az: GLNSCT T a2 SOMT (1 =6) az: GTSP (I = 6) az: GTSP (1 = 1)
ay: GTSPT (I = 6) _ ay: GTSPT (I = 6) . ai: GTSP (1 = 6) 4 ay: GTSP (I = 6) .
asz: GLNSCT T a2 SOMT (1 =6) az: GTSP (I = 6) az: GTSP (1 = 1)
a;: GTSPT (1=1)  a;: GTSP* (1 =1) _ an:GISPH (=1 _ a:GTSPT (=1 .
az: GLNSC™ ag: SOM* (I = 6) az: GTSP (1 = 6) az: GTSP (I = 1)

Symbols +,—, and = denote the method ay provides statistically better, worse, or similar results than the method az, respectively.

We further report a statistical comparison of the solvers
using the Wilcoxon Signed Rank Test [36], where the null
hypothesis Hj is that the solvers a; and a9 provide solutions
with statistically similar costs. Hy is rejected if the obtained
p-values are less than 0.001. In the statistical evaluation
depicted in Table II, the symbol = denotes a; performs
similarly to as, or 4+ and — if it performs better and worse,
respectively, depending on the average solution cost. The re-
sults further support the statistically significant improvement
of the solutions by the proposed Post-Optimization
procedure. The GTSP-based solver with [ = 6 performs best,
and SOM is competitive with the GLNSC.



11*" European Conference on Mobile Robots — ECMR 2023, September 4—7, 2023, Coimbra, Portugal

VI. CONCLUSION

We propose the Post—Optimization procedure to im-
prove the heuristic solutions of the CETSP,;,s. The procedure
is based on the MINLP model to optimize the waypoints,
and additional constraints are added to account for the
polygonal obstacles. The procedure is employed with three
solvers, the GLNSC, currently the only direct method to the
CETSP,,s with disk-shaped regions, and two existing heuris-
tics straightforwardly modified for the disk-shaped regions.
Based on the evaluation results, the proposed procedure
improves all the found solutions and makes the methods
competitive. Furthermore, based on a statistical comparison
of the found solutions, the best-performing method is the
GTSP with just six samples per each disk region. The
sequence of visits to the disks is thus found on the discretized
instance of the CETSP,,s, and the MINLP model enables
finding the optimal solution of the continuous optimization
part of the CETSP, for that sequence. Hence, the proposed
Post-Optimization represents a groundwork toward an
optimal solution for finding the sequence using a branch-and-
bound method, similar to the developed solvers to the CETSP
without obstacles.
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Context-Conditional Navigation with a Learning-Based Terrain- and
Robot-Aware Dynamics Model

Suresh Guttikonda *1:2, Jan Achterhold *!, Haolong Li 1. Joschka Boedecker 2, and Joerg Stueckler 1

Abstract— In autonomous navigation settings, several quan-
tities can be subject to variations. Terrain properties such
as friction coefficients may vary over time depending on
the location of the robot. Also, the dynamics of the robot
may change due to, e.g., different payloads, changing the
system’s mass, or wear and tear, changing actuator gains
or joint friction. An autonomous agent should thus be able
to adapt to such variations. In this paper, we develop a
novel probabilistic, terrain- and robot-aware forward dynamics
model, termed TRADYN, which is able to adapt to the above-
mentioned variations. It builds on recent advances in meta-
learning forward dynamics models based on Neural Processes.
We evaluate our method in a simulated 2D navigation setting
with a unicycle-like robot and different terrain layouts with
spatially varying friction coefficients. In our experiments, the
proposed model exhibits lower prediction error for the task of
long-horizon trajectory prediction, compared to non-adaptive
ablation models. We also evaluate our model on the downstream
task of navigation planning, which demonstrates improved
performance in planning control-efficient paths by taking robot
and terrain properties into account.

[. INTRODUCTION

Autonomous mobile robot navigation— the robot’s ability
to reach a specific goal location — has been an attractive
research field over several decades, with applications ranging
from self-driving cars, warehouse and service robots, to
space robotics. In certain situations, e.g. weeding in agricul-
tural robotics or search and rescue operations, robots operate
in harsh and unstructured outdoor environments with limited
or no human supervision to complete their task. During such
missions, the robot needs to navigate over a wide variety
of terrains with changing types, such as grass, gravel, or
mud with varying slope, friction, and other characteristics.
These properties are often hard to fully and accurately model
beforehand [1]. Moreover, properties of the robot itself can
change during operation due to battery consumption, weight
changes, or wear and tear of the robot. Thus, the robot needs
to be able to adapt to both changes in robot-specific and
terrain-specific properties.

In this work, we develop a novel context-conditional
learning approach which captures robot-specific and terrain-
specific properties from interaction experience and envi-
ronment maps. The idea for adaptability to varying robot-
specific properties is to learn a deep forward dynamics model

This work has been supported by Max Planck Society and Cyber Valley. The
authors thank the International Max Planck Research School for Intelligent
Systems (IMPRS-IS) for supporting Jan Achterhold and Haolong Li.
1Embodied Vision Group, Max Planck Institute for Intelligent Systems,
Tuebingen, Germany, 2University of Freiburg, Germany

*equal contribution
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—r 10.0

- 5.0

Friction coefficient

~ 1.0

—— 0.1

Fig. 1.  Terrain- and robot-aware control-efficient navigation. We
propose a method for control-cost optimal navigation with learned dynamics
models. Our method can adapt to varying, unobserved properties of the
robot, such as the mass, and spatially varying properties of the terrain, such
as the friction coefficient. In the above example of navigating from a single
starting point (white cross) to two different goals (black cross), as a result,
our method circumvents areas of high friction coefficient and favors areas
of low-friction coefficient. As the dissipated energy also depends on the
mass of the robot, a heavy robot (m = 4 kg, blue, ) is allowed to
take longer detours to the goal than a light robot (m = 1kg, green, red).

which is conditioned on a latent context variable. The context
variable is inferred online from observed state transitions.
The terrain features are extracted from an environment map
and additionally included as conditional variable for the
dynamics model.

We develop and evaluate our approach in a 2D simulation
of a mobile robot modeled as a point mass with unicycle
driving dynamics that depend on a couple of robot-specific
and terrain-specific parameters. Terrains are defined by re-
gions in the map with varying properties. We demonstrate
that our context-aware dynamics model learning approach
can capture the varying robot and terrain properties well,
while a dynamics model without context-awareness achieves
less accurate prediction and planning performance.

In summary, in this paper, we contribute the following:

1) We propose a probabilistic deep forward dynamics
model which can adapt to robot- and terrain-specific
properties that influence the mobile robot’s dynamics.

2) We demonstrate in a 2D simulation environment that
these adaptation capabilities are crucial for the predic-
tive performance of the dynamics model.
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3) The learned context-aware dynamics model is used for
robot navigation using model-predictive control. This
way, efficient paths can be planned that take robot and
terrain properties into account (see Fig. 1).

II. RELATED WORK

Some approaches to terrain-aware navigation use semantic
segmentation for determining the category of terrain and use
this information to only navigate on segments of traversable
terrain [2], [3]. Zhu et al. [4] propose to use inverse rein-
forcement learning to learn the control costs associated with
traversing terrain from human expert demonstrations. These
methods, however, do not learn the dynamical properties of
the robot on the terrain classes explicitly like our methods.

In BADGR [5] a predictive model is learned of future
events based on the current RGB image and control actions,
which can be used for planning navigation trajectories.
The predicted events are collision, bumpiness, and position.
The model is trained from sample trajectories in which
the events are automatically labelled. Grigorescu et al. [6]
learn a vision-based dynamics model which encodes camera
images into a state observation for model-predictive con-
trol. Different to our approach, however, the method does
not learn a model that can capture a variety of terrain-
and robot-specific properties jointly. Siva et al. [7] learn
an offset model from the predicted to the actual behavior
of the robot from multimodal terrain features determined
from camera, LiDAR, and IMU measurements. In Xiao et
al. [8] a method for learning an inverse kinodynamics model
from inertial measurements is proposed to handle high-speed
motion planning on unstructured terrain. Sikand et al. [9] use
contrastive learning to embed visual features of terrain with
similar traversability properties close in the feature space.
The terrain features are used for learning preference-aware
path planning. Different to our study, the above approaches
do not distinguish terrain- and robot-specific properties and
model them concurrently.

Several approaches for learning action-conditional dynam-
ics models have been proposed in the machine learning
and robotics literature in recent years. In the seminal work
PILCO [10], Gaussian processes are used to learn to predict
subsequent states, conditioned on actions. The approach is
demonstrated for balancing and swinging up a cart-pole.
Several approaches learn latent embeddings of images and
predict future latent states conditioned on actions using
recurrent neural networks [11], [12], [13], [14]. The models
are used in several of these works for model-predictive
control and planning. Learning-based dynamics models are
also popular in model-based reinforcement learning (see
e.g. [15]). Shaj et al. [16] propose action-conditional re-
current Kalman networks which implement observation and
action-conditional state-transition models in a Kalman filter
with neural networks. While these approaches can model
context from past observations in the latent state of the recur-
rent neural network, some approaches allow for incorporating
an arbitrary set of context observations to infer a context
variable [17] or a probability distribution thereon [18]. In

this paper, we base our approach on the context-conditional
dynamics model learning approach in [18] to infer the
distribution of a context variable of robot-specific parameters
using Neural Processes [19].

III. BACKGROUND

We build our approach on the context-conditional prob-
abilistic neural dynamics model of Explore the Context
(EtC [18]). In EtC, the basic assumption is that the dynamical
system can be formulated by a Markovian discrete-time state-
space model

LTp+1 = f(m’ruunaa) + €n, €En ~~ N(O7Q1’L)7 (1)

where x,, is the state at timestep n, u,, is the control input,
and « is a latent, unobserved variable which modulates the
dynamics, e.g., robot or terrain parameters. Gaussian additive
noise is modeled by €,,, having a diagonal covariance matrix
Q,. Not only a is assumed to be unknown, but also
the function f itself. To model the system dynamics, EtC
thus introduces an approximate forward dynamics model
Grwd- To capture the environment-specific properties «, the
learned dynamics model is conditioned on a latent context
variable 3 € RE. A probability density on 3 is inferred from
interaction experience on the environment, represented by K
transitions (x4 < x, u) following Eq. (1) and collected in a

context set C* = {(w(k),u(k),mf))}k:r A learned context
encoder qetx(B | C*) infers the density on (3. The target
rollout D* = [xg, g, 1, U1,...,UN_1,ZN] is a trajectory
on the environment. Both context set and target rollout are
generated on the same environment instance «. For a pair
of target rollout and context set, the learning objective is to
maximize the marginal log-likelihood

log p(D* | ) = log / p(D | B)p(B|C)dB. ()

Overall, we aim to maximize log p(D® | C%) in expectation
over the distribution of environments €2,, and a distribution
of pairs of target rollouts and context sets {2pe ca, i.e.

Ea~q. (De,co)n0pa co logp(D* | C)]. 3)

The term p(D® | B) is modeled by single-step and
multi-step prediction factors and reconstruction factors,
all implemented by the approximate dynamics model
Gtwa (T, | @g, U1, B), while p(B | C*) is approximated
by QCtX(IB | Ca)

Technically, the forward dynamics model is implemented
with gated recurrent units (GRU, [20]) in a latent space. The
initial state x is encoded into a hidden state zy. The control
input w4 and context variable 3 are encoded into feature
vectors and passed as inputs to the GRU

zZo) = €g (.’130) (4)
Zpt1 = GRU (zy,, [eu(un), e5(8)]) o)

where e, e,, and eg are neural network encoders. The (pre-
dicted) latent state z,, is decoded into a Gaussian distribution
in the state space

Lp ~ N (dw,p, (Zn); dx,c72 (Zn)) (6)

186



11*" European Conference on Mobile Robots — ECMR 2023, September -7, 2023, Coimbra, Portugal

~ ~ ~

Lo L1 )

Fig. 2. Architecture of our proposed terrain- and robot-aware forward
dynamics model (TRADYN). The initial state of the robot xq is embedded
as hidden state of a gated recurrent unit (GRU) cell. The GRU makes a
single-step forward prediction in the latent space using embeddings of the
context variable 3, action w and terrain observation 7 as additional inputs.
Latent states are mapped to Gaussian distributions on the robot’s observation
space for decoding. While during training the actual terrain observation
7(y) is used, during prediction, the map 7 is queried at predicted robot
locations 7 (&, ). See Section IV for details.

using neural networks d ,, dg 2.

The context encoder gets as input a set of state-action-state
transitions C* with flexible size K. The context encoder is
implemented by first encoding each transition in the context
set independently using a transition encoder ei;ans, and, for
permutation invariance, aggregating the encodings using a
dimension-wise max operation. This yields the aggregated
latent variable zg. Lastly, a Gaussian density over the context
variable (3 is predicted from the aggregated encodings

qeix(B | CY) =N (ﬂ?dﬁw(zﬁ)adiag(dﬂ’az (ZB))> (7N

with neural network decoders dg ,,, dg 2. The network dg 2
is designed so that the predicted variance is positive and
decreases monotonically when adding context observations.

To form a tractable loss, the marginal log likelihood
in Eq. (2) is (approximately, see [21]) bounded using the
evidence lower bound

log p(D | C%) R Egmger(8DouCe) [log p(D | B)]
- >\KL KL (qctx(ﬁ | Da U Ca) ” qctx(;6 | Ca)) . (8)

similar to Neural Processes [19]. For training the dynamics
model and context encoder, the approximate bound in Eq. (8)
is maximized by stochastic gradient ascent on empirical sam-
ples for target rollouts and context sets. Samples are drawn
from trajectories generated on a training set of environments.

By collecting context observations at test time, and infer-
ring 3 using gex (B | C), the dynamics model ggya(,, |
Zy, Uy Ny_1,/3) can adapt to a particular environment in-
stance « (called calibration).

IV. METHOD

In the modeling assumption of EtC, changes in the
dynamics among different instances of environments are
captured in a global latent variable « (see Eq. (1)) which
is unobserved. In terrain-aware robot navigation, among
different environments, the terrain varies (with the terrain
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layout captured by aierrain), in addition to robot-specific
parameters such as actuator gains (captured by aobot). In
principle, both effects can be absorbed into a single latent
variable & = (Qterrains Qrobot )- Here, we make more specific
assumptions, and assume the terrain-specific properties to be
captured in a state-dependent function terrain(Tr)-

A. Terrain- and Robot-Aware Dynamics Model

Conclusively, we assume the following environment dy-
namics

€))

with €, ~ N(0,Q,,) as in Eq. (1). In our case of terrain-
aware robot navigation, x, refers to the robot state at
timestep n, w, are the control inputs, ouehot captures
(unobserved) properties of the robot (mass, actuator gains),
and Qerrain(€5,) captures the spatially dependent terrain
properties (e.g., friction). While we assume ueprain t0 be
unobserved, we assume the existence of a known map of
terrain features Tiorrain (5 ), Which can be queried at any @,
to estimate the value of terrain(€n). Exemplarily, Tierrain
may yield visual terrain observations, which relate to friction
coefficients.

As we retain the assumption of EtC that ayopot 1S not
directly observable, we condition the multi-step forward
dynamics model on the latent variable 3. In addition, we
condition on observed terrain features 1y.,,_1, i.c.,

Lpt+1 = f(mn,, Un , Krobot s aterrain(mn)) + €,

in ~ qfwd(wn ‘ o, u02n717ﬁ7 TO:nfl)' (10)

We obtain 7y.,—1 differently for training and prediction.
During training, we evaluate 7 at ground-truth states, i.e.
79 = 7(xo), 1 = 7(x1), etc. During prediction, we do not
have access to ground-truth states, and obtain 7y.,,—1 auto-
regressively from predictions as 79 = 7(xo), 71 = T(&1),
etc.

To capture terrain-specific properties, we extend EtC as
follows. We introduce an additional encoder e, which en-
codes a terrain feature 7. The encoded value is passed as
input to the GRU, such that Eq. (5) is updated to

zn+1 = GRU (2o, [6.,_(7'”), eu(un)7eﬁ(/6)]) . (11

Also, the context set is extended to contain terrain features

K

¢ ={@, @) u® 2P r@ )}, (12

We refer to Fig. 2 for a depiction of our model.

For each training example, the context set size K is
uniformly sampled in {0, ..., 50}. The target rollout length is
N = 50. As in EtC [18], we set Az, = 5. The dimensionality
of the latent variable 3 is 16. For details on the networks
(€usess da s Ay 62, €trans, dg i, dg »2) we ref