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Welcome Message

It is our pleasure to welcome you to the 11th European Conference on Mobile Robots – ECMR 2023,
which is held in Coimbra, Portugal on September 4–7, 2023. ECMR is a biannual European forum,
internationally open, allowing researchers to become acquainted with the latest accomplishments and
innovations in advanced mobile robotics and mobile human-robot systems. ECMR especially seeks
to attract young researchers to present their work to an international audience. The first ECMR
meeting was held in September 2003 in Radziejowice, Poland, followed by ECMR in September 2005,
while previous edition of ECMR was organized virtually in September 2021 in Bonn, Germany due
to unfortunate pandemic circumstances. Now, we are honored to be able to organize ECMR in
person after twenty years of its inception.

Papers submitted to ECMR 2023 were co-authored by 213 authors from 28 countries, and in our
view, this serves as a testimony to the appeal of the conference. Each paper was evaluated by expert
reviewers and 56 of them have been accepted by the Program Committee. These papers are included
in the proceedings and will be presented at the conference. They cover a wide spectrum of research
topics in mobile robotics: 3D perception, navigation, path planning and tracking, SLAM, mapping
and exploration, cooperative multi-robot systems, deep learning, various service applications, etc.
We also appreciate workshops organizers who have enriched the conference program by organizing
the following workshops: "Robotics in Agriculture and Forestry," "Ethical, Legal and User Perspec-
tives on Social and Assistive Robots," "Robotic Perception and Situation Awareness in Real-World
Applications," and "Deploying Mobile Robots in Unconstrained Real-World Environments."

We are especially proud to welcome our distinguished keynote speakers: Professor Guido de Croon
from the Delft University of Technology, Netherlands, who will give a talk titled “Autonomous flight
of tiny drones”, Professor Andrew Davison from Imperial College London, United Kingdom, who will
give the talk titled “A Robot Web for Many-Device Localisation and Planning”, and Professor Jan
Peters from the Technical University of Darmstadt, Germany, who will give the talk titled “Inductive
Biases for Robot Reinforcement Learning.” We must thank the IEEE Robotics and Automation
Society, for its technical sponsorship, the Institute of Systems and Robotics, for the logistics support,
and the University of Coimbra, for providing the necessary facilities to host the conference.

Finally, our sincere thanks are due to all people whose hard work made this conference possible.
First and foremost, we would like to thank the members of the Organizing Committee and the
Program Committee for their outstanding work. Our special thanks go to the authors for submitting
their work to ECMR 2023 and to the reviewers for their time and effort in evaluating the submissions.
The results of their joint work are visible in the program of ECMR 2023. It is now up to all of us to
make ECMR 2023 a great success and a memorable event by participating in the technical program
and by enjoying the beauty and history of Coimbra, as well as traditions and culture of Portugal!

Lino Marques
Ivan Marković
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Keynote speakers

Autonomous flight of tiny drones
Guido de Croon

Tiny drones are promising for many applications, such as search-and-rescue, greenhouse monitor-
ing, or keeping track of stock in warehouses. Since they are small, they can fly in narrow areas.
Moreover, their light weight makes them very safe for flight around humans. However, making such
tiny drones fly completely by themselves is an enormous challenge. Most approaches to Artificial
Intelligence for robotics have been designed with self-driving cars or other large robots in mind –
and these are able to carry many sensors and ample processing. In my talk, I will argue that a
different approach is necessary for achieving autonomous flight with tiny drones. In particular, I
will discuss how we can draw inspiration from flying insects, and endow our drones with similar
intelligence. Examples include the fully autonomous “DelFly Explorer”, a 20-gram flapping wing
drone, and swarms of CrazyFlie quadrotors of 30 grams able to explore unknown environments and
find gas leaks. Moreover, I will discuss the promises of novel neuromorphic sensing and process-
ing technologies, illustrating this with recent experiments from our lab. Finally, I will discuss how
insect-inspired robotics can allow us to gain new insights into nature. I illustrate this with a re-
cent study, in which we proposed a new theory on how flying insects determine the gravity direction.

Guido de Croon received his M.Sc. and Ph.D. in the field of Artificial Intelligence (AI) at Maastricht
University, the Netherlands. His research interest lies with computationally efficient, bio-inspired
algorithms for robot autonomy, with an emphasis on computer vision. Since 2008 he has worked
on algorithms for achieving autonomous flight with small and light-weight flying robots, such as
the DelFly flapping wing MAV. In 2011-2012, he was a research fellow in the Advanced Concepts
Team of the European Space Agency, where he studied topics such as optical flow based control
algorithms for extraterrestrial landing scenarios. After his return at TU Delft, his work has included
fully autonomous flight of a 20-gram DelFly, a new theory on active distance perception with optical
flow, a swarm of tiny drones able to explore unknown environments, and neuromorphic sensing and
processing. Currently, he is Full Professor at TU Delft and scientific lead of the Micro Air Vehicle
lab (MAVLab) of Delft University of Technology.

xi
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A Robot Web for Many-Device Localisation and Planning
Andrew Davison

Safe and useful robots for complex environments must use their on-board sensors and computation
to map, understand and localise within their surroundings, and we can envision a future where many
such devices, with different functions and made by different companies, should operate in the same
space. Is there a more modular way for this to work than all devices needing to use the same unified
cloud-based “maps” system?

I will present and demonstrate our Robot Web proposal for distributed solutions to many robot
localisation and planning based on per-device local computation and storage, and peer-to-peer com-
munication between heterogenous devices via standardised open protocols. Our method uses Gaus-
sian Belief Propagation-based distributed inference on full non-linear factor graph, and is highly
robust and scalable while remaining simple and modular.

Andrew Davison is Professor of Robot Vision and Director of the Dyson Robotics Laboratory at
Imperial College London. His long-term research focus is on SLAM (Simultaneous Localisation and
Mapping) and its evolution towards general ‘Spatial AI’:computer vision algorithms which enable
robots and other artificial devices to map, localize within and ultimately understand and interact
with the 3D spaces around them. With his research group and collaborators he has consistently de-
veloped and demonstrated breakthrough systems, including MonoSLAM, KinectFusion, SLAM++
and CodeSLAM, and recent prizes include Best Paper at ECCV 2016, Best Paper Honourable Men-
tion at CVPR 2018 and the Helmholtz Prize at ICCV 2021. He has also had strong involvement in
taking this technology into real applications, in particular through his work with Dyson on the de-
sign of the visual mapping system inside the Dyson 360 Eye robot vacuum cleaner and as co-founder
of applied SLAM start-up SLAMcore. He was elected Fellow of the Royal Academy of Engineering
in 2017.

xii
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Inductive Biases for Robot Reinforcement Learning
Jan Peters

Autonomous robots that can assist humans in situations of daily life have been a long-standing
vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to
create robots that can learn tasks triggered by environmental context or higher-level instruction.
However, learning techniques have yet to live up to this promise as only few methods manage to
scale to high-dimensional manipulator or humanoid robots. In this talk, we investigate a general
framework suitable for learning motor skills in robotics which is based on the principles behind many
analytical robotics approaches. To accomplish robot reinforcement learning from just few trials, the
learning system can no longer explore all learn-able solutions but has to prioritize one solution over
others – independent of the observed data. Such prioritization requires explicit or implicit assump-
tions, often called ‘induction biases’ in machine learning. Extrapolation to new robot learning tasks
requires induction biases deeply rooted in general principles and domain knowledge from robotics,
physics and control. Empirical evaluations on a several robot systems illustrate the effectiveness
and applicability to learning control on an anthropomorphic robot arm. These robot motor skills
range from toy examples (e.g., paddling a ball, ball-in-a-cup) to playing robot table tennis, juggling
and manipulation of various objects.

Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science
Department of the Technische Universitaet Darmstadt since 2011, and, at the same time, he is the
dept head of the research department on Systems AI for Robot Learning (SAIROL) at the German
Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz,
DFKI) since 2022. He is also a founding research faculty member of the Hessian Center for Artificial
Intelligence. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award,
the Robotics: Science & Systems – Early Career Spotlight, the INNS Young Investigator Award,
and the IEEE Robotics & Automation Society’s Early Career Award as well as numerous best paper
awards. In 2015, he received an ERC Starting Grant and in 2019, he was appointed IEEE Fellow, in
2020 ELLIS fellow and in 2021 AAIA fellow. Despite being a faculty member at TU Darmstadt only
since 2011, Jan Peters has already nurtured a series of outstanding young researchers into successful
careers. These include new faculty members at leading universities in the USA, Japan, Germany,
Finland and Holland, postdoctoral scholars at top computer science departments (including MIT,
CMU, and Berkeley) and young leaders at top AI companies (including Amazon, Boston Dynamics,
Google and Facebook/Meta). Jan Peters has studied Computer Science, Electrical, Mechanical and
Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of
Singapore (NUS) and the University of Southern California (USC). He has received four Master’s
degrees in these disciplines as well as a Computer Science PhD from USC. Jan Peters has performed
research in Germany at DLR, TU Munich and the Max Planck Institute for Biological Cybernet-
ics (in addition to the institutions above), in Japan at the Advanced Telecommunication Research
Center (ATR), at USC and at both NUS and Siemens Advanced Engineering in Singapore. He has
led research groups on Machine Learning for Robotics at the Max Planck Institutes for Biological
Cybernetics (2007-2010) and Intelligent Systems (2010-2021).

xiii
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Autonomous Navigation in Rows of Trees and High Crops with Deep
Semantic Segmentation

Alessandro Navone1, Mauro Martini1, Andrea Ostuni1, Simone Angarano1 and Marcello Chiaberge1

Abstract— Segmentation-based autonomous navigation has
recently been proposed as a promising methodology to guide
robotic platforms through crop rows without requiring precise
GPS localization. However, existing methods are limited to
scenarios where the centre of the row can be identified thanks to
the sharp distinction between the plants and the sky. However,
GPS signal obstruction mainly occurs in the case of tall, dense
vegetation, such as high tree rows and orchards. In this work,
we extend the segmentation-based robotic guidance to those
scenarios where canopies and branches occlude the sky and
hinder the usage of GPS and previous methods, increasing the
overall robustness and adaptability of the control algorithm.
Extensive experimentation on several realistic simulated tree
fields and vineyards demonstrates the competitive advantages
of the proposed solution.

I. INTRODUCTION

In recent years, precision agriculture has pushed the
boundaries of technology to optimize crop production, im-
prove the efficiency of farming operations, and reduce
waste [1]. Modern farming systems must be able to extract
synthetic key information from the environment, take or
suggest optimal decisions based on that information, and
execute them with high precision and timing. Deep learning
techniques have shown great potential in realizing these
systems by analyzing data from multiple sources, allowing
for large-scale, high-resolution monitoring, and providing
detailed insights for both human and robotic agents. The
most recent advancements in deep learning also provide
competitive advantages for real-world applications, such as
model optimization for fast inference on low-power embed-
ded hardware [2], [3] and generalization to unseen data [4],
[5], [6]. At the same time, progress in service robotics has
enabled autonomous mobile agents to embody AI perception
systems and work in synergy with them to accomplish
complex tasks in unstructured environments [7].

In particular, row-based crops are among the most studied
applications (they constitute more than 75% of all planted
acres of cropland across the USA [8]). In this scenario,
research spans localization[9], path planning [10], navigation
[11], monitoring[12], harvesting [13], spraying [14], and
vegetative assessment [15], [16]. A particularly challenging
situation occurs when standard localization methods, like
GPS, fail to reach the desired precision due to unfavorable
weather conditions or line-of-sight obstruction. That is the

1 Department of Electronics and Telecommunications, Politecnico di
Torino, 10129, Torino, Italy. {firstname.lastname}@polito.it

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

Fig. 1. The proposed SegMin and SegMinD algorithms allow to precisely
guide an autonomous mobile robot through a dense tree row solely using
an RGB-D camera. A pear crop row in Gazebo is shown in the picture.

case, for example, of dense tree canopies, as shown in a
simulated pear orchard in Figure 1.

Previous works have proposed position-agnostic vision-
based navigation algorithms for row-based crops. A first
vision-based approach was proposed in [17] using mean-shift
clustering and the Hough transform to segment RGB images
and generate the optimal central path. Later, [18] achieved
promising results using multispectral images and simply
thresholding and filtering on the green channel. Recently,
deep-learning approaches have been successfully applied to
the task. [19] proposed a classification-based approach in
which a model predicts the discrete action to perform. In
contrast, [20] proposed combining a segmentation model and
a proportional controller to align the robot to the center
of the row. Finally, a different approach was tested in [11]
with an end-to-end controller based on deep reinforcement
learning. Although these systems proved effective in their
testing scenarios, they have only been applied in simple crops
where a full view of the sky favors both GPS receivers [21]
and vision-based algorithms [22].

This work tackles a more challenging scenario in which
dense canopies partially or totally cover the sky, and the GPS
signal is very weak. We design a navigation algorithm based
on semantic segmentation that exploits visual perception to
estimate the center of the crop row and align the robot
trajectory to it. The segmentation masks are predicted by
a deep learning model designed for real-time efficiency
and trained on realistic synthetic images. The proposed
navigation algorithm improves on previous works being
adaptive to different terrains and crops, including dense
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canopies. We conduct extensive experimentation in simulated
environments for multiple crops. We compare our solution
with previous state-of-the-art methodologies, demonstrating
that the proposed navigation system is effective and adaptive
to numerous scenarios.

The main contributions of this work can be summarized
as follows:

• we present two variants of a novel approach for
segmentation-based autonomous navigation in tall
crops, designed to tackle challenging and previously
uncovered scenarios;

• we test the resulting guidance algorithm on previously
unseen plant rows scenarios such as high trees and
pergola vineyards.

• we compare the new method with state-of-the-art solu-
tions on straight and curved vineyards, demonstrating
an enhanced general and robust behavior.

The next sections are organized as follows: Section II
presents the proposed deep-learning-based control system
for vision-based position-agnostic autonomous navigation
in row-based crops, from the segmentation model to the
controller. Section III describes the experimental setting
and reports the main results for validating the proposed
solution divided by sub-system. Finally, Section IV draws
conclusive comments on the work and suggests interesting
future directions.

II. METHODOLOGY

This work proposes a real-time control algorithm with two
variants to navigate high-vegetation orchards and arboricul-
ture fields and improve the approach presented in [20]. The
proposed system avoids exploiting the GPS signal, which can
lack accuracy due to signal reflection and mitigation due to
vegetation.

The working principle of the proposed control algorithms
is straightforward and exploits only the RGB-D data. Both
the proposed solutions consist of four main steps:

1) Semantic segmentation of the input RGB frame.
2) Processing of the output segmentation mask using

depth frame data.
3) Searching for the direction which leads the mobile

platform towards the end of the row.
4) Generating linear and angular velocity commands to

input the mobile robot.

Nonetheless, the two proposed methods differ only for
steps 2 and 3 in employing the depth frame data and in
the generation of the path which the robot should follow.
In contrast, the segmentation technique 1 and the command
generation 4 are carried out similarly. A schematic represen-
tation of the proposed pipeline is described in Figure 2.

As in [20] a first step, an RGB frame Xt
rgb ∈Rh×w×c and

a depth map Xt
d ∈Rh×w are acquired by a camera placed on

the front of the mobile platform at each instant t, where h and
w are the width of the frame and c is the number of channels.
The received RGB data is then fed to a segmentation neural

network model Hseg, which outputs a binary segmentation
mask bringing the semantic information of the input frame.

X̂t
seg = H

(
Xt

rgb
)

(1)

where X̂t
seg is the estimated segmentation mask. Moreover,

the segmentation masks of the last N time instants {t −
N, . . . , t} are fused to obtain more robust information.

X̂t
CumSeg =

t⋃

j=t−N

X̂ j
seg (2)

where X̂t
CumSeg is the cumulative segmentation mask and the

operator
⋃

represent the logical bitwise OR operation over
the last N binary frames.

Additionally, the depth map Xt
d is now used to consider

the segmented regions between the camera position and a
given depth threshold dth to remove useless information
given by far vegetation, which is irrelevant to control the
robot’s movement.

X̂t
segDepth i=0,...,h

j=0,...,w
(i, j) =

{
0, if X̂t

CumSeg(i, j) · X̂
t
d(i, j) > dth

1, if X̂t
CumSeg(i, j) · X̂

t
d(i, j) ≤ dth

(3)
where X̂segDepth is the resulting intersection between the
cumulative segmentation frame and the depth map cut at a
distance threshold dth.

Henceforth the proposed algorithm forks in two variants,
SegMin and SegMinD, respectively described in II-A and II-
B.

A. SegMin

The first variant improves the approach proposed in [20].
After processing the segmentation mask, a sum over the col-
umn is performed to obtain a histogram h ∈Rw, quantifying
how much vegetation is present on each column. Hereafter, a
moving average on a window of n elements is performed over
the array to smooth the values and make the control more
robust to punctual noise derived from the previous passages.
Ideally, the minimum of this histogram xh corresponds to
the regions where less vegetation is present and, therefore,
identifies the desired central path inside the crop row. If
more global minimum points are present (i.e., there is a
region where no vegetation is detected), the mean of the
considered points is considered to be the global minimum
and, in consequence, the continuation of the row.

B. SegMinD

The second proposed approach consists of a variant of
the previous algorithm, devised for wide rows with tall and
thick canopies, which in the previous case would generate
an ambiguous global minimum due to the constant presence
of vegetation above the robot. This variant multiplies the
previously processed segmentation mask for the normalized
inverted depth datum.

X̂t
depthInv = X̂t

segDepth

⋂(
1− Xt

d
dth

)
(4)
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Fig. 2. Scheme of the overall proposed navigation pipeline. The RGB image is fed into the segmentation network, thus the predicted segmentation mask
X̂t

seg is refined using the depth frame to obtain X̂t
segDepth. The blue arrow refers to the SegMin variant, and red arrows refer to the SegMinD variant to

compute the sum histogram over the mask columns. Images are taken from navigation in the tall trees simulation world.

where X̂t
depthInv is the result of the element-wise mul-

tiplication, represented by
⋂

, between the binary mask
X̂t

segDepth and the depth frame X̂t
d normalized over the depth

threshold dth. As in the previous case, the sum over the
column is performed to obtain the 1D array h and, later on,
the smoothing through a moving average. The introduced
modification allows the closer elements to exert a greater
influence on identifying the row direction.

C. Segmentation Network
We adopt the same network used in previous works on

real-time crop segmentation [20], [6]. The model consists
of a MobilenetV3 backbone for feature extraction and an
efficient LR-ASPP segmentation head [23]. In particular, the
LR-ASPP leverages effective modules such as depth-wise
convolutions, channel-wise attention, and residual skip con-
nections to provide an effective trade-off between accuracy
and inference speed. The model is trained with a similar
procedure to [6] on the AgriSeg dataset1. Further details on
the training strategy and hyperparameters are provided in
Section III.

D. Robot heading control
The objective of the controller pipeline consists in keeping

the mobile platform at the center of the row, which, in this
work, is considered equivalent to keeping the row center in
the middle of the camera frame. Therefore, as defined in
the previous step, the minimum of the histogram should be
centered in the frame width. The distance d from the center
of the frame and the minimum is defined as:

d = xh−
w
2

(5)

The linear and angular velocities are then generated
through custom functions similarly as in [24].

vx = vx,max


1− d2

(
w
2

2
)


 (6)

1https://pic4ser.polito.it/AgriSeg

ωz =−kωz ·ωz,max ·
d2

w2 (7)

where vx,max and ωz,max are respectively the maximum
achievable linear and angular velocities and kωz is the angular
gain which regulates the speed of the response. In order to
avoid abrupt changes in the robot’s motion, the final veloci-
ties v̄x and ω̄z commands are smoothed with an Exponential
Moving Average (EMA) as:

[
v̄t

x
ω̄ t

z

]
= (1−λ )

[
v̄t−1

x
ω̄ t−1

z

]
+λ

[
vt

x
ω t

z

]
(8)

where t is the time step and λ is a chosen weight.

III. EXPERIMENTS AND RESULTS

A. Simulation Environment

The proposed control algorithm was tested through the
use of Gazebo2 simulation software. The software was
selected because of its compatibility with ROS 2 and can
incorporate plugins that simulate sensors, such as cameras. A
Clearpath Jackal model was utilized to assess the algorithm’s
effectiveness. The URDF file, available through Clearpath
Robotics, contains all the necessary information regarding
the mechanical structure and joints of the robot. During the
simulation, an Intel Realsense D435i plugin was utilized,
positioned 20 cm in front of the robot’s center, and tilted
15◦ upwards. This positioning gave the camera a better view
of the upper branches of trees.

The navigation algorithm was tested in four different cus-
tom simulation environments: a common vineyard, a pergola
vineyard characterized by vine poles and shoots above the
row, a pear field constituted by small size trees, and a high
trees field where canopies of the trees are merged above the
row. Each simulated field adopts a different terrain, miming
the irregularity of uneven terrain. The detailed measurements
of the simulation world are described in Table I.

2https://gazebosim.org
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Fig. 3. Sample outputs of the proposed SegMinD algorithm for High
Trees (a), Pear Trees (b), Pergola Vineyard (c), and Vineyard (d). Predicted
segmentation masks are refined cutting values exceeding a depth threshold.
The sum over mask columns provides the histograms used to identify the
center of the row as its global minimum.

TABLE I
SIZE OF THE DIFFERENT SIMULATED CROPS, REFERRING TO THE

AVERAGE VALUES OF THE DISTANCE BETWEEN ROWS, THE DISTANCE

BETWEEN PLANTS ON THE ROW, AND THE HEIGHTS OF THE PLANTS.

Gazebo worlds Rows distance [m] Plant distance [m] Height [m]

Common vineyard 1.8 1.3 2.0
Pergola vineyard 6.0 1.5 2.9
Pear field 2.0 1.0 2.9
High trees field 7.0 5.0 12.5

During the experimental part of this work, we consider
frame dimensions equal to (h,w) = (224,224), which is the
same size as the input and the output of the neural network
model, with the number of channels c = 3. The maximum
linear velocity has been fixed to vx,max = 0.5m/s, and the
maximum angular velocity has been fixed to ωz,max = 1rad/s.
The angular velocity gain ωz,gain has been fixed to 0.01,
and the EMA buffer size has been fixed to 3. The depth
threshold has been changed according to the various crops.
In particular, it has been empirically fixed to 5 m in the case
of vineyards, while it was increased to 8 m for pear trees
and pergola vineyards and 10 m for tall trees according to
the average distance from the rows in the diverse fields.

B. Segmentation Network Training and Evaluation

We train the crop segmentation model using a subset of
the AgriSeg segmentation dataset [6]. In particular, for the
High Tree and Pear crops, we train on Generic Tree splits
1 and 2, and on Pear; for Vineyards, we train on Vineyard

(a) (b)

(c) (d)

Fig. 4. Gazebo simulated environments used to test the SegMin approach
in relevant different crops rows: wide rows composed of high trees (a),
a narrow pear tree row (b), a pergola vineyard with asymmetric rows (c),
straight and curved vineyard rows (d). In the last case, the tests were carried
out in the second row from above and the second row from below.

and Pergola Vineyard (note that the testing environments are
different from the ones from which the training samples are
generated). In both cases, the model is trained for 50 epochs
with Adam optimizer and learning rate 3×10−4. We apply
data augmentation by randomly applying cropping, flipping,
greyscaling, and random jitter to the images. Our experimen-
tation code is developed in Python 3 using TensorFlow as
the deep learning framework. We train models starting from
ImageNet pretrained weights, so the input size is fixed to
(224 × 224). All the training runs are performed on a single
Nvidia RTX 3090 graphic card.

C. Navigation Results

The overall navigation pipeline of SegMin and its variant
SegMinD are tested in realistic crops fields in simulation
using relevant metrics for visual-based control without pre-
cise localization of the robot, as done in previous works
[20], [11]. The camera frames are published at a frequency
of 30 Hz, while the inference is carried out at 20 Hz, and
the controllers publish the velocity commands at 5 Hz. The
evaluation has been performed using the testing package of
the open-source PIC4rl-gym3 in Gazebo [25]. The selected
metrics aim at evaluating the effectiveness of the navigation
(clearance time) as well as the precision, quantitatively
comparing the obtained trajectories with a ground truth one
through Mean Absolute Error (MAE) and Mean Squared Er-
ror (MSE). The ground truth trajectories have been computed
by averaging the curve obtained by interpolating the plants’
poses in the rows. For the asymmetric pergola vineyard case,
the row is intended as the portion of the pergola without
vegetation on top, as shown in Figure 4 (c). The response
of the algorithms to terrain irregularity and rows geometry
is also studied, including in the test significant kinematic
information of the robot. The cumulative heading average
γ[rad] along the path is considered, together with the mean
linear velocity vavg[m/s] and the standard deviation of the
angular velocity ωstddev[rad/s] commands predicted to keep

3https://github.com/PIC4SeR/PIC4rl_gym
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TABLE II
NAVIGATION RESULTS OBTAINED IN DIFFERENT TEST FIELDS WITH THE SEGMIN, SEGMIND, AND PREVIOUS WORK SEGZEROS

SEGMENTATION-BASED ALGORITHMS. THE METRICS TEST THE EFFECTIVENESS OF THE NAVIGATION (CLEARANCE TIME) AND ITS PRECISION WITH

MEAN ABSOLUTE ERROR (MAE) AND MEAN SQUARED ERROR (MSE) BETWEEN OBTAINED AND GROUND TRUTH PATH. THE CUMULATIVE

HEADING AVERAGE γ[rad], THE MEAN LINEAR VELOCITY vavg[m/s], AND THE STANDARD DEVIATION OF THE ANGULAR VELOCITY ωstddev[rad/s]

COMMANDS PROVIDE RELEVANT KINEMATIC INFORMATION OF THE ROBOT WHILE NAVIGATING. SEGZEROS IS NOT APPLICABLE IN THE CASE OF

HIGH TREES, PEAR TREES, AND PERGOLA VINEYARDS SINCE THE SKY MAY BE COVERED BY VEGETATION.

Test Field Method Clearance time [s] MAE [m] MSE [m] Cum. γavgγavgγavg [rad] vavg[m/s]vavg[m/s]vavg[m/s] ωstddev[rad/s]ωstddev[rad/s]ωstddev[rad/s]

High Trees SegMin 40.409 ± 0.117 0.265 ± 0.005 0.084 ± 0.003 0.079 ± 0.001 0.487 ± 0.000 0.054 ± 0.002
SegMinD 40.440 ± 0.515 0.174 ± 0.006 0.036 ± 0.002 0.048 ± 0.002 0.484 ± 0.006 0.063 ± 0.019

Pear Trees SegMin 42.058 ± 1.228 0.034 ± 0.012 0.002 ± 0.001 0.013 ± 0.002 0.483 ± 0.003 0.108 ± 0.054
SegMinD 42.259 ± 1.912 0.031 ± 0.017 0.002 ± 0.002 0.016 ± 0.004 0.477 ± 0.009 0.026 ± 0.004

Pergola Vineyard SegMin 40.859 ± 0.386 0.077 ± 0.011 0.011 ± 0.003 0.030 ± 0.022 0.479 ± 0.003 0.174 ± 0.021
SegMinD 41.135 ± 0.329 0.097 ± 0.052 0.015 ± 0.014 0.029 ± 0.011 0.475 ± 0.004 0.204 ± 0.032

Straight Vineyard SegMin 50.509 ± 0.305 0.105 ± 0.003 0.014 ± 0.001 0.033 ± 0.002 0.487 ± 0.000 0.079 ± 0.011
SegMinD 50.629 ± 0.282 0.110 ± 0.005 0.018 ± 0.003 0.026 ± 0.009 0.486 ± 0.001 0.088 ± 0.005
SegZeros 53.695 ± 1.029 0.138 ± 0.025 0.024 ± 0.010 0.027 ± 0.004 0.457 ± 0.008 0.089 ± 0.008

Curved Vineyard SegMin 53.321 ± 0.249 0.115 ± 0.008 0.017 ± 0.002 0.036 ± 0.008 0.487 ± 0.001 0.088 ± 0.021
SegMinD 51.444 ± 1.030 0.093 ± 0.005 0.012 ± 0.001 0.015 ± 0.004 0.484 ± 0.007 0.065 ± 0.008
SegZeros 71.048 ± 27.132 0.108 ± 0.044 0.019 ± 0.009 0.045 ± 0.008 0.395 ± 0.127 0.114 ± 0.039

the robot correctly oriented. The mean value of ω is always
close to zero due to the consecutive correction of the robot
orientation.

The complete results collection is reported in Table II. For
each metric, an average value and the standard deviation are
indicated since all the experiments have been repeated over
3 runs on a 20 m long track in each crop row. The proposed
method demonstrates to solve the problem of guiding the
robot through tree rows with thick canopies (high trees and
pears) without a localization system, as well as in peculiar
scenarios such as the pergola vineyards. The identification
of plant branches and wooden supports hinders the usage of
previously existing segmentation-based solutions that were
based on the assumption of finding a free passage solely
considering the zeros of the binary segmentation mask [20].
We refer to this previous method as SegZeros in the compari-
son of the results that we tested using the same segmentation
neural network.

The SegMin approach based on histogram minimum
search demonstrates to be a robust solution to guide the
robot through tree rows. The introduction of the depth inverse
values as a weighting function allows SegMinD to further
increase the precision of the algorithm in following the cen-
tral trajectory of the row in complex cases such as wide rows
(high trees) and curved rows (curved vineyard). The different
sum histograms obtained with SegMin and SegMinD are
directly compared in Figure 5, showing the sharper trend and
the global minimum isolation obtained, including the depth
values. Moreover, the novel methods show competitive per-
formance also with standard crop rows where a free passage
to the end of the row can be seen in the mask without the
disturbance of canopies. The histogram minimum approach
significantly reduces the navigation time and the trajectory
precision in vineyard rows (straight and curved) compared
to the previous segmentation-based baseline method. The

RGB SegMin SegMinD

Fig. 5. Comparison of the two histograms obtained using the two different
algorithms, given the RGB frame on the right. It can be noticed how
SegMinD offers a narrower and less ambiguous global minimum point.

search of plant-free zero clusters in the map results in being
less robust and efficient, leading the robot to undesired stops
during the navigation and to an overall slower and more
oscillating behavior. Moreover, the standard deviation of the
angular velocity is coherent with the obtained results, being
smaller in the cases when the trajectory is more accurate,
and the cumulative heading shows larger values when the
algorithms are more reactive.

Nonetheless, the trajectories obtained with the SegMin,
SegMinD and SegZeros algorithms are also visually shown in
Figure 6 inside representative scenarios: a cluttered, narrow
row with small pear trees, a wide row with high trees, and
curved vineyards with state-of-the-art method SegZeros.

IV. CONCLUSIONS

In this work, we presented a novel method to guide to
a service-autonomous platform through crop rows where a
precise localization signal is often occluded by the vegeta-
tion. Trees rows represented an open problem in row crop
navigation since previous works based on image segmenta-
tion or processing failed due to the presence of branches and
canopies covering the free passage for the rover in the image.
The proposed pipeline SegMin and SegMinD overcome this
limitation by introducing a global minimum search on the
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A Map-Free LiDAR-Based System for Autonomous Navigation in
Vineyards

Riccardo Bertoglio1, Veronica Carini1, Stefano Arrigoni2, and Matteo Matteucci1

Abstract— Agricultural robots have the potential to increase
production yields and reduce costs by performing repetitive and
time-consuming tasks. However, for robots to be effective, they
must be able to navigate autonomously in fields or orchards
without human intervention. In this paper, we introduce a navi-
gation system that utilizes LiDAR and wheel encoder sensors for
in-row, turn, and end-row navigation in row structured agricul-
tural environments, such as vineyards. Our approach exploits
the simple and precise geometrical structure of plants organized
in parallel rows. We tested our system in both simulated and
real environments, and the results demonstrate the effectiveness
of our approach in achieving accurate and robust navigation.
Our navigation system achieves mean displacement errors from
the center line of 0.049m and 0.372m for in-row navigation in
the simulated and real environments, respectively. In addition,
we developed an end-row points detection that allows end-row
navigation in vineyards, a task often ignored by most works.

I. INTRODUCTION

The increasing demand for food in the current climate-
changing environment introduces new challenges, such as
the necessity of increasing production and the sustainability
of crop management while reducing costs [1]. Agricultural
robots can help achieve these goals by performing repetitive
and time-consuming tasks, allowing farmers to improve pro-
duction yields. At the same time, for robots to be effective,
they must be able to navigate autonomously in fields or
orchards without human intervention. Navigation approaches
can be broadly divided into two categories: those with
or without a map of the environment. While map-based
approaches can be helpful in unstructured environments, they
require a more expensive sensor suite and incur increased
computational effort. Additionally, localization on a pre-built
map can fail due to the constantly changing nature of agricul-
tural environments. Nevertheless, agricultural environments
typically have a simple and precise geometrical structure,
with crops organized in parallel rows. This structure can be
exploited for navigation without the need for a map.

Autonomous navigation in agriculture often utilizes GNSS
information for pre-planned routes or as supplementary infor-
mation. Additionally, Differential GNSS technology provides
higher localization accuracy of up to centimeters. However,
the GNSS signal is not always available, especially for
those cultivations with high plants and abundant vegetation.
LiDAR and camera sensors are also utilized for navigation.
LiDARs can be either 2D or 3D sensors, with the latter

1Department of Electronics, Information and Bioengineering, Politecnico
di Milano, Milan, Italy {name.surname}@polimi.it

2Department of Mechanical Engineering, Politecnico di Milano, Milan,
Italy stefano.arrigoni@polimi.it

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

Fig. 1. Our robotic platform navigating a real vineyard.

characterized by multiple scanning planes. LiDAR sensors
provide a geometrical view of the environment, work at a
reasonable frequency (over 10 Hz), and are precise. Cameras,
such as RGB, stereo, or RGB-D, provide a more complex
semantic interpretation of the environment, which is helpful
for tasks like obstacle avoidance. Stereo and RGB-D cam-
eras can also produce 3D renderings of the environment.
Although LiDARs only provide geometrical data, they are
less susceptible to lighting conditions than cameras, which is
essential in agricultural environments where strong sunlight
and shadows are typical.

The VINBOT project [2] has developed a vineyard naviga-
tion system combining a line detection algorithm and GNSS
navigation for in-row navigation. Two lines representing
vineyard rows were identified using a 2D laser and RANSAC
algorithm. The robot changed the corridor by rotating around
one of two points representing the plant’s end. Localization
relied on IMU, GPS, and wheel odometry data, but tests have
shown that plant holes should be manually managed to avoid
misinterpretation.

The VineSLAM algorithm, described in [3], employed
laser rangefinder data and known parameters to identify
trunks and masts as landmarks for 2D SLAM. RFID tags
were utilized to mark the corridor boundaries for topological
mapping. However, the algorithm’s accuracy relied on the
detection of trunks and masts, and external factors such as
grass and wind introduced substantial noise, compromising
navigation reliability.
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Fig. 2. The general navigation software architecture.

Bernad et al. [4] proposed three straightforward in-row
navigation approaches using only 2D LiDAR data. The most
effective algorithm involved calculating the average distance
from both sides of the crop row and estimating an orientation
correction based on the offset. They achieved an accuracy of
0.041m±0.034m from the center line when testing outdoors
with potted maize plants.

Rovira-Más et al. [5] presented a multi-sensor navigation
approach for inside-row guidance. The authors used a so-
called Augmented Perception Obstacle Map (APOM) to store
and evaluate readings from a 3D stereo camera, LiDAR, and
ultrasonic sensors. The map is then analyzed to find specific
situations representing the status of row detection. The next
navigation target point is only computed if one or both rows
are found.

Mengoli et al. [6], [7] proposed Hough Transform-based
methods for orchard navigation, including in-row and row-
change maneuvers. The authors enhanced robustness by
incorporating vineyard geometry conditions and using GPS
to identify corridor ends. The detected pivot point in row-
change maneuvers had an RMSE of 0.3429 m in the x
direction and 0.5840 m in the y direction.

Aghi et al. [8] introduced a vineyard in-row navigation
algorithm with two components. The first component uses
an RGB-D camera’s depth map to detect the end of the
row by fitting a rectangular area to the farthest pixels. In
case of failure, a backup algorithm takes over, utilizing a
neural network to identify and correct the robot’s orientation
if needed.

The Field Robot Event (FRE)1 is a robotics compe-
tition that focuses on autonomous navigation in agricul-
tural environments. We drew inspiration from the in-row
navigation approach used by the Kamaro team [9] in the
2021 FRE competition for maize fields and adapted it for
vineyard navigation. Our navigation system utilizes a single
LiDAR and wheel encoders to reduce sensor requirements
and costs. Additionally, we developed an end-row naviga-
tion algorithm to facilitate autonomous row changes. We
proposed a straightforward evaluation benchmark for in-
row navigation and end-row point detection, eliminating
the need for external devices like laser tracking or Dif-
ferential GNSS systems. The system was tested in both
real vineyard (see Figure 1) and simulated environments.
The complete algorithm code is available at this GitHub

1https://fieldrobot.nl/event

repository: https://github.com/AIRLab-POLIMI/
MFLB-vineyard-navigation.

II. MATERIALS AND METHODS

We developed our navigation algorithm for a skid-steering
mobile robot, although the general structure can also be
adapted to other types of kinematics. The navigation software
was implemented using the Robot Operating System (ROS)
library, specifically the Melodic version on Ubuntu 18.04
LTS. The software architecture is presented in Figure 2.

Initially, the robot is assumed to reach the beginning of a
row; the In-row navigation module guides the robot to follow
the row until the end is detected. Then, the robot performs an
open-loop turn managed by the End-Row navigation module,
which guides the robot along the border of the vineyard until
it reaches a specified row to turn into, where the In-row
navigation module is reactivated. The following gives a more
detailed description of each algorithm component.

A. Input Data

Our algorithm needs very few input data, namely, an
odometry source and 2D laser scans. Since we used a robot
with a skid-steering kinematic, we computed its odometry
with the model presented in [10]. The kinematic relation is
expressed as follows:



vx
vy
ωz


 = A ·

(
Vl
Vr

)
(1)

where v = (vx, vy) is the vehicle’s translational velocity with
respect to its local frame, ωz is its angular velocity, Vl and
Vr are the left and right linear tread velocities, and matrix
A is defined by Equation (2). Following the experiments
presented in [10] we have calibrated the matrix A that, in the
case of an ideal symmetrical kinematic, takes the following
form:

A =
α

2xICR
·




0 0
xICR xICR

−1 1


 (2)

where, xICR is the x−axis component of the Instantaneous
Center of Rotation (ICR), and α is a correction factor to
account for mechanical issues such as tire inflation conditions
or the transmission belt tension. Both these parameters have
been empirically estimated following the directions provided
in [10].
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Fig. 3. In-row navigation algorithm.

Beyond odometry, our navigation system expects 2D laser
scans to perceive the environment. We transformed LiDAR
messages from an Ouster OS1 3D LiDAR sensor into 2D
laser scans through the pointcloud to laserscan ROS pack-
age2. We set the sensor at 10 Hz and 1024 points for each
of its 64 planes. We then filtered the laser scan messages
to reduce their size. We first applied radius filtering to
remove points outside a circle centered on the sensor and
then downsampling to reduce the density of points. We also
applied outlier filtering to remove noise from data.

B. In-row navigation

In the in-row navigation stage, the navigation system
makes the robot traverse a corridor created by two lines of
plants by maintaining an equal distance from them as much
as possible. The approach we used for the in-row navigation
has been adapted from that of the Kamaro team3 which
participated in the 2021 FRE competition.

The functioning of the In-row navigation module is graph-
ically illustrated in Figure 3. The find cone method analyzes
the laser scan messages to find an obstacle-free cone in front
of the robot. To do so, a cone centered on the moving robot
direction is gradually grown by enlarging the apex angle
until a certain number of points fall inside the cone. The
two cone sides are moved independently, and they have a
configurable length. Once the cone is found, we compute an
angular offset between the cone center line and the robot
center line. This angular offset is increased by an additional
offset proportional to the distance between the robot and
corridor center. The latter distance is computed by growing
two rectangles on the side of the robot until a certain number
of points fall into them. A graphical representation of the
cone and rectangles is shown in Figure 4.

The final angular offset defines a new line pointing toward
the steering direction. We use a PID controller to steer toward
the point on this line that is 1m in front of the robot. The
linear speed is set to a constant value, and it is reduced if an
object in front of the robot is detected. The algorithm uses

2https://github.com/ros-perception/pointcloud_to_
laserscan

3https://github.com/Kamaro-Engineering/fre21_row_
crawl

Fig. 4. The robot navigating inside a row in the simulated environment.
The two thick red lines represent the sides of the cone, while the red square
on the center line represents the new navigation point to follow. The light
green rectangles are used to compute the distances from both sides. The
semi-transparent rectangle in front of the robot is used to check if the end of
the row is reached by counting the number of points inside it. The rectangle
placed in the middle-front part of the robot is used to check an obstacle’s
distance and reduce speed accordingly.

a rectangle in front of the robot to calculate the target speed
based on the distance between the robot and any obstacles.

At each linear and angular speed update, the In-row
module checks if the end of the row has been reached. This
procedure involves a rectangular area (colored light green in
Figure 4) placed in front of the robot, spanning the entire
corridor and part of both row sides. The corridor is over
when the number of points in the rectangle approaches zero.
The last step is to exit the row by a fixed distance measured
through the robot odometry. Since the latter distance is
usually of about 1m, the odometry guarantees a reasonable
accuracy.

Once the robot has exited a row, it performs an in-place
rotation by a fixed angle (usually 90◦). The user needs to
set the direction of the first rotation, left or right. During the
rotation, the odometry is monitored to halt the robot when the
required angle has been performed. Note here that we expect
the robot to skid, and because of this, the effective rotation
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might differ from 90◦. However, the algorithm overcomes
this problem by selecting two end points—one positioned in
front and the other at the back of the robot. Subsequently,
it rotates the robot to align its moving direction parallel
to the line segment connecting these two points. It’s also
important to note that the robot does not need to be perfectly
aligned with the row direction when it begins navigating at
the beginning of the row. In both scenarios, the algorithm
compensates for an incomplete rotation up to a specific
angle. The maximum angle that can be recovered depends
on factors such as the width of the row, the robot’s distance
from the row’s starting point, and algorithm parameters like
the length of the cone sides. Once the turn is completed, the
navigation system activates the End-row navigation module.

C. End-row navigation

After completing the turn, the navigation system initiates
the End-row algorithm. A schematic representation of the
End-row navigation algorithm is presented in Figure 5. The
primary objective of this algorithm is to enable the robot
to travel perpendicularly to the field rows until it reaches
the next corridor. The algorithm is specifically designed to
leverage row ends, which typically consist of wooden support
poles in vineyards. We employed the Euclidean Cluster
Extraction technique [11] to identify row ends from the 2D
point cloud data. This simple algorithm is highly effective
in vineyards because the rows are widely separated by open
areas to allow for human operations. Each obtained cluster
represents a row end.

The subsequent task selects a point for each recognized
cluster, representing the row end. We evaluated two policies
to select such end point. The first policy, termed Nearest,
involves selecting the nearest cluster point to the robot center,
which is surrounded by a minimum number of points at
a threshold distance. Therefore, the circular neighborhood’s
radius and the minimum number of points are parameters
that need to be configured. The second policy, called Line
fitting, involves a first step in which the end point is selected
with the Nearest policy, then a line is fitted to the cluster
of points, and finally, the end point is projected onto that
line. We implemented line fitting using the random sample
consensus (RANSAC) algorithm, finding that 100 iterations
and a distance threshold of 0.1m offer a good balance
between speed and accuracy.

After detecting the points representing row ends, we use
them to construct segments that indicate the navigation di-

Fig. 6. A screenshot of the simulation environment with the clustered row
ends. Each cluster is represented with a different color. With red squares
are shown the selected end points according to the Nearest policy. The red
line represents the segments the robot follows to navigate perpendicularly
to row ends.

rection. Indeed, the navigation system keeps a fixed distance
from row ends by maintaining a moving direction parallel
to such fitted segments. Figure 6 displays the clustered row
ends in various colors and the identified end points through
the Nearest policy with red squares. Additionally, the current
direction segment is shown with a red line. Figure 7 shows
the clusters and end points obtained through the Line fitting
policy.

While the robot navigates parallel to end rows, it keeps
track of the number of passed row ends and stops in the
middle of the next corridor to enter. Then it will perform a
90◦ in-place rotation, and the system will activate the In-row
navigation module again.

III. RESULTS

We conducted experimental tests in both simulated and
real environments. The simulation has been performed on the
Gazebo simulator with vineyard models at different vegeta-
tive stages taken from the BACCHUS project repository4 (see
Figure 8). We also performed tests in a real vineyard located
on the Piacenza (Italy) campus of the Università Cattolica del
Sacro Cuore. The simulated environment consisted of three
vineyard corridors approximately 36m long and approxi-
mately 2m large, characterized by three different vegetative
stages: low, medium, and high. The results reported for

4https://github.com/LCAS/bacchus_lcas
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Fig. 7. A screenshot of the simulation environment when the robot is
performing end-row navigation. End row points are clustered, and a line is
fitted for each cluster (green lines). Then, each end point (red squares) is
projected onto the line model of its cluster.

Fig. 8. A screenshot that depicts a portion of the simulated vineyard.

the simulated environment are thus an average over the
three vegetative stages. The real environment was a single
vineyard corridor with a length of approximately 40m and
a width of approximately 2.5m, which is one of the typical
settings in Italy. The vegetative stage of the real vineyard
was comparable to the high vegetative stage of the simulated
one. During the tests, we reached a maximum linear speed
of 2m s−1 in the simulated environment and 1m s−1 in the
real environment for both in-row and end-row navigation. We
mounted the Ouster OS1 LiDAR sensor at an approximate
height of 1m from the ground.

The navigation system ran on an onboard Shuttle XPC
(model DS81L15) equipped with an Intel(R) Core(TM) i7-
4790S CPU and 8 GB of RAM. The LiDAR sensors pro-
duced messages at a frequency of 10Hz, and the odometry
was published at 50Hz. All the ROS nodes were capable
of keeping up with the 10Hz frequency of the LiDAR,

except for the nodes responsible for clustering and end point
detection, which proved to be the bottleneck of the system.
Specifically, the node performing clustering with the Nearest
end point picking policy operated at a minimum frequency
of 9Hz, while the one using the Line fitting policy ran at
a minimum frequency of 5Hz. Nevertheless, the bottleneck
only affected the end-row navigation, which represents a
small part of the total path traversed in a vineyard.

A. In-Row Navigation Evaluation

To evaluate the precision of the In-row navigation module,
we measured the robot’s displacement from the central row
line. This displacement was determined by calculating the
absolute distance between the robot’s center and the central
line of the row. In the simulated environment, we had access
to the true robot position, whereas in the real-world test,
we relied on the side distance measurements of the In-row
algorithm performed via the LiDAR (which has a precision
of ±0.01m). Evaluating navigation accuracy in real agricul-
tural environments is a challenging and ambiguous task cur-
rently addressed by agricultural robotics competitions such
as that described in [12]. Alternatively, one could utilize an
expensive yet highly accurate laser position tracking system,
although determining the optimal target trajectory remains a
nontrivial problem. In our case, we defined a perfectly row-
centered trajectory as the optimal one. However, in both the
simulation and the real vineyard, protruding vegetation and
branches caused the robot to deviate from the central line,
resulting in some average deviation from the center. Table I
presents the outcomes of in-row navigation tests performed
in simulation across three rows at varying vegetation stages
and in two real vineyard rows.

Measurements Simulation Real

Mean center displacement 0.049m 0.372m
Max center displacement 0.167m 1.183m
Mean corridor width 1.373m 2.142m
Max corridor width 2.300m 2.620m
Min corridor width 0.740m 1.600m

TABLE I
IN-ROW NAVIGATION EVALUATION RESULTS.

The mean displacement from the central line was 0.049m
in the simulated environment, whereas in the real vineyard,
we observed a mean displacement of 0.372m. In both
scenarios, the robot successfully avoided protruding branches
and never collided with the row sides. Table I also presents
the row width measurements computed from LiDAR scans.
The measurements indicate that protruding vegetation causes
row width variations, impacting robot centering. In the real
scenario, the minimum measurable row width of 1.6m was
reached, as our LiDAR has a minimum scanning distance of
0.8m.

B. Row Ends Detection Evaluation

To estimate the accuracy of the row ends detection, we
computed the Euclidean distance between the true center
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Pole distance Simulation Real

error Nearest Line fitting Nearest Line fitting

Mean 0.205m 0.155m 0.23m 0.26m
Max 0.540m 0.363m 0.30m 0.32m
Min 0.038m 0.013m 0.15m 0.20m

TABLE II
ROW END POINTS DETECTION EVALUATION.

of row support poles and those detected by our row ends
detection system. It is important to note that the assumption
that the pole center is always the true row end point is not
always valid, as vegetation can cover the pole and protrude
outward. In the simulated environment, we computed the
instantaneous Euclidean distance from the real pole center to
the end point detected by our system during a full turn from
one row to the next. We performed measurements for three
different vegetative stages. In the real environment, obtaining
multiple measurements of the real displacement of the pole
center from the robot is laborious and time-consuming. Fur-
thermore, without any absolute positioning system available,
the only way to measure it was manually, which introduced
measurement errors in the order of centimeters. Therefore,
we statically positioned the robot in the middle of a row to
detect the two side end points and compared them to manual
measurements.

In both the simulated and real scenarios, we compared
the two policies explained in section II-C: Nearest and Line
fitting. Table II shows the mean, max, and min distances
between the true center poles coordinates and those detected
by our system. In the simulated scenario, the Line fitting
policy was more accurate with a mean of 0.155m. The
Nearest policy also showed an acceptable mean distance of
0.205m while being less computationally intensive. In the
real scenario, the accuracy of both policies was comparable
since the difference in the order of centimeters could be at-
tributable to the error of manual measurements. Nonetheless,
our row ends detection system performed accurately in both
scenarios.

IV. CONCLUSIONS

In this paper, we have presented a simple and efficient
map-free LiDAR-based navigation system designed for vine-
yard applications. Our approach relies on the geometrical
structure of the environment and does not require a pre-
built map or GNSS measurements. The navigation system is
capable of in-row, turn, and end-row navigation and has been
tested in both simulated and real vineyards. The results of
our experiments indicate that the proposed navigation system
achieves accurate and reliable navigation performance, even
under challenging vineyard conditions with variations in row
spacing and vegetative stages. The system can effectively
detect protruding vegetation and adjust the trajectory ac-
cordingly, potentially reducing crop damage. The proposed
navigation system is simple and cost-effective, relying only
on odometry and LiDAR as sources of information, requiring

low computational effort. Future work can explore testing
with a 2D LiDAR to compare the navigation precision and
extend the system’s evaluation to other types of line-arranged
crops. Additionally, the system could be integrated with a
robust semantic obstacle detection algorithm to enhance the
navigation system’s safety.
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Abstract— Mobile robots will play a crucial role in the
transition towards sustainable agriculture. To autonomously
and effectively monitor the state of plants, robots ought to be
equipped with visual perception capabilities that are robust to
the rapid changes that characterise agricultural settings. In
this paper, we focus on the challenging task of segmenting
grape bunches from images collected by mobile robots in
vineyards. In this context, we present the first study that applies
surgical fine-tuning to instance segmentation tasks. We show
how selectively tuning only specific model layers can support
the adaptation of pre-trained Deep Learning models to newly-
collected grape images that introduce visual domain shifts, while
also substantially reducing the number of tuned parameters.

I. INTRODUCTION AND BACKGROUND

The climate change crisis has highlighted the impor-
tance of increasing the sustainability of food production, as
prescribed in the European Commission’s “Farm to Fork”
strategy1. In this regard, digital technologies are playing a
crucial role in reducing the amount of water and chemicals
used in agriculture [1]. One of the key applications of digital
technologies is the deployment of mobile robots, which can
perform a range of tasks such as plant spraying [2], weeding
[3], and harvesting [4]. To carry out these tasks effectively,
robots need the ability to autonomously monitor plant traits
and status, a task also known as plant phenotyping. For
example, in vineyards, a robot must be capable of detecting
plant organs for posing the appropriate cuts during winter
pruning operations [5]. They also ought to accurately identify
the presence of grape bunches, their level of ripeness, and
promptly detect the emergence of any diseases that may
compromise the fruit quality.

Robot’s perception systems deployed in agricultural set-
tings face particular challenges due to the significant weather
and seasonal variations that characterise these environments.
Thus, ensuring the effective reuse of visual patterns and fea-
tures learned under specific environmental conditions (e.g.,
in terms of weather, lighting, and plant diversity) becomes
crucial. This requirement stems from the need to guarantee
accurate plant monitoring, even when the underlying con-
ditions change. For instance, viewpoint changes caused by
different sensor positions and occlusions caused by leaves are
prominent factors that can hinder the accurate monitoring of
fruit [6], [7].

1 Department of Electronics, Information and Bioengineering (DEIB),
Politecnico di Milano, Milan, Italy {name.surname}@polimi.it

2 Department of Sustainable Crop Production, Università Cattolica del
Sacro Cuore, Piacenza, Italy matteo.gatti@unicatt.it

1https://food.ec.europa.eu/horizontal-topics/
farm-fork-strategy_en

The widespread application of Deep Learning (DL) meth-
ods has considerably accelerated the progress in various
visual perception tasks, including plant phenotyping [8].
However, supervised DL methods typically require abundant
training data and are susceptible to changes in the data
distribution. Moreover, training all model parameters on new
data is a costly process in terms of computational power
and memory footprint, especially when working on edge
devices and mobile platforms. To address these issues, one
possible approach is to pre-train the model on a large-
scale source domain and fine-tune the parameters on a few
examples from the target domain. The aim of fine-tuning
is to adapt the model to the target domain while retaining
the information learned during pre-training, particularly in
cases where the source and target distributions significantly
overlap despite the shift. This process is commonly known
as transfer learning. A traditional transfer learning practice
known as linear probing involves fine-tuning only the last
few layers of a Deep Neural Network (DNN) while reusing
features from earlier layers. This approach was based on
initial evidence suggesting that representations in earlier
layers may be more transferable to new data and tasks than
the specialised features learned in higher layers [9].

Recent research [10], [11] has explored effective alterna-
tives to this consolidated fine-tuning practice. Indeed, Lee
et al. [10] discovered that selectively tuning only the earlier,
intermediate, or last layers of a DNN can counteract different
types of distribution shifts and often even outperform cases
where all model parameters are tuned. They have named this
approach surgical fine-tuning (SFT). Their study concerned
transfer learning across different image classification bench-
marks, such as CIFAR and ImageNet. However, the authors’
conclusions have yet to be validated on image segmentation
tasks and data gathered in real-world application scenarios,
e.g., from mobile robots.

This paper focuses on the task of grape bunch seg-
mentation, which is a critical prerequisite for autonomous
plant phenotyping and yield forecast in vineyards [12]–
[14]. Our research investigates whether surgical fine-tuning
can support grape bunch segmentation under visual domain
shifts. To address this research question, we extend the study
of surgical fine-tuning from image classification models to
instance segmentation architectures in the specific case of
viticulture. The work in [12] is most closely related to this
study, because it evaluates the utility of linear probing for
grape segmentation. However, the experiments in [12] did
not examine the option of fine-tuning layers other than the
classification head.
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To facilitate the analysis of different types of visual
domain shifts that characterise vineyards, we introduce the
VINEyard Piacenza Image Collections (VINEPICs) [15],
a comprehensive and novel grape image archive. In [14],
Santos et al. presented the Embrapa Wine Grape Instance
Segmentation Dataset (WGISD), which is a large-scale col-
lection of vineyard images displaying high-resolution in-
stances of grape bunches across five different grapevine
varieties. Our dataset was gathered in a distinct geographic
area and it encompasses different grapevine varieties from
those in the WGISD dataset, including wine and table
grapes. Crucially, the proposed VINEPICs dataset contains
additional variations in terms of camera viewpoint, scene
occlusion, and time of data collection. Moreover, we captured
images using a consumer-grade camera mounted on a mobile
robot, which presents additional challenges due to possible
motion blur from the robot’s movement. As such, the con-
tributed dataset more closely resembles realistic setups in
autonomous vineyard phenotyping compared to the WGISD
benchmark.

Our results from applying the widely-adopted Mask R-
CNN model [16]–[18] to challenging robot-collected images
indicate that adopting a surgical fine-tuning strategy can
significantly outperform both linear probing and full param-
eter tuning when novel samples that introduce distribution
shifts are considered. The paper is structured as follows. In
Section II, we present the reference datasets, ablation study,
technical implementation, and evaluation metrics used in our
experiments. We then discuss the experimental results in
Section III. Concluding remarks and future extensions of this
work are left to Section IV.

II. MATERIALS AND METHODS

To test the performance of applying surgical fine-tuning
to instance segmentation models, we ran a set of layered
experiments. Consistently with [10], we set up the training
in two stages. First, we pre-trained on the largest available set
of examples for the grape segmentation task: namely WGISD
in this case [19]. Then, we considered different target sets
that introduce a distribution shift from the source set. The
goal was evaluating the extent to which transfer learning can
be achieved from source to target, with minimal adjustments,
thanks to surgical fine-tuning. Differently from [10], where
the evaluation set was held out from the same data used for
fine-tuning, we ran inferences on a different dataset, collected
one year after the fine-tuning set. This setup resembles
the real-world challenges of viticulture applications. Indeed,
grape images can be collected only at specific times of the
year and adapting learning models from past years to newly-
collected data becomes essential.

A. Datasets

Embrapa WGISD. The Embrapa Wine Grape Instance
Segmentation Dataset (WGISD) [19] comprises 300 high-
resolution images depicting 2,020 grape bunches from five
Vitis vinifera L. grapevine varieties: Chardonnay, Cabernet
Franc, Cabernet Sauvignon, Sauvignon Blanc, and Syrah.

TABLE I: Domain shifts from source to target data.

Dataset Changes introduced Shift types[10] Instances

Source: WGISD - - 2,020

geographic area, natural,
Fine-tuning set: vineyard, feature-level
VINEPICs21 Red Globe input-level 668

camera setup

Target sets:
VINEPICs22R temporal: input-level 100

different years

VINEPICs22RV temporal, input-level 112
camera viewpoint

VINEPICs22RF temporal, input-level 105
foliage occlusion

VINEPICs22C temporal, input-level 138
grape variety feature-level
(Cabernet S.: red)

VINEPICs22O temporal, input-level 135
grape variety feature-level
(Ortrugo: white)

The images were captured at the Guaspari Winery (Espı́rito
Santo do Pinhal, São Paulo, Brazil) in April 2018, with the
exception of images of the Syrah dataset that was collected in
April 2017. Grape bunches were photographed while keeping
the camera principal axis approximately perpendicular to the
vineyard row, using both a Canon EOS REBEL T3i DSLR
camera and a Motorola Z2 Play smartphone and were resized
and stored at a resolution of 2048x1365. At the time of data
collection, no defoliation treatments were applied except for
the routine canopy management for wine production adopted
in the region. In the original data split used in [14], 110
images (accounting for 1612 grape instances) were jointly
devoted to training and validation, whereas 27 images (i.e.,
408 grape instances) were held out for testing. However, the
actual split between training and validation was not provided.
Therefore, we decided to use a 20% validation split stratified
across grape varieties from the original training subset.

VINEPICs. The VINEyard Piacenza Image Collections
(VINEPICs) dataset consists of grape images collected at the
vineyard facility of Università Cattolica del Sacro Cuore in
Piacenza, Italy. The VINEPICs dataset is publicly available
under CC BY 4.0 (Attribution 4.0 International) license and
accessible at this link https://doi.org/10.5281/
zenodo.7866442. The acronym VINEPICs21 refers to
the first collection of images gathered in the summer of
2021 on Red Globe vines (Vitis vinifera L.) grafted on Se-
lection Oppenheim 4 (SO4), i.e., the vine rootstock, growing
outdoors in 25 L pots. This set includes 73 RGB images
captured on three different dates: 26 images of resolution
480x848 were collected at beginning of grape ripening on
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July 27th, 23 images of resolution 720x1280 on August
23rd when berries were fully coloured, and 24 images of
resolution 720x1080 at harvest on September 9th. An Intel
D435i RGB-D camera was used to capture the data, which
was mounted on a SCOUT 2.0 AgileX robotic platform, a
four-wheeled differential steering mobile robot2. The plants
were arranged along two, vertically shoot-positioned, North-
South oriented rows and hedgerow-trained for a canopy wall
extending about 1.3 m above the main wire. Each vine had a
∼1 m cane bearing 10-11 nodes that was raised 80 cm from
the ground. Between fruit-set (BBCH 71) and berry touch
(BBCH 79) [20], the leaves around bunches were gradually
removed for a resulting fully defoliated fruit zone with
reduced incidence of berry sunburns [21]. Before veraison,
eight vines were subjected to crop thinning to control for fruit
occlusions caused by excessive fruit density. Accordingly,
a basal bunch was kept every second shoot for about six
retained bunches/vine; the remaining unthinned vines were
clustered into two groups with about 10 and 4 bunches/vine.
During data collection, the camera principal axis was rotated
to form an angle of approximately 45◦ with the scanned
plant row. The grape bunch regions were annotated using
polygonal masks through the Computer Vision Annotation
Tool (CVAT)3, and the annotations followed the COCO
annotation format4.
A second and more extensive dataset, named VINEPICs22,
was collected at the same vineyard facility of Università
Cattolica del Sacro Cuore in Piacenza, Italy, on two separate
dates in August and September 2022, approximately one
year after the previous set. This dataset comprises 165
annotated images, representative of different types of domain
shifts, including 1464 grape bunch instances. From this
dataset, we extracted subsets of data to control for the
incremental changes we expect from the fine-tuning domain
(VINEPICs21) to the target domain, as detailed in Table
I. Specifically, the VINEPICs22R set includes new images
collected from the same grape variety (Red Globe), by main-
taining the same camera viewpoint, and level of defoliation
as VINEPICs21. VINEPICs22RV introduces a change in the
camera viewpoint (i.e., the camera principal axis is perpen-
dicular to the plant rows), while set VINEPICs22RF was
captured first on non-defoliated canopies. Furthermore, sets
VINEPICs22C and VINEPICs22O maintain the same camera
viewpoint and defoliation level as VINEPICs21 but represent
different grape varieties, namely Cabernet Sauvignon (red
grape) and Ortrugo (white grape), growing in a experimental
vineyard. Table I maps the changes introduced for each
fine-tuning and target set to the taxonomy of shift types
adopted in [10]. The selected target sets cover three shift
types: i) input-level shifts, which occur due to variations
in the visual appearance of the same environment (e.g.,
observing the same vineyard on different days introduces

2The analyses presented in this paper only concern RGB images, but we
also collected depth data to support a wider range of applications, such as,
e.g., estimating the volume of grape bunches.

3https://github.com/opencv/cvat
4https://cocodataset.org/

lighting variations); ii) feature-level shifts, where the source-
target shift is caused by different populations of the same
class, in our case, different grape varieties; and iii) natural
shifts, which are due to collecting the source and target
data in different environments, in our case, different growing
conditions (potted vines vs. experimental vineyard). Output-
level shifts do not concern our use-case, since the target
class (grape bunches) remains unchanged throughout the
experiments detailed in this paper.

B. Surgical fine-tuning for instance segmentation

Given the focus on image classification tasks, the experi-
ments described in [10] consider ResNet architectures [22] as
a reference and utilize surgical fine-tuning to manipulate the
different residual blocks. However, in the context of instance
segmentation tasks, supplementary modules are introduced
for detecting and segmenting object regions. Region-based
segmentation architectures such as the widely utilized Mask
R-CNN model [16] merge CNN feature extraction layers
with a Region Proposal Network (RPN) that extracts Regions
of Interest (ROI) from input images. Predicted object regions
are then fed to three network heads that operate in parallel,
generating predictions for the object class, bounding box,
and polygonal mask (Figure 1). A popular implementation of
this generalized architecture uses a combination of ResNets
and Feature Pyramid Networks (FPN) as a backbone for the
feature extraction step [17], [18].

To assess the efficacy of surgical fine-tuning in the context
of region-based segmentation models, we also ought to ex-
amine the impact of selectively fine-tuning the FPN and RPN
components, along with the residual blocks and classification
heads. Hence, we conduct experiments that compare the
following model ablations:

• Tune All: This configuration fine-tunes all model pa-
rameters.

• Linear Probing: In this classic configuration, only
parameters in the three ROI heads are updated, while
earlier layer parameters remain fixed at values learned
during pre-training.

• Res n: This setup involves fine-tuning only the ResNet
layers, specifically the residual block identified by the
number n. We use the keyword “stem” to refer to the
first residual block, and the notation “res n” for blocks
numbered 2 and higher. This setup follows the rationale
applied in [10].

• Joint SFT: Res Block n + FPN at n: This configuration
is a variation of the previous setup, where the selected
residual blocks are fine-tuned simultaneously with the
related Feature Pyramid Network (FPN) operations.

• RPN: In this setup, we only apply surgical fine-tuning
to the Region Proposal Network (RPN) in the Mask
R-CNN model.

To the best of our knowledge, this is the first study on the
application of surgical fine-tuning to instance segmentation
tasks.
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Fig. 1: Overview of the Mask R-CNN architecture. The backbone of the architecture is based on ResNet50, and features
from blocks 2 to 5 are extracted and passed through a Feature Pyramid Network (FPN). The Region Proposal Network
(RPN) generates region proposals, which are then combined with the upsampled features and input to three model heads,
which predict object class, bounding box, and polygonal mask in parallel.

TABLE II: Inference results from pre-training baseline instance segmentation models on the WGISD dataset.

Baseline AP0.3−0.9 P0.3−0.9 R0.3−0.9 F10.3−0.9

Mask R-CNN ResNet101 (results from [14]) 0.540 0.683 0.649 0.665
Mask R-CNN ResNet101 [18] 0.550 0.789 0.588 0.674
Mask R-CNN ResNet50 [18] 0.571 0.806 0.607 0.693
Mask R-CNN ResNet50 [17] 0.623 0.796 0.663 0.724

TABLE III: Number of fine-tuned parameters in the evalu-
ated ablations.

Ablation Parameters

tune all ∼ 45.3M
linear probing ∼ 17.8M
stem ∼ 9.5K
res2 ∼ 215K
res2 + FPN ∼ 872K
res3 ∼ 1.22M
res3 + FPN ∼ 1.94M
res4 ∼ 7.1M
res4 + FPN ∼ 7.95M
res5 ∼ 14.9M
res5 + FPN ∼ 16.1M
RPN ∼ 594K

C. Implementation details

To apply surgical fine-tuning as described in the previ-
ous section, we customised the Detectron25 implementation
of the Mask R-CNN architecture. The code for reproduc-
ing these trials is available at https://github.com/
AIRLab-POLIMI/SFT_grape_segmentation.

We augmented our training examples by applying vari-
ous transformations such as Gaussian blur, additive Gaus-
sian noise, random brightness, contrast, and saturation,
pixel dropout, and random flipping transformations. During
pre-training on the source domain, we utilized ResNet50
and ResNet101 backbones employing Group Normalization

5https://github.com/facebookresearch/detectron2

(GN). We experimented with different weight initializations
following the Detectron2 Mask R-CNN baselines for the
COCO instance segmentation task. In the first configuration,
we used the weights obtained from the method introduced
in [18], where the model was trained from scratch on
COCO with an extended training schedule and an augmented
jittering scale. In the second configuration, we initialized
the model with the weights from the method presented in
[17], where Mask R-CNN was trained on COCO instances
from scratch, i.e., with random weight initialization, rather
than reusing initialization values derived from ImageNet.
All models were trained with a batch size of 2 images,
and we used an early stopping criterion if the validation
loss did not improve for 30 consecutive evaluation checks,
with one evaluation check every 220 minibatch iterations.
We optimized model parameters using stochastic gradient
descent, with a constant learning rate set to 0.01.

D. Evaluation metrics

We evaluate the instance segmentation performance by
measuring the Average Precision (AP) of predicted object
regions, as well as the standard Precision (P), Recall (R),
and F1 score of predicted object instances. The metrics were
averaged over Intersection over Union (IoU) values ranging
from 0.3 to 0.9, to allow for comparison with the results
presented in [14]. Consistently with [14], only predictions
with confidence greater than 0.9 for the grape class are
considered in the evaluation. We prioritize improvements in
terms of F1 over individual P and R scores, as detecting
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all true positives is as important as minimizing the false
positives in the target use-case.

III. RESULTS AND DISCUSSION

Before conducting the ablation study, we pre-trained three
Mask R-CNN models on the WGISD dataset. Table II
demonstrates that on our task, ResNet50 backbones gen-
erally delivered better results than ResNet101 backbones.
Furthermore, initializing the model with weights obtained
after training from scratch on the COCO dataset [17] yielded
the best combination of segmented object region quality (in
terms of AP) and grape class prediction quality (in terms
of F1), compared to using weights from longer training
schedules and large-scale jittering [18]. Therefore, we have
chosen the “Mask R-CNN ResNet50 [17]” model as the
baseline for fine-tuning on VINEPICs21.

During the fine-tuning stage, we applied the different
ablations presented in Section II-B and evaluated the results
on the five target sets selected from VINEPICs22. The top-
performing methods in each set of trials, together with the
“linear probing” and “tune all” alternatives, are summarised
in Table IV. The complete evaluation results can be found in
the extended version of this paper [23]. We also report the
number of parameters tuned in each configuration in Table
III.

Results on the VINEPICs22R sets approximate scenarios
where the only change introduced is the date and time of
data collection, while considering the same grape variety
(Red Globe), camera viewpoint, and defoliation level as the
fine-tuning set. In this case, fine-tuning the first four CNN
layers individually, excluding the stem, ensured a higher AP
than the scenario when all model parameters are tuned. In
particular, tuning the third ResNet block led to the highest
AP and F1 scores, outperforming linear probing.

Changing camera viewpoint, in VINEPICs22RV, led to
generally higher scores than the previous set of trials. No-
tably, the AP scores are even higher than the AP achieved on
the VINEPICs21 test set, for the majority of tested ablations.
This result may be due to the fact that a perpendicular camera
viewpoint is more similar to the setup adopted in the WGISD
set, i.e., the source set. Moreover, it is worth noting that the
VINEPICs21 test split comprises nearly twice as many grape
instances as the VINEPICs22RV set. As a result, the average
scores in the VINEPICs21 case provide more conservative
performance figures than VINEPICs22, which accounts for
approximately 100 instances for each subset (Table I). In
this case, tuning the third and fourth ResNet blocks led to the
most marked improvement over the the “tune all” and “linear
probing” performance. In particular, tuning the fourth ResNet
block in combination with its FPN layers led to the highest
results with respect to the AP of region predictions, Recall
and F1 of instance predictions. Interestingly, the top precision
was achieved when tuning the Region Proposal Network in
isolation, albeit generating a higher number of false positives,
as indicated by the lower recall scores.

We then considered grape images captured in the presence
of occluding foliage (VINEPICs22RF), under temporal and

viewpoint conditions that are comparable to the tuning set.
Similarly to the case of the temporal shifts introduced in
VINEPICs22R, the top performance was achieved by tuning
the third ResNet block. However, in this case, while the
highest AP score was achieved in the “res3” configuration,
the highest F1 was reached by jointly tuning res3 with FPN.

When we shift the target domain towards different grape
varieties, the drop in performance from the fine-tuning set to
the target sets is significant. Indeed, although the source set
(WGISD) already included examples of both red and white
grape bunches, the VINEPICs22C and VINEPICs22O sets
are drastically more challenging than previously examined
sets. First, the number of instances to be detected in each
frame is significantly higher in this case, as exemplified
in Figure 2. Moreover, images in these sets were captured
at a lower resolution than WGISD and in lower lighting
conditions than both the WGISD and the VINEPICs21 sets.
Thus, this setup complicates not only the learning but also the
manual annotation of grape instances. Under these challeng-
ing conditions, selectively tuning the stem and RPN was in-
effective and prevented the model from providing any grape
predictions [23]. Conversely, applying surgical fine-tuning
to intermediate layers resulted in a significant improvement
over the near-zero baseline performance. In the case of the
Cabernet Sauvignon variety (VINEPICs22C) tuning only
the parameters in the fourth ResNet block improved the AP
by 10% and the F1 by 12%, compared to “linear probing”.
In the case of the Ortrugo variety (VINEPICs22O), jointly
tuning res4 with FPN outperformed “linear probing” by 8%,
in terms of AP, and by 14%, in terms of F1.

Overall, results from these experiments support the view
that selecting intermediate network layers can outperform
the common practice of only re-training the classification
head of the model, when visual domain shifts are introduced.
In particular, we found that selecting the third block for
fine-tuning best supported temporal changes, as well as
changes in the level of plant defoliation. Selecting the fourth
ResNet block, instead, contributed to mitigating the impact
of viewpoint and grape variety shifts. Importantly, adopting
a surgical fine-tuning approach allowed us to substantially
reduce the number of parameter updates, compared to the
costly alternative of re-training the complete model from
scratch: from over 45M total parameters to nearly 1M and
7M in the res3 and res4 cases (Table III).

IV. CONCLUSIONS

To effectively deploy mobile robots for agricultural ap-
plications, improving the adaptability of visual perception
methods based on Deep Learning to rapidly-changing en-
vironments is essential. In particular, we have considered
the task of autonomously segmenting grape instances from
images collected in real vineyards. In this context, we showed
that pre-training on large-scale, high-resolution training ex-
amples and fine-tuning only selected layers on more chal-
lenging robot-collected data can support knowledge transfer
to newly-collected grape images that introduce changes in the
camera viewpoint, foliage occlusion level, and grape variety.
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(a)
VINEPICs21

(b)
VINEPICs22R
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VINEPICs22RF

(e)
VINEPICs22C

(f)
VINEPICs22O

Fig. 2: Image examples from the VINEPICs sets. Examples from the WGIS set are available in [19].

TABLE IV: Inference results on test sets, after applying surgical fine-tuning on VINEPICs21.

Test set Ablations AP0.3−0.9 P0.3−0.9 R0.3−0.9 F10.3−0.9

VINEPICs21 test tune all 0.374 0.767 0.404 0.529

VINEPICs22R
tune all 0.254 0.682 0.273 0.390
linear probing 0.226 0.689 0.234 0.350
res3 0.395 0.602 0.421 0.496

VINEPICs22RV
tune all 0.387 0.634 0.436 0.517
linear probing 0.409 0.660 0.454 0.538
res4 + FPN 0.463 0.595 0.515 0.552
RPN 0.305 0.687 0.325 0.442

VINEPICs22RF
tune all 0.342 0.696 0.371 0.484
linear probing 0.290 0.711 0.305 0.426
res3 0.469 0.577 0.512 0.542
res3 + FPN 0.461 0.607 0.503 0.550

VINEPICs22C
tune all 0.007 0.571 0.004 0.008
linear probing 0.003 0.286 0.002 0.004
res2 0.013 0.643 0.009 0.018
res4 0.068 0.534 0.073 0.129
res4 + FPN 0.068 0.548 0.071 0.126

VINEPICs22O
tune all 0.022 0.762 0.017 0.033
linear probing 0.021 0.449 0.023 0.044
res4 + FPN 0.102 0.625 0.111 0.189

Notably, tuning intermediate network layers improves the
robustness of the model to input-level and feature-level
shifts. These findings complement the evidence gathered in
[10] on image classification benchmarks, where input-level
shifts were best supported by tuning the initial network
layers. These results also withstand the popular practice
of only tuning the last layers on a new target domain.
Even in challenging scenarios where images of novel grape
varieties are introduced at test time, surgical fine-tuning on
intermediate network blocks allowed us to bootstrap the
grape segmentation performance, while drastically reducing
the number of parameters required for fine-tuning.

Our evaluation of the utility of surgical fine-tuning to
support grape segmentation has been limited to methods
derived from the widely-applied Mask R-CNN architecture.
Thus, future research directions include the study of instance
segmentation models that are based on Transformers, such
as [24], for instance. Another transfer learning approach
that we have not yet explored concerns the combination
of linear probing with the selection of useful features from
different layers, as proposed in [11]. The availability of the
VINEPICs resource can facilitate the progress in tackling

these unexplored research directions.
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Multi-camera GPS-free Nonlinear Model Predictive Control strategy to
traverse orchards

A. Villemazet1,2, A. Durand-Petiteville3 and V. Cadenat1,2

Abstract— This paper deals with autonomous navigation
through orchards. It proposes a multi-camera GPS-free strategy
relying on a Nonlinear Model Predictive Control (NMPC)
scheme to follow a reference path. This latter, based on a
Voronoi diagram for the row traversals or a spiral model for the
headland maneuvers, is computed as a Non-Uniform Rational
Spline (NURBS) curve making it possible to deal with multiple
orchard layouts. The method has been implemented on our
robot and validated through experimentation conducted in an
orchard.

I. INTRODUCTION

Robotics has been identified as one of the major solutions
to promote truly sustainable agriculture where the necessary
production increase matches environmental concerns [1]. In
this work, we focus on orchard mechanization, and more
specifically on the autonomous navigation system, which is
mandatory to realize some agricultural tasks such as mowing,
spraying, or harvesting. When moving through an orchard,
a robot has to autonomously drive from the entrance of an
alley to its exit, and then move to the next alley by navigating
in the headlands, i.e., the uncultivated area between the edge
of the trees and the orchard boundary used for machinery
maneuvers. It repeats these two steps to cover the whole
area of interest (see Fig. 1(a)).

As the GPS signal is often blocked or perturbed by the
dense canopy or nets protecting the trees [2], the existing
navigation strategies rely on embedded sensors, either vision
systems [3] [4] [5] [6] or LiDAR sensors [7] [8]. These works
propose to compute and then follow a straight line passing
through the middle of the alleys. The obtained line may be
disturbed by the natural environment where branches and
foliage are uneven and lighting conditions significantly vary.
Moreover, these approaches do not allow coping with modern
orchards whose circular layout is specifically designed to
control pests thanks to ecological processes [9] (see Fig.
1(b)). Regarding maneuvers in the headland, the few existing
works on this topic use dead reckoning because of the lack of
sensory information in these zones. In such a case, the exe-
cution robustness and repeatability are significantly reduced
[10]. We may nonetheless mention the following methods
where dead reckoning is coupled with other techniques in
an attempt to overcome this drawback: a slip compensation

1Univ. de Toulouse, CNRS, UPS, Toulouse, France
2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
{avillemaze, cadenat}[at]laas.fr

3Departamento de Engenharia de Mecânica, Universi-
dade Federal de Pernambuco UFPE, Recife, PE, Brazil
adrien.durandpetiteville[at]ufpe.br
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(a) Straight orchard. (b) Gotheron circular or-
chard.

Fig. 1. Example of orchards.

solution [11], automatic detection of the rows extremities
using either a laser [12] or dedicated artificial landmarks
[13]. It then would be interesting to provide a navigation
strategy able to cope with the different types of orchard
layouts, while improving the headland maneuver robustness
and avoiding any environmental instrumentation. Some of
our earlier works have proposed to perform the U-turn using
data provided by a 2d laser rangefinder. We have designed a
sensor-based nonlinear controller following a spiral centered
on the last row tree [14] [15]. This approach was later
extended to unify both in-row and headland navigation in
a unique spiral-based framework [16] in a straight orchard.
Despite promising results regarding the use of a unique
sensor-based framework for both parts of the navigation,
the solution presented oscillation issues, especially when re-
entering the alley. This was due to the idea of modeling the
orchard navigation as a point regulation problem where the
robot had to reach a sequence of waypoints, i.e., without
considering the robot orientation. Moreover, it is necessary
to use a more robust perception method. Indeed, although
allowing to validate the approach in simulation, a 2d laser
rangefinder has a planar field of view, not allowing to detect
trees in a robust way in an orchard.

In this paper, we present a novel sensor-based framework
allowing the robot to navigate through an entire orchard,
i.e., both the alleys and the headlands, without adding any
landmark nor considering a particular layout. First, the robot
has been equipped with a vision system made of four RGB-D
low-cost cameras. On the one hand, it offers a relatively inex-
pensive solution to acquire 3D data, thus increasing the tree
detection capabilities with respect to 2D laser rangefinder-
based solutions. On the other hand, it allows benefiting from
an overall large field of view to perceive trees both in the row
and in the headland, making sensor-based control possible.
Second, instead of defining the orchard navigation in terms
of point regulation, we now state it as a path-following
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problem, to reduce the previous oscillations. The reference
path is a local path iteratively updated using the position
of the trees computed by the vision system. To do so, we
use a Voronoi diagram for row traversals and a spiral model
for the headland maneuvers. Next, a Non-Uniform Rational
Spline (NURBS) curve is computed to unify the different
sections of the path and provides a smooth reference to
follow. This problem formulation presents three advantages:
(i) the in-row and headland navigation are unified during
the path computation and are not merged at the controller
level as in [16]; (ii) it allows dealing with numerous orchard
layouts (and not only rectangle-shaped ones); and (iii) it
offers a more consistent reference than the straight-line
following approach and takes into account the robot orien-
tation. The path following is performed using a Nonlinear
Model Predictive Control (NMPC) scheme coupled with
a Frenet-based formulation of the problem. It provides an
efficient minimization of the error between the computed and
desired paths over the whole prediction horizon while taking
into account specific constraints such as actuator saturation.
Finally, in order to evaluate the relevancy of the proposed
approach, it is first compared with [16] using the Gazebo
simulator, and next implemented on the Hunter 2.0 robotic
platform to navigate in an orchard.

The rest of the paper is organized as follows. We first
present the robotic system before focusing on the proposed
navigation framework. The simulated and experimental re-
sults are then presented to show the approach’s efficiency.

II. MODELLING

(a) The perception system
and the related frames.

(b) The robot model.

Fig. 2. The robotic system models.

The considered platform is the Agilex Hunter 2.0 car-like
robot equipped with a laser rangefinder and four RGB-D
cameras (see Fig. 2(a)). To obtain the necessary wide field
of view, two cameras are placed at the front of the robot and
respectively oriented left forward and right forward, while
the two other ones are placed on the sides of the platform
(see Fig. 2(a)). To model the system, we define Fw =
(Ow,xw,yw, zw) as the world frame, Fr = (Or,xr,yr, zr)
as the robot frame, Fl = (Ol,xl,yl, zl) as the laser frame,
and Fci = (Oci ,xci

,yci
, zci

) as the frame of the ith

camera, with i ∈ [1, 4]. We rely on the Ackermann model
to represent the robot and therefore its pose is given by
χ(t) = [x(t), y(t), θ(t), γ(t)], where x(t) and y(t) are the
coordinates of Or in Fw, θ(t) represents the angle from xw

to xr, and γ(t) is the angular position of the steering angle
(see Fig. 2(b)). Moreover, we define the control vector by
U(t) = [υ(t), γ(t)] where υ(t) is the linear velocity along
xr. For such a system, considering L the distance between
the front and rear wheels, the kinematic model is:





ẋ(t) = υ(t) cos(θ(t))

ẏ(t) = υ(t) sin(θ(t))

θ̇(t) = υ(t)
L tan(γ(t))

(1)

III. ORCHARDS TRAVERSAL STRATEGY

To navigate in the orchard, the robot has to cross an alley,
maneuver in the headlands to switch from an alley to the
next one, and repeat these two steps until its navigation is
completed. In this section, we detail the different processes
involved in the proposed navigation framework. We first
present the vision system and data processing. Next, we
introduce our solution to compute the local path to follow
both in the alleys and in the headlands. Finally, our NMPC-
based path-following strategy is detailed.

A. Data processing

(a) Top view of a point cloud con-
taining shadows due to the presence
of trees [6].

(b) Example of
four point clouds
expressed in Fl.

Fig. 3. Data processing examples.

The presented navigation strategy relies on the position
of the tree trunks in the current robot frame. The positions
are computed using the point clouds provided by the four
onboard RGB-D cameras. To do so, we rely on the algorithm
[6] which estimates the tree trunk positions by detecting
shadows in the point cloud due to the presence of trees (see
Fig. 3(a)). The algorithm processes, therefore, the four point
clouds separately and provides the position of the detected
trees in each camera frame Fci .

The tree coordinates must then be expressed in a common
frame, which is the laser frame Fl. Indeed, the laser field
of view overlaps the one of the four cameras, allowing
computing the extrinsic parameters between Fl and the four
Fci . The calibration process between Fl and Fci , i.e., the
computation of the homogeneous transformation matrix Hl|ci
is performed using [17]. An example of the result is shown
in Fig. 3(b).
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B. Path generation

In this section, we present how the tree coordinates in the
current robot frame are used at each iteration to generate
a new path to follow. The proposed path generation is a
two-step process: first, we calculate a set of waypoints,
and next, we compute a path based on these waypoints.
The waypoints computation is done differently for the alley
traversing and the headland navigation. For the alleys, we
generate a Voronoi diagram [18] using the tree coordinates.
The vertices of the diagram, which approximately lie in the
middle of the row, will then be used to compute the path to
follow (see steps 1 and 5 in Fig. 5).

Fig. 4. Several robot frames while describing a spiral.

For the headland maneuver, we propose to compute way-
points lying on a spiral centered on the last tree of the row,
called the pivot point and denoted Op (see step 3 in Fig. 5).
It is used as the origin of the frame Fp, whose orientation
is arbitrary. We rely on the spiral model presented in [19]
where Op, the pivot point, is considered as the spiral center,
d(t) is the distance between the robot and the pivot point,
i.e., between Op and Or, and α(t) is the oriented angle from
the xr vector to the OrOp one (see Fig. 4). Finally β(t) is
the angle between xp and OpOr. It is shown in [19] that if
both υ(t) and α(t) are constant, then Or describes a spiral,
and the following equations hold:

ḋ(t) = −υ cosα (2)

d(β) = d0e
cotα(β0−β) (3)

Eq. (2) shows that the type of spiral only depends on
parameter α. Indeed, if α ∈ [−π; 0], then Or turns clockwise
with respect to Op and counter-clockwise if α ∈ [0;π].
Moreover, if α ∈]−π;−π

2 [∪]π2 ;π[, then the spiral is outward
and inward if α ∈] − π

2 ; 0[∪]0; π
2 [. It becomes a circle if

α = ±π
2 , with a radius equal to d. Thus, the design of

the spiral first consists in selecting a value for α and an
initial distance d0. Finally, the set of waypoints belonging
to the spiral is computed over an angular horizon δβ using
(3). Note, that the frame Fp is readjusted at each iteration
to align the xp and OpOr vectors. This approach allows
maneuvering in the headlands on the sole basis of the current
exteroceptive data and does not require any localization
process.

The waypoints having been computed for both alleys and
headlands, it is then necessary to connect them to make the
robot navigate in the orchard. In other words, we have to
connect the spiral to the last vertex of the Voronoi diagram
to make the robot exit the alley and to connect the spiral to
the first vertex of the new diagram when the robot enters a
new alley. First, when the robot exits the alley, d0 is defined
as the distance between the pivot point Op and the last vertex
of the diagram in order to connect the two parts of the path.
Moreover, we set up α = ±π

2 to make the robot follow
a circle of radius d0 centered on the pivot point (see step
2 in Fig. 5). This approach initially makes it possible to
safely turn around the pivot point but does not guarantee
that the spiral will connect with the first vertex of the next
alley diagram. Thus, once the next alley is visible and it
is possible to compute the next Voronoi diagram, the spiral
parameters are modified. First, α is adjusted to make the
spiral pass via the vertex (from here the path is no more a
circle, but a spiral), and the angular horizon δβ is modified to
make coincide the end of the spiral with the vertex (see step
4 in Fig. 5). Setting up the spiral parameters as described
guarantees the continuity between the different parts of the
path.

Fig. 5. Examples of path generation. Green circle: tree - Black circle:
pivot point - Orange circle: Voronoi vertex - Dark red circle: Spiral point
- Blue curve: NURBS - Step 1/5: alley crossing - Step 2: path connecting
the alley crossing to the headland maneuver - Step 3: headland maneuver -
Step 4: path connecting the headland maneuver to the alley crossing.

Finally, we propose to use a NURBS (Non-Uniform Ratio-
nal B-Spline) [20] curve to compute a smooth path passing
through the waypoints. To summarize, this particular type
of curve is defined by a set of weighted control points that
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locally influence its curvature. Mathematically, its general
form is given by [20]:

C(u) =

∑n
i=1Ni,p(u)wiPi∑n
i=1Ni,p(u)wi

, u ∈ [0, 1] (4)

where n is the number of control points Pi, wi are the
corresponding weights and Ni,p are the B-Spline basis
function of pth degree. More details are available in [20].
In our case, the control points are either the endpoints of
the Voronoi segments (see orange circles in Fig. 5) or the
points belonging to the spiral (see dark red circles in Fig.
5). The NURBS curve was chosen because of its three
properties which are useful in our application: the degree
of the curve which depends on the number of control points,
the knot vector (used by the B-Spline basis function), and
the weighted control points. First, the high degree of the
curve allows for generating a path for both straight and
curved tree rows as well as the circular path for the headland
maneuver. Next, the knot vector ensures that the curve passes
through the first and the last control points allowing to avoid
an abrupt re-alignment of the robot on the reference path.
Finally, the weights allow us to adjust the influence of the
control points on the curve to make a smooth path and thus
obtain a better robot trajectory. We propose to define them as
follows: [1, w1, ..., wn−2, 1]. First, the first and last weights
are set to 1 with respect to the second property. w1, ..., wn−2

must thus be chosen as a compromise to obtain the most
stable path over the iterations.

C. Path following

Fig. 6. Principle of the path tracking. [21]

We now present our approach for following a given path
using an NMPC controller. As shown in Fig. 6, it consists
in orthogonally projecting the center of the robot Or on
the reference path to define a Frenet frame F ′

r associated
with Or. It is then possible to define θe as the orientation
error and ye as the lateral error. The path following is then
performed by minimizing the error vector epf = [ye, θe]
over a prediction horizon. This approach does not require
including the linear velocity in the minimization problem as
it is not aiming at reaching a set of points at a given instant
sampled from the path, such as in [16]. The linear velocity

can be fixed at a constant value or computed accordingly
to a different criterion, such as terrain traversability. Thus,
in this work, the linear velocity υ(t) is considered constant
so that υ(t) = υ, (υ ̸= 0). The only control input is thus
the steering angle γ. The path following is performed via
an NMPC scheme considering the following optimization
problem:

γ∗(k) = min
γ(k)

(JNp
(epf (k), γ(k))) (5)

with

JNp
(epf (k), γ(k)) =

k+Np∑

p=k+1

êpf (p)
T êpf (p)

+ λγ(γ(p)− γ(p− 1))2

(6)

subject to

êpf (p+ 1) = f(êpf (p), γ(p)) (7a)
êpf (k) = epf (k) (7b)

C(γ∗(.)) ≤ 0 (7c)

It computes an optimal steering angle sequence γ∗(k) of
γ(k), with γ(k) = [γ(k), ..., γ(k + Np)] which minimizes
the cost function JNp over a prediction horizon of Np steps
while taking into account the physical boundaries of the robot
actuators as constraints C(γ∗(k)). The values of both the
prediction and control horizons are considered equal.
Cost function: JNp

is divided in two parts. The first one is
defined as the sum of the quadratic predicted configuration
êpf , and is intended to track the reference path. The second
one is the sum of the quadratic differences between two
consecutive commands, weighted by the parameter λγ , which
allows smoothing of the control inputs and limiting velocities
variations between two instants.
Remark: To project the predicted positions onto the reference
path, we discretize the NURBS curve and search for the
closest position belonging to the path for each prediction.
The search relies on the k-d tree structure [22] which
proposes an efficient nearest neighbor search based on a
space-partitioning data structure.
Prediction model: Assuming that the steering angle γ(t1) is
constant between the instant t1 and t2 = t1 + Ts, where Ts
is the sampling time, the robot predicted pose is computed
by integrating (1) with a Runge-Kutta method of order 4.
Input constraints: The input constraints take into account
the physical limits of the mobile base. They are given by:

[
γ(i)− γu
γl − γ(i)

]
≤ 0 (8)

where i ∈ [1, Np], γl and γu are respectively the lower and
upper boundaries.

IV. RESULTS

In this section, we present the obtained results, first using
a simulator, then using a robotic platform. In both cases,
the considered robot is the Hunter 2.0 car-like mobile base.
The robot is equipped with a vision system consisting of
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four Intel Realsense RGB-D cameras, two D455 and two
D435, positioned as shown in Fig. 7(b) to enlarge the field of
view as explained earlier. The robot has also been endowed
with Slamtech’s RPLIDAR S1 range-finder for the camera
calibration step. The physical boundaries of the Hunter 2.0
actuators as well as the optimal ranges of the cameras are
shown in Table I.

(a) Side view. (b) Top view.

Fig. 7. Robotic platform.

TABLE I
SYSTEM SPECIFICATIONS.

minimum range maximum range
Linear velocity −1.5 m/s 1.5 m/s
Steering angle −0.461 rad 0.461 rad

D455 0.6 m 6 m
D435 0.3 m 3 m

Furthermore, the robot is equipped with an NVIDIA Jetson
Xavier NX GPU and an Intel Core i7-1165G7 48 GB RAM
CPU. The former is dedicated to data processing while the
latter calculates the control inputs. The implementation relies
on the C++ 14 language and the ROS middleware. The
data processing part uses the OpenCV and PCL libraries
and is partially implemented using the CUDA language.
The NMPC part is based on several libraries allowing to
implement the following features: the clustering method, the
Voronoi diagram, the NURBS curve, the k-d tree structure
and the SQP solver.

A. Simulation

We first compare the proposed approach, the NURBS-
based method, with the one described in [16], the spiral-
based method. We recall that the NURBS-based method
relies on a path following while the spiral-based one consists
in reaching a sequence of positions. The simulations are per-
formed with the straight and circular orchards shown in Fig.
8(a)) and Fig. 8(b)) where the trees’ position and orientation
were randomly modified to obtain a more realistic layout.
The parameters for both methods are listed in Table II. For
the spiral-based method, the set of parameters is similar to
the one used in [16] with the exception of the solver tolerance
values which are slightly modified to increase performance
in the circular orchard. In addition to using a different cost
function, path-following vs. positioning, the methods differ

in their use of a terminal constraint. Indeed, the spiral-
based method requires a terminal constraint to guarantee the
stability of the positioning process while it is not required for
the path-following approach. Finally, the lower/upper limits
of the input constraints γl and γu in the NURBS-based
method are no longer the physical limits of the steering angle
of the Hunter 2.0 actuators, as in the spiral-based method, but
the maximum positions reachable in Ts second (± 2 degrees
for the Hunter 2.0). This allows only feasible commands to
be calculated for the robot, thus reducing solver disturbances
between iterations and improving robot behavior.

(a) Simulated straight or-
chard.

(b) Simulated circular or-
chard.

(c) Robot trajectories in the
straight orchard.

(d) Robot trajectories in the cir-
cular orchard.

(e) Computed steering angles in the straight
orchard.

(f) Computed steering angles in the circular
orchard.

Fig. 8. Navigation results in simulation. (c-d-e-f) Blue plots: spiral-based
method results - Orange plots: NURBS-based method results - (e-f) Green
vertical lines: Start of the alley crossing for the spiral-based method (dashed
lines) and the NURBS-based one (dotted lines) - Red vertical lines: Start of
the headland maneuver for the spiral-based method (dashed lines) and the
NURBS-based one (dotted lines).

Figure 8 presents the results obtained for both methods
and orchard layouts. In Fig. 8(c) and Fig. 8(d), it can
be seen that the robot successfully achieves the navigation
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TABLE II
SIMULATION PARAMETERS.

Approach υ Ts Np Maximum timea Absolute tolerancea ϕZEC
b Number of points NURBS wi λγ

Spiral 1 0.2 12 0.16 10−3 10−4 N/A N/A N/A
NURBS 1 0.1 20 0.09 10−6 N/A 3000 10−2 10
aStopping criterion of the SQP solver.
bZero terminal equality constraint tolerance.

task in the straight and curved orchards relying on both
the spiral-based and the NURBS-based methods. Indeed, it
successfully drives through the three alleys and maneuvers
in the headlands to switch from one alley to the next one
performing a 126 meters long path in the straight orchard
and a 187 meters long one in the circular one. Thus, from a
task point of view, both approaches are capable of navigating
in different orchard layouts unlike other works focusing on
straight lines. However, from a control perspective, it can
be noticed that the spiral-based method tends to generate
oscillations when the path is curved (entrance of a new
alley or in the alleys of the circular orchard). This is due
to the fact that it is a positioning approach not taking into
account the robot’s orientation. Thus, as long as the robot
is oriented toward the next goal point, it navigates without
oscillating, e.g., when crossing the straight alleys. However,
when it is not initially oriented toward the point to reach,
it has a tendency to oscillate e.g., when entering a new
alley or driving through a curved alley. On the contrary,
the NURBS-based method presented in this paper does not
lead to such oscillations. Indeed, using a path-following
formulation of the problem allows for taking into account
the robot’s orientation. Thus, the quality of the robot path
is consistent when navigating in a straight or curved alley
or when maneuvering in the headlands. This analysis is
supported by the evolution of the steering angles shown in
Fig. 8(e) and 8(f). Indeed it can be seen that the value of
the steering angle varies more for the spiral-based approach
than for the NURBS-based one, for both orchard layouts.
Thus, despite the interest in the spiral-based method, the
NURBS-based method significantly improves the quality of
the navigation system.

B. Experimentation

To show the efficiency of the NURBS-based method, we
conducted an experiment at the agricultural high school1 in
Auzeville-Tolosane, France. The considered orchard has 40
meters long by 4 meters wide tree rows with a space of
1 meter between two consecutive trees. At the time of the
experiments, only four tree rows were usable. The following
parameters were chosen: υ = 0.5m/s, Ts = 0.1s, Np =
20, which corresponds roughly to a prediction window of 1
meter, and λγ = 5. The other parameters remain identical to
the simulation.

The orchard navigation is presented in the attached video.
Some additional snapshots, completed with an RVIZ view
of the detected trees and the computed path, display the

1”Lycée Général et Technologique Agricole des Sciences Vertes”

(a) Alley crossing.

(b) Beginning of the clockwise headland ma-
neuver.

(c) Clockwise headland maneuver.

(d) Counter-clockwise headland maneuver.

(e) Entering the next alley.

Fig. 9. Navigation snapshots - left: robot centered RVIZ data visualization
(green circle: detected trees - blue circle: selected pivot point - orange circle:
NURBS control points - blue curve: NURBS) - right: video screenshots.

main key steps of the navigation in Fig. 9. As shown in
the video, the navigation task is correctly achieved. The
robot successfully moves along the three alleys twice and
performs two clockwise and two counter-clockwise U-turn
maneuvers in the headlands. It has thus realized a 222 meters
long path in 480 seconds. Now, let us go into further details
and analyze the main steps of the navigation: the sequence
of row followings and U-turn maneuvers. First, the system
successfully computes a path based on the tree positions
allowing to drive through the alley (see Fig. 9(a)). The path
computing/following process is repeated at each iteration
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until the row crossing is achieved. Once the robot gets closer
to the end of the alley, one of the last trees is selected as
the pivot point and the generated path is composed of both
a row crossing section and a spiral one (see in Fig. 9(b)).
The pivot point is chosen so that the robot makes a loop
in the orchard and thus sequences the four U-turns. Next,
the robot performs the clockwise/counter-clockwise headland
maneuver following a spiral computed on the sole basis of
the pivot point as seen in Fig. 9(c) and 9(d). Finally, in Fig.
9(e) the robot is about to reach the next alley. The spiral
parameters are adjusted to connect the spiral section of the
computed path to the row-crossing section. By doing so, the
robot manages to enter the next alley and then restart the
crossing step.

Fig. 10. Computed and applied steering angles. Blue line: computed
steering angles - Orange line: Applied steering angles - Green vertical
dashed line: beginning of the alley crossing - Red vertical dashed line:
beginning of the headland maneuver.

Finally, the computed and applied commands are displayed
in Fig. 10. As shown in this figure, the computed steering
angle tends towards 0 degrees during the alley crossings and
towards ± 18 degrees during the headland maneuvers, which
is consistent with the orchard layout. The variations are
mainly due to the variations of the computed tree coordinates.
Indeed, these latter are computed on the sole basis of the
current data and the results may differ from one iteration to
the other. As the command frequency rate is higher than the
steering angle capabilities, the robot path is not impacted by
these oscillations. This leads to appropriate overall behavior
and thus validates the control strategy.

V. CONCLUSION

This paper presents a novel multi-camera-based NMPC
strategy allowing autonomously navigating through vari-
ous shaped orchards without instrumentation. The proposed
method relies on an original fully vision-based computation
and update of the reference path and does not require any
map. The path following problem is expressed using the
NMPC framework, making easier the transition between in-
row and headland navigation and the constraints handling.
The approach has been implemented and validated through
an experimental campaign conducted in an orchard. The
obtained results show the relevance and efficiency of the
approach. Regarding future works, we plan to increase the
perception system robustness by adding a particle filter able
to track the trees and coupling the point processing to
an image-based tree detection. We also aim at integrating
new constraints in NMPC to avoid obstacles and to reduce
undesired vibrations due to rough terrains.
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Learned Long-Term Stability Scan Filtering for
Robust Robot Localisation in Continuously

Changing Environments
Ibrahim Hroob∗, Sergi Molina, Riccardo Polvara, Grzegorz Cielniak and Marc Hanheide

Abstract—In field robotics, particularly in the agricultural sec-
tor, precise localization presents a challenge due to the constantly
changing nature of the environment. Simultaneous Localization
and Mapping algorithms can provide an effective estimation
of a robot’s position, but their long-term performance may
be impacted by false data associations. Additionally, alternative
strategies such as the use of RTK-GPS can also have limitations,
such as dependence on external infrastructure. To address these
challenges, this paper introduces a novel stability scan filter.
This filter can learn and infer the motion status of objects in
the environment, allowing it to identify the most stable objects
and use them as landmarks for robust robot localization in
a continuously changing environment. The proposed method
involves an unsupervised point-wise labelling of LiDAR frames
by utilizing temporal observations of the environment, as well as
a regression network called Long-Term Stability Network (LTS-
NET) to learn and infer 3D LiDAR points long-term motion
status. Experiments demonstrate the ability of the stability scan
filter to infer the motion stability of objects on a real agricultural
long-term dataset. Results show that by only utilizing points
belonging to long-term stable objects, the localization system
exhibits reliable and robust localization performance for long-
term missions compared to using the entire LiDAR frame points.

I. INTRODUCTION

Accurate and reliable localization is essential for the au-
tonomous navigation of robots and self-driving vehicles, par-
ticularly in environments that undergo significant changes [1],
such as agricultural fields (Fig. 1). The Real-Time Kinematic
Global Positioning System (RTK-GPS) is a widely used lo-
calization technique in field robotics, where high precision is
required. RTK-GPS can provide localization accuracy of up
to a few centimeters by using a combination of satellite-based
positioning and ground-based reference stations [2]. However,
RTK-GPS systems come with certain limitations such as high
cost, reliance on subscriptions and external infrastructure,
susceptibility to environmental factors and weather conditions,
which can lead to degraded performance and reliability.

As an alternative, localization methods based on map build-
ing from onboard sensors, such as cameras [3] or LiDAR
[4], may offer more robust and accurate solutions at a lower
cost. LiDAR sensors, in particular, provide precise range in-
formation and has been found to be more robust than camera-
based localization, as it is immune to changes in illumination
and can provide accurate range information even in low-
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Fig. 1: The images show a visual comparison of the significant
changes in an outdoor agricultural orchard throughout the
season. The image on the left represents the initial stage of
the environment when deploying the robot in March, and the
right image represents the fully grown stage in June [5].

light conditions [6]. In this work, we focus on LiDAR-based
localization and its potential as a more reliable for autonomous
navigation in continuously changing environments such as
agricultural fields.

In agricultural environments or outdoor fields in general,
map-based localization systems often fail to perform reliable
localization for long-term missions over extended periods of
time (such as months or even years) due to constant changes
in the environment [7], resulting in the initial map becoming
quickly outdated. Simultaneous Localization and Mapping
(SLAM) algorithms have demonstrated robust performance
in estimating the robot pose in dynamic environments [8].
However, they are often prone to failure when used for long-
term operations due to false positives in data association be-
tween localization sessions. False positive cases occur when an
incorrect match is made between an object in the environment
and a sensor measurement, which is due to significant changes
between the map and the measurements. This problem has
been well documented in literature, for example in [9].

Despite the changes that could occur in the environment,
some parts of it remain static, which could be used as a
landmark for achieving accurate and reliable long-term lo-
calization. We hypothesise that a learned filter, capable of
distinguishing between static and dynamic parts of a scene,
will significantly enhance long-term localization accuracy by
reducing the impact of dynamic objects. To achieve this,
we propose an unsupervised scan filter learning for robust
robot localisation in long-term changing environments. This
method leverages previous observations to recognize objects
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Fig. 2: The BLT-Dataset was used to create a LiDAR scan visualization. The left image shows an aerial view of the scan
location, highlighting the stable structures in the environment. The middle image is the raw scan. The right image displays the
predicted spatial-temporal stability labels from LTS-NET, with points inferred into these categories: (a) fast-moving objects
such as humans, (b) visual appearance changing objects like seasonal vegetation changes, (c) ground plane points, and (d)
long-term stable points like those belonging to a building.

that maintain stability over time and generates training data for
a deep learning model. This model can then be used on future
scans to directly identify stable objects within 3D LiDAR
frames as illustrated in Fig. 2, allowing us to filter out dynamic
points and rely on stable structures for extended localization.

Our key contributions in this paper include: (1) an auto-
mated point-wise labelling method for LiDAR scans. (2) The
Long-Term Stability Network (LTS-NET), a regression net-
work designed to infer LiDAR points spatiotemporal stability.
(3) An analysis of a real-world long-term vineyard dataset
shows that using filtered scans enhances the accuracy and
robustness of 3D LiDAR localization algorithms that use scan
matching techniques, compared to using raw scans. (4) We
show that the trained regression model can directly predict
objects’ stability in a new environment without the need for
a prior sequence of temporal observations. The code of this
paper as well as our pre-trained model is available as a docker
image at https://github.com/LCAS/lts filter.

II. RELATED WORK

There have been numerous approaches proposed for long-
term localization, ranging from traditional methods based
on odometry and map-based approaches to more recent ap-
proaches that utilize deep learning techniques.

One common approach to long-term localization is to use
a pre-built map of the environment and match current sensor
readings to the map to determine the robot’s position. This
approach can be effective in environments with stable, distinct
features, but can be less reliable in environments with more
dynamic or changing features. To address this limitation,
some studies have explored the use of additional structural
information in the initial map to increase robustness, such
as Gaussian Mixture probabilistic maps [10]. Others have
extracted pole-like landmarks for long-term localization [11].

In some approaches to long-term localization, the map is up-
dated to reflect changes in the environment. Researchers have

addressed this in several ways. For instance, some studies have
accumulated visual experience of the same place over time
and used it for localization [12], [13]. This approach has been
shown to handle some level of environmental change, but can
lead to very large map sizes. Other solutions have employed
mathematical models to predict changes in the environment
[14], [15]. For example, FreMEn [14] is a frequency map
enhancement approach that considers regular feature points
in visual SLAM as a combination of harmonic functions. This
method has been shown to improve robot localization in indoor
and outdoor environments.

Another approach to long-term localization is the use of
temporal mapping, which involves building a temporary map
when global matching is unreliable and merging it with a pre-
built map for use in later localization runs [16]. However, this
approach may not be suitable for continuously changing envi-
ronments as the appearance can change dramatically, requiring
the method to enter the mapping phase repeatedly.

Recent advancements in long-term localization rely on the
utilization of deep learning models for extracting long-term
stable features, which could be either from 3D point cloud
data [17], [18] or visual data [19], [20]. The models can be
trained to identify stable features in the environment, such
as tree trunks or light posts, and use them as landmarks
for achieving long-term localization. However, these methods
primarily target urban structures and require manual annotation
of data for model training. The agricultural domain has seen
the development of visual localization and mapping techniques
to identify specific environmental features such as tree trunks
[21], [22]. These methods facilitate long-term operations but
are limited by the need for manual data annotation which is
prone to human error and time-consuming [23]. Additionally,
visual data is vulnerable to changes in lighting conditions [6].

In this paper, our method differs from existing state of
the art methods by eliminating the need for costly manual
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Fig. 3: The unsupervised data labelling pipeline for 3D LiDAR frames S : {S0, . . . ,Sn}. First we build a point cloud map Mk

using a SLAM system, then we assign the long-term stability labels to Mk by exploring the previous maps M0:k−1. Finally
the stability labels are projected back to the LiDAR frames by using there poses TWk

0:n .

annotation in labelling LiDAR frames. Our approach is data-
driven and capable of adapting to any environment. It leverages
the temporal characteristics of the environment’s history to
train a deep learning model, enabling it to learn about the
long-term stability of objects directly from LiDAR frames.

III. PROPOSED METHOD

We propose a generic learnable stability scan filter to learn
and extract the inherent stable structure (i.e. landmarks) of a
given environment from 3D LiDAR scans, then filter other
objects to achieve robust localization over extended periods
of time. To accomplish this, we utilize a temporal sequence
of 3D point cloud maps M0:k, and their associated LiDAR
frames {S}0:k. Our framework consists of an algorithm for
assigning spatiotemporal features for Mk with respect to
previous observations M0:k−1, then projecting those features
back to their associated LiDAR frames {S}k. Second, a neural
network, f(.), that learns the spatiotemporal features (i.e.
stability score) from the labelled LiDAR frames to predict
the spatiotemporal features of the next session {S}k+1.

A. Automated labelling of 3D LiDAR frames

Manual labelling of 3D LiDAR frames can be a challenging
and time-consuming task, especially when dealing with large
volumes of data [23]. It requires a significant amount of
human effort, and there is always the risk of human error.
Moreover, the type of labels applied to the point cloud of
LiDAR frames varies depending on the targeted application.
For instance, semantic segmentation tasks may benefit from
full class segmentation, while tasks such as distinguishing
moving from stable objects may only require binary labels. In
this work, we investigate the utilization of continuous labels
to represent the spatiotemporal stability of the point cloud.

The continuous labels are assigned based on the points of
a spatiotemporal dependency across multiple time slices of
the environment. The spatiotemporal information can capture
objects’ long-term motion status. To label the LiDAR frames,
we first build a point cloud for all the observations, perform
the labelling on them, then we project the labels back to the

frames. The pipeline is summarized in Fig. 3, here the process
in more detail.

Maps labelling To accurately label points in the map based
on their long-term stability, our approach requires at least two
observations of the environment. Given the LiDAR frames
S : {S0, . . . ,Sn} (n is the number of the frames) and IMU
data for each observation, we first build a point cloud map
using mapping system (such as FAST-LIO [8]), and we save
the transformation matrix TWk

0:n ∈ R4 for each LiDAR frame,
where Wk is the world frame of the point cloud map k.

Second, while building the point cloud map, we also con-
struct an occupancy probability map using OctoMap [24]. This
step allows for the representation of uncertainty about the
state of the environment, which is useful when calculating
the points’ features at later stages. The resulted point cloud
map with its occupancy probability is represented as follows:

Mk = {P 1,P 2, . . . ,Pm},

ρ(P ) = p(P |Ok),
(1)

where P i = (xi, yi.zi),P i ∈ R3 is the 3D coordinate of the
i-th point, m is the total number of points, Ok is the octree
data structure that represents the 3D occupancy grid and ρ(P )
is the probability of a point location exists in a given state
(occupied, free or unknown) based on Ok, where unknown in
this context means that the location of the point was either not
scanned or occluded by other objects.

Then we segment the ground plane using the Cloth Simula-
tion Filter (CSF) [25], where MOG

k ,MG
k = CSF (Mk) that is

Off-Ground and Ground maps respectively. We assign a value
of 0 to all ground points to ensures the points are labelled with
the same value (the labelled ground is denoted as MG,L

k ), and
segmenting MG

k increases the disparity when calculating the
points’ features at later stages for the off ground maps.

To ensure robust data association between the temporal
observations, we geometrically align all the off-ground point
cloud maps w.r.t the initial off-ground map. To achieve that
we utilize the Iterative Closest Point (ICP) [26] algorithm to
perform the registration (i.e. alignment) process. The resulting
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transformation matrix TMOG
0

MOG
k

, where MOG
k and MOG

0 denote
the off-ground point cloud maps of the k-th and initial point
cloud map respectively, is then used to transform the nodes
of the associated octomap Ok and the labelled ground plane
MG,L

k to the new coordinates of the transformed map.
In the next step, we extract the stability features, referred to

as labels, from the off-ground point cloud maps. The process
of feature extraction, also known as labelling, is outlined in
Algorithm. 1. Initially, we select a map to be labelled (MOG

k ).
For each point P ∈ MOG

k , we first find the occupancy
probability ρ(P ) of the point location in occupancy grid Oi

of the query map MOG
i , if the location is not occluded we

find the closest point q using k-Nearest Neighbors (KNN )
algorithm, then we compute the spatial distance (d) between
P and q and append it to the distance vector d = [d, d]. On
the other hand, if the point location was occluded, we append
−1 to the distance vector d = [d,−1]. After querying all other
maps, the point label l of P is set using the maximum spatial
distance of d as a feature, then we map the value using the
cumulative distribution function of an exponential function as
follows:

P .l = 1− e−max(d), (2)

where the final label value is a score bounded between 0 and
1 indicating the point spatiotemporal stability.

At the end of the labelling process, the labeled map may
contain some noise due to occlusion or mislabeled points. To
fix this, we introduce a Voting Median Filter (VMF) based on
the labels of nearest neighbors points:

fmed(i) = median{lj | j ∈ NN i(kn)}, (3)

fmed(i) is the filtered label for the point P i, lj is the label of
the point P j , NN i(kn) is the set of kn nearest neighbors of
point P i, and median is the median function that returns the
middle value of a set of values. An illustration of the impact
of applying VMF on the labelled map is presented in Fig. 4.

Fig. 4: The impact of applying the VMF on the raw spatiotem-
poral feature map can be seen on the right, resulting from the
input on the left which depicts part of a building.

Finally, the filtered labeled off-ground map will be com-
bined with the corresponding ground point cloud map MG,L

k ,
to form the final labelled map ML

k = MOG,L
k ∪MG,L

k , which
will be used for labelling the LiDAR frames. In summary our
approach for labelling the points is based on the assumption
that long-term stable objects should appear in the same ge-
ometrical location across all temporal observations, thus the
associated label value should be smaller compared to dynamic
objects.

Algorithm 1: Unsupervised point-wise labelling algo-
rithm
inputs : A set of filtered and aligned maps MOG

0:k

output: A labeled map ML
k

foreach P ∈MOG
k do

Initialize closest distance vector: d = {}
foreach MOG

i ∈MOG
0:k−1 do

if p(P |Oi) ̸= Unknown then
q ← KNN(MOG

i ,P )

d.append(
√∑3

i=1(qi − pi)2)
else

d.append(−1) ▷ P is occluded in MOG
i

Point label: P .l = 1− e−max(d)

Filter MOG,L
k using median filter Eq. 3

ML
k = MOG,L

k ∪MG,L
k

LiDAR frames labelling: To propagate the features/labels
from the labelled map ML

k back to its LiDAR frames S :
{S0, . . . ,Sn}, we first transform the frame Si coordinate to
its associated map ML

k coordinate using the transformation
matrix TMOG

0

MOG
k

.TWk
i , where i ∈ n is the frame number. Then,

we use nearest-neighbour interpolation to propagate the labels
back to the frame. Finally, we transform the frame back to its
original coordinates.

B. LTS-NET

We present the Long-Term Stability NETwork (LTS-NET)
Fig. 5, a regression network that is capable of learning
the spatiotemporal labels from the auto labelling algorithm
directly on point cloud data. LTS-NET utilize the PointNet++
architecture [27], which has been shown to be effective in
processing point cloud data directly. The input to the LTS-
NET is a 3D LiDAR frame, represented as sets of 3D point
coordinates Si : {(x0, y0, z0) , . . . , (xnn, ynn, znn)}, where
nn is the number of points in the frame (we only utilize the
points coordinates as a features).

LTS-NET Encoder: In the encoder component, we employ
4 abstraction layers (down-sampling and feature concatenation
layers) to aggregate local features from the previous layer into
a global feature representation for each point set. To maintain
consistent abstraction across layers and prevent information
loss or distortion due to varying levels of down-sampling, we
use equal numbers of input points in the first two layers (2048
points) and in the last two layers (1024 points). The features
sampling radius for each input point across the layers is set to
0.2, 0.4, 0.8, and 1 m, respectively, to facilitate the learning
of local geometry and its spatiotemporal stability

LTS-NET Decoder: In the decoder, we use 4 feature prop-
agation layers (up-sampling layers) to restore point features
from a down-sampled point cloud to its original form. This
layer takes the global features from the previous layer and
updates the features of each point by considering its local
neighborhood.
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Fig. 5: The LTS-NET is a point-wise network designed to
infer spatiotemporal stability of 3D LiDAR frames. The input
frames Si are processed by SDL, which divides the frame
into a predefined number of slices, N , as expressed in Eq. 5.
The SDL passes each slice, sj , to the network for processing.
The slices are then merged at the output of the network to
form the original frame. This allows the network to infer the
spatiotemporal stability of each point in the frame accurately.

The final output layer uses a Sigmoid function to bound
the output values between 0 and 1. To supervise the training
process, we used the Root Mean Square Error as a cost
function, given by:

L = (
1

N

N∑

i=1

(li − l̂i)2)
1
2 , (4)

here N is the number of points that goes into the first layer of
LTS-NET multiplied by the training batch size, li and l̂i are
the true and predicted stability values of the i-th point.

LiDAR frames data loader: to process the LiDAR frame
effectively by the network, we introduce the Slices Data
Loader (SDL). The SDL divides the LiDAR frame into N
slices, with a slice angle of ψ = 2π/N , where N ≥ 1.
The slice points are found by using the azimuthal angle θ
of the spherical coordinates of the LiDAR frame, which is
calculated as θ = arctan2(y,x), where y and x are the
Cartesian coordinates of the frame points. The slice points
sj are then obtained using the following equation:

sj = (S|(θ ≥ ϕ(j)) ∩ (θ < Φ(j))), (5)

where j ∈ N is the slice number, S is the LiDAR frame
and ϕ(j) = j × ψ and Φ(j) = (j + 1) × ψ. Using the SDL
enables the network to effectively learn regression by capturing
most frame features. It prevents sub-sampling issues in the
initial layer and avoids enlarging model layers, making it less
resource-intensive and easier to train on mobile platforms.

IV. EXPERIMENTS

A. Dataset

To demonstrate the effectiveness of our system in learning
stable objects and achieving robust localization in a season-
ally changing environment, we conducted experiments using
the Bacchus Long-Term (BLT) dataset [5]. This dataset was
collected in a semi-structured agricultural setting, specifically
a vineyard, and includes data captured over a period of several
months. During this time, the robot traversed a set of paths

that intersected with each other, making it an ideal testbed
for evaluating long-term localization algorithms. The traversed
paths in the dataset are presented as a topological map in
Fig. 6. The environment in the dataset includes a variety of
objects that change at different rates, including static objects
like buildings and other structures, slow dynamic objects
such as vegetation, and fast dynamic objects like people who
accompanied the robot during the data collection sessions.

The mobile robot in the BLT dataset is equipped with
various sensors, including an RTK-GPS and an OS1-16 Li-
DAR sensor. The full list of sensors can be found in [5].
During the experiments, the RTK-GPS was used as the ground
truth signal for the robot’s pose, while data from the OS1-
16 LiDAR sensor was used to test algorithms. The test path
is B → G → H → C as shown in Fig. 6, which have a
total length of 105 m. The experiments were conducted on
six different sessions in 2022: April 6th, April 20th, June 1st,
June 8th, June 29th, and July 13th. We use April 6th data to
create the base map for localizing in the subsequent session.

Fig. 6: The topological map for the traversed paths in BLT-
Dataset. The traversed path that we used for our experiments
is highlighted in red.

The data labelling is performed as explained in Sec. III-A,
then the labelled data is used to train a deep regression model
to be used later to infer the stable points of the data (LiDAR
frames) of the upcoming session. For instance, the labelled
data of June 1st is labelled w.r.t previous two sessions that are
April 6th and April 20th, then we train the network, in which
we call LTS-JUNE-1 (based on the training data), to infer the
long term stable objects of the next session June 8th LiDAR
frames.

To evaluate the performance of the network, we used two
metrics: root mean squared error loss (L) and the coefficient of
determination, also known as R-Squared (R2), which is often
considered a more meaningful metric for evaluating regression
models [28]:

R2 =

∑N
i=1(l̂i − l̄)2∑N
i=1(li − l̄)2

, (6)

here N represents the number of labels, li is the label value for
the i-th point, l̂i is the predicted label value from the network,
and l̄ is the mean of the ground truth labels.

LTS-NET training: To train the network, we split the
LiDAR frames of the sessions into 80% training and 20%
validation data. The training was conducted on a workstation
with an Intel Core i7-6850K CPU, 64GB of RAM, and two
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NVidia GTX 1080ti GPUs with 12GB of RAM each. The
model was implemented using the PyTorch framework. We
used an initial learning rate of 0.001, momentum of 0.9, and
trained the model for 90 epochs for each network. The training
time for the models was approximately 40 hours. The training
results are summarized in Tab. I.

TABLE I: Networks training performance on different ses-
sions. The metrics represent the average value.

Network Training session L R2

LTS-APRIL-20 April 20th 0.124 0.784
LTS-JUNE-1 June 1st 0.127 0.897
LTS-JUNE-8 June 8th 0.131 0.888
LTS-JUNE-29 June 29th 0.114 0.916

LTS-NET inference: Table II summarizes the network’s
inference performance on different sessions. As shown, LTS-
APRIL-20 network had a poor performance with a negative
R-Squared value, indicating that it was unable to accurately
explain the data from June 1st. This may be due to the
significant time gap between April 20th and June 1st, which
resulted in a significant change in the appearance of the
environment due to plant growth. However, the performance
improved for the subsequent sessions as the appearance of the
environment remained similar.

TABLE II: Networks inference performance on different ses-
sions. The metrics represent the average value.

Network Inferred session L R2

LTS-APRIL-20 June 1st 0.427 -0.200
LTS-JUNE-1 June 8th 0.238 0.618
LTS-JUNE-8 June 29th 0.231 0.642

LTS-JUNE-29 July 13th 0.221 0.680

B. Evaluating localization performance

To evaluate the effect of filtering dynamics from LiDAR
scans on long-term localization performance, we compare the
localization performance of the filtered scans with that of the
raw scans. All localization experiments were performed on
an off-ground static map from April 6th as a base/reference
map. The off-ground map used because the ground plane
does not provide unique features for achieving long-term
localization and can potentially lead to incorrect convergence
of the localization package due to its size compared to the rest
of the map. Therefore, we filter it out of the base map.

For localization, we use the HDL localization package 1,
which is a 3D localizer based on the Normal Distribution
Transform (NDT) [29] method. The filtered scans were ob-
tained by thresholding the network predictions. During our
experiments, we found that a threshold of ϵ1 = 0.9 is sufficient
to filter out slow and fast dynamic points.

To evaluate the performance of the localizer, we use the
Mean and the Root Mean Square Error (RMSE) of the Ab-
solute Trajectory Error (ATE), which measures the difference

1https://github.com/koide3/hdl localization

between a device’s true and estimated trajectories in a global
coordinate system [30]. The true (ground truth) position in
our setup is the pose from RTK GPS. Table III summarize the
localization performance.

The metrics presented in Table III provide information on
the accuracy of the system, but do not reflect its robustness.
To evaluate the robustness of the system, we use the empir-
ical Cumulative Distribution Function (CDF). This metric is
commonly used to assess the registration accuracy between
a reference scan and an input scan, as explained in [31].
However, it can also be used to assess the robustness of a
localization system, as demonstrated in [32]. The CDF plots
for the translational and rotational errors are presented in
Fig. 7.

Fig. 7: The CDF plot is comparing the localization translation
and rotational error of raw scans to the localization translation
error of filtered scans for different sessions.

C. Results discussion

The localization performance for the April 20th session was
evaluated using raw scans only as it was the second session,
and there were not enough observations to train a network
to infer April 20th scans. The localization performance was
still the best among all sessions because the appearance of
the environment did not change much between April 20th
and April 6th. For the reset of the sessions the filtered scans
resulted in improved robustness and performance for the
localizer, as presented in Tab. III and in figure 7. However,
on June 1st the localization performance was similar for both
raw and filtered scans due to the failure of the LTS-APRIL-20
network to infer dynamic points in the LiDAR scans of June
1st, with identical CDF plots for both scans types. We attribute
this to the lack of examples of dynamic objects/structures in
the April data, as the vineyard was only in the early stages of
vegetation at that time.

For the June 8th localization session, the LTS-JUNE-1
model demonstrated slight improvement in localization ro-
bustness and accuracy, with a mean error of 0.216 m for the
entire estimated trajectory compared to 0.228 m for the raw
scans. The raw scans showed good performance, which can
be explained by a trimming process that occurred between
June 1st and June 8th, resulting in fewer dynamic objects
in the environment as shown in Figure 8. On June 29th,
the filtered scans demonstrated superior performance and
robustness compared to the raw scans. For example, the mean
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TABLE III: Localization performance for robot position (pos) estimation of the raw scans compared the filtered scans. The
metrics used are RMSE, Mean and std of the ATE, the units are all in m.

Session Raw Network Filtered
ATERMSE

pos ATEMean
pos (std) ATERMSE

pos ATEMean
pos (std)

April 20th 0.186 0.179 (0.048) — — —
June 1st 1.206 0.743 (0.951) LTS-APRIL-20 1.176 0.731 (0.921)
June 8th 0.300 0.228 (0.195) LTS-JUNE-1 0.239 0.216 (0.103)
June 29th 2.994 1.250 (2.721) LTS-JUNE-8 0.890 0.395 (0.795)
July 13th 2.199 0.903 (2.005) LTS-JUNE-29 0.295 0.234 (0.179)

localization error for the entire trajectory was less than 0.4 m
for the filtered scans, while it was 1.25 m for the raw scans.
Similar results were observed on July 13th, indicating that the
LTS-NET was able to successfully identify and filter in the
long-term stable objects.

(a) Vine rows for June 1st (b) Vine rows for June-8th

Fig. 8: Comparison between the orchard rows in June 1st and
June-8th indicating that a pruning process occurred between
the two sessions, which resulted in fewer dynamic elements.

Despite the fact that the translational error was smaller for
the filtered scans, the rotation error was similar for both types
of scans, as illustrated in Fig. 7. This can be attributed to the
robot’s movement pattern, which consisted of traversing in
straight lines within the rows of vines and only performing
rotations at the end of the rows where stable structures
were more pronounced. This enabled the localizer to robustly
estimate the robot’s heading angle for both types of scans.

D. Evaluating LTS-NET inference in a new environment

The motivation behind this experiment is to evaluate the
performance of LTS-NET which has been trained on the
temporal stack data from the BLT dataset in a completely new
vineyard environment. The aim is to demonstrate that once
the LTS-NET has learned long-term spatiotemporal stability,
it can be applied directly in a new environment that lacks prior
observations. To this end, data were collected in an initial-state
vineyard (as shown in Fig. 9), over two sessions, primarily
to generate labels for evaluating the LTS-NET’s inference
performance. The results show that the network exhibits an
acceptable evaluation loss (L = 0.245) and coefficient of
determination (R2 = 0.216) in this new environment. This
suggests that the model is capable of providing plausible
estimates of object stability, as demonstrated in Fig. 9-d, where
the model correctly identifies the human as a dynamic object
and the poles in Fig. 9-e as static/stable objects.

Fig. 9: Using the regression model learned from the BLT
dataset in a new vineyard setting. (a) The image of the new
field. (b) Displays a LiDAR frame with its predicted points
stability labels. (c) A zoomed-in photo highlights some of the
inferred features. (d) The individual accompanying the robot
is considered dynamic based on inference. (e) The poles in the
environment are considered stable objects through inference.

V. CONCLUSION

In this paper, we have proposed a novel spatiotemporal
data-driven point-wise filter for learning long-term stability
landmarks for robust localization in a continuously changing
environment. The system utilizes an unsupervised labelling
algorithm for 3D LiDAR scans to generate spatiotemporal
point-wise stability scores based on multiple observations
of the environment, and a point-wise regression network
called LTS-NET to infer the stability of objects from 3D
LiDAR frames. Through experimental evaluation, we have
demonstrated the effectiveness of our approach in filtering
dynamic elements from the scans and achieving robust, long-
term localization performance. Furthermore, LTS-NET showed
good performance when inferring object stability on LiDAR
data from a completely new environment.

While the system demonstrated the ability to learn long-
term stable features and use them to achieve robust local-
ization over time, there are still some limitations that could
potentially compromise the overall system. These limitations
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can be summarized as follows: (1) Our unsupervised labelling
algorithm relies on the accuracy of ICP map alignment; thus
if this step fails, incorrect features may be associated with the
points, which will impact the learning and filtering process.
This issue could be addressed by introducing some manual
intervention by a human operator. (2) The LiDAR resolution
is another factor that affects the robustness of the system.
A higher resolution allows the system to extract and learn
more stable features, resulting in increased robustness. (3) The
current implementation of LTS-NET has an inference time of
approximately 2 frames per second.

As for future work, we aim to optimize the LTS-NET net-
work architecture and code to enable real-time performance.
In addition to that, further qualitative analysis is required to
verify the transferability of the model to different domains,
particularly with regard to seasonal changes, as the necessary
data is currently unavailable.
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Abstract—Rigid registration of point clouds is a fundamental
problem in computer vision with many applications from 3D
scene reconstruction to geometry capture and robotics. If a
suitable initial registration is available, conventional methods like
ICP and its many variants can provide adequate solutions. In
absence of a suitable initialization and in the presence of a high
outlier rate or in the case of small overlap though the task of rigid
registration still presents great challenges. The advent of deep
learning in computer vision has brought new drive to research
on this topic, since it provides the possibility to learn expressive
feature-representations and provide one-shot estimates instead of
depending on time-consuming iterations of conventional robust
methods. Yet, the rotation and permutation invariant nature of
point clouds poses its own challenges to deep learning, resulting
in loss of performance and low generalization capability due to
sensitivity to outliers and characteristics of 3D scans not present
during network training.

In this work, we present a novel fast and light-weight network
architecture using the attention mechanism to augment point
descriptors at inference time to optimally suit the registration
task of the specific point clouds it is presented with. Employing
a fully-connected graph both within and between point clouds
lets the network reason about the importance and reliability of
points for registration, making our approach robust to outliers,
low overlap and unseen data. We test the performance of our
registration algorithm on different registration and generaliza-
tion tasks and provide information on runtime and resource
consumption. The code and trained weights are available at
https://github.com/mordecaimalignatius/GAFAR/.

I. INTRODUCTION

Rigid registration of point clouds is the task of simultane-
ously inferring both pose and correspondences between two
sets of points [1]. As soon as either pose or correspondences
are known, estimation of the respective other is straight
forward, yet doing both simultaneously is posing challenges
in computer vision and robotics. Its importance in tasks such
as pose estimation [2], [3], map-building and SLAM [4],
[5] as well as localization tasks geared towards autonomous
driving [6] fuel the research interest in registration algorithms.

ICP and its many variants [7], [8], while able to provide
exceptional results for good initializations, tend to get stuck
in local minima if the initialization is insufficient, in the
presence of high outlier rates, or in cases with low overlap.
Attempts to resolve this range from methods using branch-
and-bound to infer a globally optimal solution [9], methods
based on feature matching between key-points followed by

979-8-3503-0704-7/23/$31.00 © 2023 IEEE

Fig. 1. Registration example on high quality real world scans captured with a
handheld 3D scanner (left) and examples of the (meshed and textured) object
scans available in the custom dataset used for testing generalization ability
(right).

robust matching strategies [10], [11] and in recent years
deep neural networks for learning feature descriptors and
matching [12], [13], [14], [15]. Yet both, branch-and-bound as
well as robust matching, suffer from speed and accuracy issues
in real-life application due to the high number of iterations
necessary in cases of high outlier ratios. Deep-learning based
methods usually fare better with regard to outliers, yet still
struggle due to the contradiction between low distinctiveness
of local point-features caused by topological similarities and
low match recall of global features in low-overlap cases. A
further drawback of algorithms using deep neural networks
often is their high requirements concerning compute resources,
limiting their use in mobile applications.

To tackle these challenges, we propose GAFAR: Graph-
Attention Feature-Augmentation for Registration, which em-
ploys deep-learning techniques not only for extraction of
meaningful local features from point sets, but also for learning
an adaptive augmentation network for online transformation
of local features for robust matching. We achieve this by
exploiting structural information from between point sets as
well as from within a single one thorough an architecture of
interleaved self- and cross-attention layers [16], [17]. While
achieving state-of-the-art registration performance, our method
is light-weight and fast.

We demonstrate this in a series of experiments, testing not
only registration performance on the dataset used for training,
but also robustness and generalization ability in two further
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experiments on vastly different datasets of real world scans,
one captured with a handheld 3D scanner producing precise
scans, the other being the Kitti Odometry Dataset [18] showing
street scenes captured by a LiDAR scanner. Furthermore, we
provide insight into runtime and resource needs. The main
contributions of our method are:

• We demonstrate the use of transformer networks and the
attention mechanism to build a fast and light-weight, yet
accurate registration algorithm.

• We present an online feature augmentation strategy in
registration which proves to be superior in terms of
robustness to partial overlap and geometries not seen
during training.

• We show how certain design-choices enable us to esti-
mate the registration success without knowledge of the
true transformation, enabling its use in applications that
require fail-safes.

• We demonstrate state-of-the art performance and superior
generalization capability in a light-weight package.

II. RELATED WORK

One of the oldest, yet still relevant methods for registration
of point clouds is ICP [19]. Starting from an initial align-
ment, ICP iteratively updates the registration parameters by
establishing point correspondences using Euclidean distance,
rejecting far away point pairs. Due to this design it is prone
to get stuck in local minima, the final registration accuracy
heavily depends on the initialization. Many variants have been
proposed over the years [7] to mitigate these issues, yet the
dependence on the initialization has remained.

Several registration algorithms trying to solve the depen-
dence on initialization have been proposed [9], [20], alongside
of handcrafted feature descriptors trying to capture local ge-
ometry of point clouds in a meaningful way, such as PPF [21]
and FPFH [22], among others [23]. Yet, they never managed to
reach the performance and robustness of their 2D counterparts.

Recent advances in deep-learning extend deep neural net-
works to 3D point clouds and have resulted in methods
for learned local feature descriptors like PointNet [24], [25],
FCGF [12], Graphite [26] and DGCNN [27], learned filtering
of putative point matches [28] and complete learned registra-
tion pipelines. 3DSmoothNet [29] extracts a local reference
frame and voxelizes the point cloud around key points, yet
reference frame estimation is susceptible to outliers, voxeliza-
tion tends to loose information due to spatial discretization.
PointNetLK [14] estimates registration parameters to match
the deep representations from PointNet of complete point
clouds, DCP [15] uses DGCNN to extract point features and
the attention mechanism [16] to predict soft correspondences,
restricting their application to registration of point clouds with
high overlap. Research into Pillar-Networks [6], [30] is driven
mainly by automotive applications for processing of LiDAR
point clouds from mobile mapping systems, assuming the
input point clouds to share a common z=up orientation. They
extract cylindrical point pillars along the z-axis around key
point locations for further processing, and are therefor not

applicable to general registration problems or when the as-
sumption of z-axis alignment can not be guaranteed. Keypoint
based methods like [31] aim at detecting repeatable keypoints
across scans, and registering them using powerful descriptors.
In contrast [32] uses a detection-free approach with a local-
to-global detection strategy using superpoints. IDAM [33]
tackles inaccuracies arising from inner product norms for
feature matching with an iterative distance-aware similarity
formulation. DeepGMR [34] recovers registration parameters
from Gaussian Mixture Models, parameterized using pose-
invariant correspondences. RPM-Net [35] predicts annealing
parameters and predicts correspondences with annealing in
feature matching and the Sinkhorn Algorithm [36] as solver for
linear assignment, predicting soft correspondences. RGM [37]
explicitly builds and matches graphs within point clouds to
resolve ambiguity issues between locally similar patches and
predicts hard correspondences using the Hungarian Algorithm.

In contrast to [37], we use graph matching for feature aug-
mentation before matching, but do not match graphs extracted
from point clouds explicitly. Similarity between the internal
point cloud structures is handled by our method implicitly
using cross-attention modules. Our method predicts hard cor-
respondences by thresholding of the assignment matrix after
running sinkhorn iterations, interpreting the correspondence
estimation as optimal transport problem of the feature corre-
lation matrix.

III. PROBLEM FORMULATION

Rigid registration of two 3D point sets is the task of finding
a transformation consisting of a rotation matrix R ∈ SO3 and
a translation vector t ∈ R3 aligning input point set PS =
{pi ∈ R3|i = 1, ...,M} to the reference point set PR = {pj ∈
R3|j = 1, ..., N}. Here M and N denote the respective sizes
of the point sets.

The underlying assumption is, that both point sets are
sampled on the same surface or the same object and share at
least some common support (i.e., the physical location where
the object has been sampled does actually overlap). In the most
general case, point sets PS and PR may not have any true
correspondences between them, may suffer from outliers and
additive noise and they may only share parts of their support,
resulting in only partial overlap.

Given a set of corresponding points between two point sets,
the rigid transformation aligning both sets can be recovered
using SVD. This approach relaxes the task of estimating a
rigid transformation to that of finding pairs of corresponding
points between both sets. Since the transformation obtained
using SVD aligns the point pairs in a least-squares sense, this
formulation directly lends itself to the case where no exact
matches exist.

Hence, the task of rigid point set registration can be formu-
lated mathematically as:

C∗ = argmin
C

( N∑

j

M∑

i

ci,j∥RCpi + tC − pj∥2
)
, (1)
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where C ∈ {0, 1}M,N is a permutation matrix subject to row
and column constraints

∑M
i Ci = 1N and

∑N
j Cj = 1M ,

associating the points between both point sets. The transforma-
tion parameters RC and tC refer to those recovered by SVD
using the point pairs designated by permutation matrix C. To
handle the case of partial overlap, the permutation matrix is
augmented by a row and column to C ∈ {0, 1}M+1,N+1,
while relaxing the constraints on rows and columns of C to

M∑

i

Ci ≤ 1N ,

N∑

j

Cj ≤ 1M . (2)

In practice, this formulation can be solved by augmenting
an initial full point feature correlation matrix with an addi-
tional row and column and solving the relaxed optimization
problem as the optimal transport problem [38], [39], using the
Sinkhorn Algorithm as differentiable implementation of the
linear assignment problem [36], [17].

IV. THE MAKING OF GAFAR
The key idea behind our network architecture is to adapt

initial local per-point feature descriptors FS of a source point
set PS for correspondence matching in an online fashion
by injecting information of the reference point set PR. The
reasoning behind this is, that for successful point matching
neither only local geometric structure (which may be repetitive
or non-distinctive) nor fully-global information (which in case
of partial overlap may encode information of areas which
are not shared) is sufficient. The relevant information for
successful point matching lies solely within the topology of
the overlapping area as well as the relative position of points
within this area. Our architecture takes two point sets PS

and PR, represented as point locations in Euclidean coordi-
nates together with their respective point normals, as input.
Internally, the network architecture consists of a feature head
generating per-point features for both point sets independently,
as well as an augmentation stage inspired by [17], consisting
of interleaved self- and cross-attention layers. This allows the
network to reason jointly over both sets of feature descriptors,
adapting them iteratively into representations optimally suited
for finding high-quality correspondences between those two
specific point sets. Matching is done by calculating the dot-
product similarity between all possible pairings of the resulting
feature descriptors F̂S and F̂R, relaxing the match matrix by
adding a slack row and slack column and running the Sinkhorn
Algorithm a predefined number of iterations, as in [17], [35].
The network weights are shared between the two branches
processing PS and PR, turning the architecture into a fully-
siamese network [40]. Figure 2a depicts an overview of the
architecture, the different building blocks are explained in
greater detail in the following subsections.

A. Local Feature Descriptor Head

Our feature head, depicted in Figure 2b, consists of two
main building blocks, a local feature encoder with a neigh-
bourhood size N and a point-wise location encoder Multi-
Layer Perceptron (MLP). Both take point locations within the

unit-circle and their respective normal vectors as input. As
point-feature network we employ an architecture derived from
DGCNN [27], extended by an MLP functioning as a bottleneck
to reduce the feature dimensionality to a more suitable size. A
basic layer of this architecture embeds the lower-dimensional
representation into a higher dimensional local representation
with a nonlinear transformation by applying a MLP on point
patches consisting of the N nearest neighbours of each point
pi, followed by max-pooling over the patch and normalization.
Information is aggregated via multiple layers and concatena-
tion until a high-dimensional internal representation FI ∈ Rd

of the local point neighbourhood is reached. Our point-wise
location encoder is implemented as a pure point-wise MLP,
for each point p in point set P embedding its position in
Euclidean space into a high-dimensional feature space, again
of size Rd. The output of both, the feature encoder and the
position encoder, are then concatenated and projected back to
Rd by a small point-wise MLP.

B. Graph-Attention Feature-Augmentation Network

The purpose of the graph attention network for feature
augmentation is to optimize the feature representations FS

of the input point set PS at inference time for correspondence
search by infusing knowledge of the reference point set PR,
and vice versa. To this end, we build the feature augmentation
sub-network as a stack of alternating self- and cross-attention
layers, interleaved with normalization layers. The architecture
of the attention layers is depicted in Figure 2c, implementing
a residual block with message passing for feature update. We
set the feature-augmentation network up as a stack of fully-
connected graph-attention layers, thereby letting the network
learn which connections are relevant for the current point
feature from all possible connections and to only attend to
those via Multi-Head Softmax-Attention. This allows to embed
information of the relevant topology from both within and
between point-sets in an iterative fashion into the feature
descriptors, resulting in two sets F̂S : {fi ∈ Rd, i = 1, ...,M}
and F̂R : {fj ∈ Rd, j = 1, ..., N} of point features for
matching.

C. Feature Matching

After feature augmentation, matching is done by calculating
the similarity score matrix S ∈ RM,N between the point
feature descriptors Fm

S and Fm
R of all possible point pairs

pi,j = {pi ∈ PS , pj ∈ PR} using dot-product similarity:

S : si,j = ⟨fi, fj⟩ . (3)

Since we are interested in finding point-correspondences,
we interpret the optimization problem of equation (1) in terms
of the optimal transport problem [39], using the similarity
score S as its cost. We find an approximate solution C∗ by
adding a row and column of slack variables to S as detailed
in equation 2 and applying a few iterations of the Sinkhorn-
Algorithm as a differentiable approximation to the Hungarian
Algorithm for the solution of optimal transport [36], [38], [41].
Finally, we threshold the resulting approximate permutation
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(a) Overview of the network architecture of GAFAR.

(b) Feature head configuration. (c) Detailed architecture of the attention layers.

Fig. 2. Architectural details of GAFAR. Figure (2a) shows an overview of the network architecture, sub-figures (2b) and (2c) the structure of the feature
head and the attention layers, respectively.

⊗
denotes matrix multiplication,

⊕
concatenation.

matrix C∗ by threshold tm ∈ [0, 1] and take mutual row- and
column-wise maxima as point correspondences for calculation
of the rigid transformation {R, t} aligning the point sets using
SVD.

D. Loss

As loss for network training we employ the binary cross
entropy loss between the predicted permutation matrix C∗ and
the ground truth correspondence matrix Ggt:

LBCE = −
∑

i,j

gi,j log ĉi,j + (1− gi,j) · log(1− ĉi,j). (4)

V. EXPERIMENTS

In order to evaluate the performance of our proposed
registration method, we perform two experiments. The first
experiment V-A tests the performance on synthetic data of
ModelNet40 [42] for different settings of noise and overlap.
The second experiment described in section V-B tests the
generalization ability using LiDAR point clouds of the Kitti
Odometry Benchmark [18] and custom high-quality real-world
object scans, using only models trained on synthetic data in
the experiment of section V-A.

Throughout the experiments, we have chosen the following
parameters for our network: The feature dimension is chosen
as d = 128, the number of layers and layer dimensions
in the feature encoder of the feature head follows the pa-
rameterization of DGCNN [27] with a neighbourhood size
of N = 20. The location encoder is chosen as a 4 layer

MLP with layer dimensions [16, 32, 64, 128]. Our feature-
augmentation graph-attention network consists of 9 stacks of
consecutive self- and cross-attention layers with 2 attention
heads. For normalization, batch-norm is chosen throughout the
network. The number of Sinkhorn-iterations is set to 10 for
both, training and inference. We train the network on a single
registration iteration per example, testing is done with a second
iteration, feeding the source point cloud aligned by the result
of the first iteration again through the network.

Model training usually converges after training for two days
using AdamW optimizer with learning rate 1e−4 on a Nvidia
GeForce RTX3090 (between 800 and 1000 epochs).

A. Experiments on ModelNet40

ModelNet40 consists of 12, 311 meshed CAD models in 40
object categories, spanning a vast array of scales from chairs
to airplanes. Consistent with previous work, we use the pre-
sampled point clouds provided by Shapenet [43], consisting
of 2048 points per model to conduct the experiments. For
easy comparison we follow the setup of [37] and perform the
same experiments. All experiments with exemption of subsec-
tion V-A4 follow the official training and testing split, with an
additional 80:20 split of the official training set for training
and validation. The experiment described in subsection V-A4
uses the first 20 object classes of the training set for training,
the first 20 object classes of the test set for validation and
the remaining 20 classes for testing. The point clouds already
come scaled to fit within the unit circle, therefor all measures
related to point distance are given in a normalized scale. As
in [37], we sample 1024 points at random from the point
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clouds and apply random rotations within [0◦, 80◦] around
a random axis and random translations within [−0.5, 0.5] in
normalized units.

Registration performance in measured using the same met-
rics as [37], that is residual transformation errors of {R, t} as
mean isotropic errors (MIE) as proposed by [35], as well as
clipped chamfer distance (CCD) between reference point cloud
Y and transformed source point cloud X̂ after registration:

CCD(X̂,Y) =
∑

x̂i∈X̂

min(min
yj∈Y

(||x̂i − yj ||22), r)

+
∑

ŷj∈Y

min(min
x̂i∈X̂

(||x̂i − yj ||22), r),
(5)

with clip distance r = 0.1. Furthermore, we report registration
recall (RR), defined as percentage of registration results with
residual errors MAE(R) < 1◦ and MAE(t) < 0.1. To keep
consistent with previous research, we also state the residual
transformation errors in terms of mean absolute errors (MAE)
as proposed by [15], which is anisotropic. Errors related to
rotations are given in degrees, errors related to distance are
normalized to object size (since the data in ModelNet40 does
not have a common scale and is normalized to the unit circle).

The design of our registration method provides us directly
with information on the reliability and success of a matching
attempt. Using the value of the matching score si,j matching
point pi to point pj as well as the number of found matches,
we can reject invalid registrations. To this end, we provide
results for matching thresholds tm = 0.5 and rejecting
registrations with less than 3 correspondences. Evaluation of
registration errors is done on successful registrations only,
stating the percentage of successful registrations in braces
after the method name. Registration recall for our method is
provided with respect to the full number of examples in the
testing set, thereby making it directly comparable. In practical
applications, failed registrations can easily be rectified by ei-
ther performing batched registrations with different samplings
for a single registration task or repeating the registration with
a different subset of points in case of failure. Please note that
the main competing methods do not allow any insight like
this without knowledge of the underlying true registration,
since RPMNet [35] works on soft-correspondences, RGM [37]
only provides hard correspondences without associated score
and returned in our experiments always more than 3 matches.
Results of the comparing methods are reproduced from [37].

1) Full and clean data: The first experiment can be
considered a baseline in registration performance, since the
transformation has to be recovered from a full set of 1024
exact and noise-free correspondences and is mainly reproduced
for completeness. From Table I we can see that basically all
methods are able to almost perfectly register the point clouds
with MAE(R) below or around 1◦. Only ICP struggles in
comparison.

2) Additive gaussian noise: In this experiment, source and
reference point sets are sampled independently, so only a few

TABLE I
REGISTRATION PERFORMANCE ON CLEAN POINT CLOUDS.

method MIE(R) MIE(t) MAE(R) MAE(t) CCD RR
ICP [19] 6.4467 0.05446 3.079 0.02442 0.03009 74.19 %
FGR [20] 0.0099 0.00010 0.006 0.00005 0.00019 99.96 %
IDAM [33] 1.3536 0.02605 0.731 0.01244 0.04470 75.81 %
DeepGMR [34] 0.0156 0.00002 0.001 0.00001 0.00003 100.00 %
RPMNet [35] 0.2464 0.00112 0.109 0.00050 0.00089 98.14 %
RGM [37] 0.0103 <0.00001 <0.001 <0.00001 <0.00001 100.00 %
Ours (100.00%) 0.0150 0.00009 0.007 0.00004 0.00014 99.92 %

perfect correspondences may exist. Additionally, we add gaus-
sian noise sampled from N (0, 0.01) and clipped to the range
[−0.05, 0.05] to the point locations independently, thereby
eliminating all perfect correspondences. Point correspondences
and point normals are then re-established, following the proce-
dure of [37], first finding mutual nearest neighbours and then
adding remaining nearest neighbours, all within a maximum
distance of 0.05 between corresponding points.

As can be expected, the performance degrades to a certain
degree. The results listed in Table II show that the learning
based methods still hold up rather well with MAE(R) around
or below 3◦. RPMNet, RGM as well as our method still
achieve a RR of more than 90%. Interestingly, the performance
of ICP does not degrade, showing its robustness to outliers.

TABLE II
REGISTRATION PERFORMANCE WITH ADDITIVE GAUSSIAN NOISE.

method MIE(R) MIE(t) MAE(R) MAE(t) CCD RR
ICP [19] 6.5030 0.04944 3.127 0.02256 0.05387 77.59 %
FGR [20] 10.0079 0.07080 5.405 0.03386 0.06918 30.75 %
IDAM [33] 3.4916 0.02915 1.818 0.01516 0.05436 49.59 %
DeepGMR [34] 2.2736 0.01498 1.178 0.00716 0.05029 56.32 %
RPMNet [35] 0.5773 0.00532 0.305 0.00253 0.04257 96.68 %
RGM [37] 0.1496 0.00141 0.080 0.00069 0.04185 99.51 %
Ours (98.82%) 0.8560 0.00635 0.518 0.00296 0.04297 93.64 %

3) Registration of noisy, partially overlapping sets: In this
experiment, in addition to additive gaussian noise, both source
and reference point clouds are independently cropped along a
random plane to 70% of their original size, resulting in variable
overlap of at least 40%. This experimental setup corresponds
closest to general real-world applications. From Table III we
see that, with exception of RPMNet [35], RGM [37] and
ours, the registration performance degrades beyond anything
what can be deemed usable in any applications. Notably,
the registration performance on recovered registrations of
our method is the same as in the previous experiment with
full overlap, albeit losing in successful registrations and in
registration recall. Comparing the registration recall of 77.2%
to the percentage of recovered registrations of 84.3%, we see
the merit of our architecture and the ability to predict whether
a registration attempt was successful.

4) Partial overlap of unseen object categories: The differ-
ence to the experiment outlined in section V-A3 is that now
we only train on the first 20 object categories of ModelNet40,
but evaluate on the remaining 20 categories. Thereby we can
explore to what extent the learned registration networks are
able to generalize to geometries not present in training. An
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TABLE III
REGISTRATION PERFORMANCE WITH ONLY PARTIAL OVERLAP AND

ADDITIVE GAUSSIAN NOISE.

method MIE(R) MIE(t) MAE(R) MAE(t) CCD RR [%]
ICP [19] 24.8777 0.26685 12.456 0.12465 0.11511 6.56 %
FGR [20] 42.4292 0.30214 23.185 0.14560 0.12118 5.23 %
IDAM [33] 16.9724 0.19209 8.905 0.09192 0.12393 0.81 %
DeepGMR [34] 70.9143 0.45705 43.683 0.22479 0.14401 0.08 %
RPMNet [35] 1.6985 0.01763 0.864 0.00834 0.08457 80.59 %
RGM [37] 0.9298 0.00874 0.492 0.00414 0.08238 93.31 %
Ours (84.32%) 0.8854 0.00721 0.484 0.00347 0.08119 77.19 %

interesting fact evident in the results listed in Table IV is
that the performance of all methods except RPM [37] does
not decline much relative to the experiment done on known
categories, whereas RPM almost doubles its residual errors.
Although very powerful in establishing good correspondences,
the neural network architecture in RPM seems to learn geome-
tries by heart, hampering its generalization ability, whereas
our method performs as strong as it did before, outperforming
RGM in all measures. This again exemplifies the merit of
feature augmentation at test time for optimal matching success.
Furthermore we would like to point out that although our
method is not able to successfully register all examples in the
first attempt, using the match threshold tm and the number of
found matches, we can precisely predict unsuccessful attempts.
In all experiments, RR is close to the number of valid examples
within a margin of about 5%.

TABLE IV
REGISTRATION PERFORMANCE ON UNSEEN CATEGORIES, PARTIAL

OVERLAP AND GAUSSIAN NOISE.

method MIE(R) MIE(t) MAE(R) MAE(t) CCD RR
ICP [19] 26.6447 0.27774 13.326 0.13033 0.11879 6.71 %
FGR [20] 41.9631 0.29106 23.950 0.14067 0.12370 5.13 %
IDAM [33] 19.3249 0.20729 10.158 0.10063 0.12921 0.95 %
DeepGMR [34] 71.0677 0.44632 44.363 0.22039 0.14728 0.24 %
RPMNet [35] 1.9826 0.02276 1.041 0.01067 0.08704 75.59 %
RGM [37] 1.5457 0.01418 0.837 0.00674 0.08469 84.28 %
Ours (89.10%) 0.8695 0.00871 0.434 0.00432 0.08299 85.78 %

B. Generalization to real-world 3D scans

For real-world application, the ability of 3D registration
methods to generalize to new and different geometries as well
as capturing modalities is crucial. To this end, we compare
the registration performance of the best performing methods
trained on ModelNet40 as detailed in section V-A on two
datasets, a custom dataset (publication is planned) as well as
the the well known Kitti Dataset [18]. The custom dataset
consist of objects scans of 10 objects taken with an Artec
Leo [44] handheld 3D scanner, for each object up to 10
overlapping partial scans exist, with between 10.000 and
50.000 points each. Figure 1 shows a registration example
of this dataset. Transformations are generated within the
same constraints as in the experiments on ModelNet40. We
report registration accuracy in terms of MIE(R), MIE(t) and
registration recall. Since the objects in this dataset have a
common scale, MIE(t) is reported in millimeters, registration

recall is defined as percentage of registration results with
residual errors MIE(R) < 1◦ and MIE(t) < 5mm. Again,
the number of in brackets behind versions of our method
states the respective percentage of valid registrations. For the
experiments on Kitti, we follow the established praxis [32],
[12], [31] of testing on sequences 8-10, testing registration
performance of point cloud pairs at least 10m apart. As
in [32], [12], [31], we use ground truth poses refined by
ICP, MIE(t) is reported in meters, and registration recall
is defined as percentage of registration results with residual
errors MIE(R) < 5◦ and MIE(t) < 2m. Note that for fairness
we applied an additional data normalization step for RPM-
Net and RGM, scaling the data to fit into the unit circle for
registration, thus making the input points span the same range
as the training data of ModelNet40. From Table V we can see
that our algorithm generalizes well to high quality 3D scans,
the models trained on partial overlapping data outperform
both RGM [37] and RPMNet [35] by a large margin in all
metrics. For registration of large-scale outdoor scenes of Kitti,
a domain-gap for all methods is noticeable. Nonetheless, our
method still performs reasonably well given the circumstances,
with registration recall of around 50% and mean errors of 3.1◦

and 3.5m for the best generalizing models trained with only
partial overlap, again showing its robustness to different data
modalities. Furthermore, the strong ability to predict which
registrations were successful is visible from comparing the
number of 51.1% valid registrations to the RR of 49.7%
for the model trained on unseen categories. Again, we can
observe that while a powerful registration method, RGM seems
to overfit on the training modalities, being beaten even by
RPM-Net trained for the experiment on noisy data and unseen
categories, whereas our method is rather robust to changes
in sampling, overlap and geometry. Interestingly, for both,
RGM and RPM-Net, models trained on the harder cases of
only partial overlap often lead to a decrease in generalization
performance, whereas our methods ability to generalize to
different data improves with the difficulty of the training task.

TABLE V
GENERALIZATION TO REAL WORLD OBJECTS SCANNED USING A

HANDHELD 3D SCANNER, USING THE MODELS TRAINED ON
MODELNET40 FROM THE EXPERIMENTS IN SECTION V-A. HERE, THE

NAME IN THE COLUMN experiment REFERS TO THE EXPERIMENT IN WHICH
THE METHOD WAS TRAINED, NO FURTHER DATA AUGMENTATION HAS

BEEN DONE BESIDES RANDOM SUB-SAMPLING. FOR RR, THRESHOLDS
ARE SET AS MIE(R) < 1◦ AND MIE(t) < 5mm.

method experiment MIE(R) [◦] MIE(t) [mm] RR [%]

RPMNet [35]
clean 23.9 88.2 0.8 %
noise 1.8 6.2 62.8 %
unseen 4.4 14.9 65.0 %

RGM [37]

clean 6.1 22.8 10.5 %
noise 3.3 12.3 32.5 %
crop 5.8 24.8 25.4 %
unseen 7.0 26.6 26.0 %

Ours

clean (100.0%) 6.0 22.4 5.0 %
noise (97.6%) 1.2 5.0 58.6 %
crop (99.1%) 0.6 1.9 74.3 %
unseen (98.7%) 0.6 1.7 76.7 %
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TABLE VI
GENERALIZATION TO DATA FROM KITTI ODOMETRY BENCHMARK, AGAIN
USING THE MODELS TRAINED ON MODELNET40 FROM THE EXPERIMENTS
IN SECTION V-A. FOR RR, THRESHOLDS ARE SET AS MIE(R) < 5◦ AND

MIE(t) < 2m.

method experiment MIE(R) [◦] MIE(t) [m] RR [%]

RPMNet [35]
clean 100.1 9.8 0.0 %
noise 5.6 8.3 0.5 %
unseen 4.7 7.5 0.7 %

RGM [37]

clean 6.5 9.4 0.0 %
noise 6.0 8.1 0.2 %
crop 6.7 8.4 0.7 %
unseen 9.2 8.7 0.0 %

Ours

clean (100.0%) 7.2 9.6 0.0 %
noise (88.8%) 14.4 10.3 1.6 %
crop (59.1%) 3.4 3.5 47.0 %
unseen (51.1%) 3.1 3.5 49.7 %

C. Resource Consumption and performance

Registration performance is not the only relevant criterion
for the usability of an algorithm. Execution time as well
as compute resource needs are limited especially in mobile
applications and are therefor a further relevant measure in
algorithm selection. To this end, we compare our algorithm
in terms of complexity and resource needs to the two best
competing methods. Model complexity is measured in the
number of trainable parameters. Compute resource needs are
given in GB of GPU memory use for batch sizes of 20, 5, and
1, as well as registration speed measured in registrations per
second. We can see from Table VII, that our method is both
more light-weight and faster while still providing competitive
results.

TABLE VII
RESOURCE CONSUMPTION OF THE BEST PERFORMING METHODS ON A
NVIDIA GEFORCE RTX3090. MEMORY USE IS PROVIDED FOR BATCH

SIZES 20, 5, AND 1.

method param [#] mem@20 mem@5 mem@1 rate [#/s]
RPMNet [35] 0.91e6 6.50 GB 3.2 GB 2.2 GB 45.9

RGM [37] 25.0e6 7.20 GB 3.4 GB 2.4 GB 6.6

Ours 4.4e6 4.47 GB 2.6 GB 2.2 GB 62.0

D. Ablation Study

In order to evaluate the benefit of different parts in our
feature head, we test the following configurations. Networks
are trained on the task of partial overlap, as in section V-A3
using the same random seed, with the following architectural
differences:

• Location encoder: the feature head only uses the location
encoder.

• Feature only: the feature head only uses the local point
feature network.

• additive fusion: the MLP fusing position encoding and
local point feature is replaced by a simple addition of
feature vectors.

• MLP fusion: this is the full network architecture, con-
sisting of the feature head with location encoder, point
feature network and MLP for feature fusion.

Please note that the networks have not been trained to full
convergence, since only a qualitative difference is required.
For testing, the same modalities as for the experiments in sec-
tion V-A have been employed. From the results in Table VIII
we can see, that each additional structure improves the overall
performance, the method works best if we let the network
learn how to combine both feature vectors.

TABLE VIII
ABLATION STUDY TESTING THE INFLUENCE OF THE DIFFERENT PARTS OF

OUR FEATURE HEAD. THE FULL HEAD WITH BOTH, LOCAL FEATURE
ENCODER AND POSITION ENCODER FUSED BY AN SMALL MLP, PERFORMS
BEST. NOTE THAT THE NEURAL NETWORKS WERE NOT TRAINED TO FULL

CONVERGENCE IN THIS STUDY.

variant MIE(R) [◦] MIE(t) RR [%]
location encoder 2.90 0.021 72.5 %
feature encoder 1.99 0.016 78.9 %
additive fusion 1.76 0.014 77.0 %
MLP fusion 1.29 0.012 79.0 %

VI. CONCLUSION

In this paper, we presented GAFAR, a novel, light-weight al-
gorithm for point set registration using an end-to-end learnable
deep neural network for feature encoding and correspondence
prediction. Its performance is competitive while being faster
and less demanding on resources compared to other state-of-
the-art methods, which makes it well suited for applications
with constraints on compute resources, power consumption
and runtime. Our method shows very high generalization
capability to different data modalities and exhibits little overfit
to geometry details of the training set. The strong performance
for partial overlap, even for object classes not present in
training, shows the merits of the cross-attention mechanism
for feature augmentation. A further benefit of our method is
its ability to provide an indication on the quality of predicted
correspondences, thereby giving opportunity to tune between
high registration accuracy and high recall as well as to reject
failed or bad registrations without additional knowledge. In
practice, failure cases can be remedied by either performing
multiple registrations with different sub-sampling in parallel
in a batched fashion, or by repeating the registration with a
different sample in case of failure.

In the future, we plan to tackle the limitation to only
small subsets of point clouds by applying the underlying
architectural principles to the registration of large point sets
directly, while still keeping with the paradigm of light-weight
architecture and fast execution.
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Revisiting Distribution-Based Registration Methods

Himanshu Gupta1, Henrik Andreasson1, Martin Magnusson1, Simon Julier2, and Achim J. Lilienthal1,3

Abstract— Normal Distribution Transformation (NDT) reg-
istration is a fast, learning-free point cloud registration al-
gorithm that works well in diverse environments. It uses
the compact NDT representation to represent point clouds
or maps as a spatial probability function that models the
occupancy likelihood in an environment. However, because of
the grid discretization in NDT maps, the global minima of the
registration cost function do not always correlate to ground
truth, particularly for rotational alignment. In this study, we
examined the NDT registration cost function in-depth. We
evaluated three modifications (Student-t likelihood function,
inflated covariance/heavily broadened likelihood curve, and
overlapping grid cells) that aim to reduce the negative impact
of discretization in classical NDT registration. The first NDT
modification improves likelihood estimates for matching the
distributions of small population sizes; the second modification
reduces discretization artifacts by broadening the likelihood
tails through covariance inflation; and the third modification
achieves continuity by creating the NDT representations with
overlapping grid cells (without increasing the total number of
cells). We used the Pomerleau Dataset evaluation protocol for
our experiments and found significant improvements compared
to the classic NDT D2D registration approach (27.7% success
rate) using the registration cost functions “heavily broadened
likelihood NDT” (HBL-NDT) (34.7% success rate) and “over-
lapping grid cells NDT” (OGC-NDT) (33.5% success rate).
However, we could not observe a consistent improvement using
the Student-t likelihood-based registration cost function (22.2%
success rate) over the NDT P2D registration cost function
(23.7% success rate). A comparative analysis with other state-
of-art registration algorithms is also presented in this work.
We found that HBL-NDT worked best for easy initial pose
difficulties scenarios making it suitable for consecutive point
cloud registration in SLAM application.

I. INTRODUCTION

Point cloud registration is used in various computer vision
tasks like point cloud matching, 3D reconstruction, local-
ization and mapping, and odometry estimation [1] [2]. In
literature, several registration algorithms are available such
as iterative closest point (ICP), which utilizes point [3]
and point-normal [4] as features to find the correspondence
between point clouds. Normal distribution transform (NDT)
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registration uses distribution transform maps [5]. Further-
more, coherent point drift (CPD) solves point cloud regis-
tration as a probability density estimation problem where
the point cloud is assumed to be a Gaussian mixture model
(GMM). Several other variants of these registration methods
are available in the literature, and recently the focus is
shifting to using deep learning for registration [2]. NDT
registration is a fast, learning-free method that works well
in diverse environments, which has been used in research
and the industry for more than 15 years and is the main
focus of this work.

NDT registration uses a discrete and compact represen-
tation of point cloud [6] called NDT maps, a collection
of normal distributions (µi,Σi) of the points in fixed-size
grid cells. There are two types of NDT registration, NDT
point-to-distribution (NDT-P2D) registration finds the pose
variation between a NDT map and a point cloud, and NDT
distribution-to-distribution (NDT-D2D) registration matches
two NDT maps. The grid discretization in NDT maps can be
seen as the discretization of surface geometry estimation due
to the point cloud’s voxelization. Due to the discretization of
NDT maps, NDT registration has an inherent problem with
the global minima of registration cost function not always
being at the ground truth pose variation between point clouds.
In this work, we present and evaluate three modifications in
the NDT registration cost function to reduce the effect of
discretization of the NDT map, which results in the following
contributions.

• The effect of the normalization term of Gaussian dis-
tribution on the registration cost function, which is
considered a constant.

• Deriving and evaluating registration cost function based
on Student-t likelihood function and NDT maps (Sec-
tion III-A).

• Proposing and evaluating the modification in NDT
registration based on cost function smoothing, HBL-
NDT (Section III-B) and by creating a more continuous
NDT map, OGC-NDT (Section III-C).

• Performance comparison of modified NDT registration
with state-of-art registration methods using the Pomer-
leau dataset (Section IV-B).

II. RELATED WORK

A. NDT Registration

NDT registration finds the transformation between two
point clouds using their NDT map representation. The NDT
map is a collection of NDT cells created by sub-dividing
the point cloud into fixed-size non-overlapping grid cells.
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For each grid cell, the points (pi = (xi, yi, zi)
T , i = 1...np)

distribution in the grid cells is estimated using the normal
distribution (N (µ,Σ)). Our experiments used grid cells
where np ≥ 5 for registration cost calculation and grid cells
with np < 5 were discarded.

µ =
1

n

n∑

i

pi (1)

Σ =
1

n− 1

n∑

i

(pi − µ)(pi − µ)T (2)

Broadly, NDT registration cost functions are of two types,
point-to-distribution (P2D) and distribution-to-distribution
(D2D), which maximize the total likelihood of points in the
NDT map and the similarity between NDT maps, respec-
tively, with respect to the rigid transformation matrix Θ. The
NDT P2D registration cost function is the approximation
of the negative log-likelihood of the points in the source
point cloud (X ) belonging to the NDT cells of target NDT
map (M). The NDT P2D cost function is represented by (3)
where k1 and k2 are regularization parameters described in
[7].

fp2d =
∑X

x

∑M
µ,Σ−k1 exp (−k2

2 (T (x,Θ)− µ)TΣ−1(T (x,Θ)− µ))
(3)

The NDT D2D registration cost function represents the
similarity between the NDT representation of the source
(MS) and target (Mprv) point cloud as the negative sum-
mation of L2 distance between NDT cells.

fd2d =

NMS∑

i=1

NMT∑

j=1

−k1 exp
(−k2

2
dij

)
(4)

where,

µij = T (µi,Θ)− µj , Σij = RTΣiR+Σj

B. Background

One of the reasons for incorrectness in the NDT regis-
tration is the discretization of NDT maps which is a well
know issue and has been addressed in previous works [6]
[8] [9]. The two main approaches used in previous litera-
ture for tackling this issue are hierarchical registration and
overlapped grid cells. In [8] [10], a hierarchical registration
approach in which registration was done multiple times with
NDT maps of different resolutions (coarse-to-fine cell size)
was used. The result of coarse NDT registration becomes
the initial guess for fine NDT registration for faster con-
vergence. However, this approach takes longer than single-
step registration as registration is done in multiple steps with
NDT maps of different resolutions. The second approach to
rectify the problem of discreteness used in [6] is to create
overlapping grid cells. This approach results in continuous
NDT representation with an increased number of NDT cells,
which results in higher accuracy and significantly increases
computation time.

Fig. 1. Plot of NDT P2D cost function with (Orange) and without (Blue)
the normalization term of the normal likelihood function. The cost function
minimas are not at the ground truth pose for both conditions.

In [11], a new concept of dynamic scaling factors was
introduced that scales the covariance of the NDT representa-
tion dynamically in each iteration to rectify the issue of NDT
map discreteness and negative correlation of normal likeli-
hood with rotation alignment. The method was evaluated on
consecutive scan registration, and the effect of initial pose
difficulty or point cloud overlap was not investigated.

Recently, several GMM-based registration approaches [12]
[13] have proposed using the Student-t distribution instead of
the Normal distribution in the cost function. The GMM-based
registration method with Student-t distribution methods re-
sults in better convergence than GMM-based registration
with Gaussian distribution due to the robustness against
outliers and noise and better distribution estimation for
small population sizes. However, no work has yet analyzed
Student-t likelihood as a registration cost function for NDT
registration.

In this work, we empirically studied the NDT registration
cost function in detail and introduced three different modifi-
cations to improve the pairwise registration results by either
using a better estimate of point distribution or by reducing the
effect of discreteness. The first modification uses Student-t
likelihood as a registration cost function instead of Gaussian
likelihood registration to better estimate the likelihood of
matching the distributions of small population sizes. The
second modification, a heavily broadened likelihood NDT
(HBL-NDT) registration cost function, was inspired by the
broader-tailed Student-t likelihood function and has shown
improvement in scan registration. In the third approach,
an NDT map with overlapping grid cells (OGC-NDT) is
used without increasing the number of cells; hence, the
computation time of registration does not increase while
registration results improve.

III. PROPOSED MODIFICATIONS

The likelihood of point (x) measured in multivariate
normal distribution (N (µ,Σ)) with dimension d is calculated
using (5).

L(x) = 1√
(2π)d|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(5)
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Fig. 2. Likelihood plots for 1D Gaussian, and Student-t distribution that
shows broader tail for Student-t distribution.

Both P2D and D2D NDT registration approximate the
negative log-likelihood function with a scaling factor k2,
which can be summarized as the negative summation of
the exponent of the square of Mahalanobis distance (dij)
as given in (3) and (4) without the normalization term. To
test the normalization term’s effect on registration, we plotted
the NDT P2D registration cost function with and without the
normalization term as shown in Fig. 1. To plot the figure, we
rotated the Stanford dataset’s Dragon point cloud by −15◦,
and calculated registration cost by rotating the transformed
point cloud from 0◦ to 30◦ at an interval of 0.1◦. From Fig.1,
we see that the normalization term of likelihood negatively
impacts the registration cost function with more local minima
in the cost function compared to the cost function without
the regularization term. Also, the ground truth (15◦) is not at
the global minimum of the cost function plot for normalized
and unnormalized costs in this case.

A. Student-t (StDT) registration cost functions

The Student-t likelihood of point x being in the distri-
bution (N (µ,Σ)) is calculated using (6). And (7) is the
likelihood of point x being part of the NDT map M which
is expressed as the summation of (6), and the likelihood of
the point cloud X at certain pose Θ being a part of an NDT
map M can be given as the product of (7) and expressed as
(8).

L(x) = k

|Σ|1/2
[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−(ν+p)/2

(6)

L(x|M) =
∑nM

i=1
k

|Σi|1/2
[
1 + 1

νi
(x− µi)

TΣ−1
i (x− µi)

]−(νi+p)/2

(7)

L(X,Θ|M) =

nX∏

j=1

L(T (xj ,Θ)|M) (8)

The best pose Θ that fits the point cloud X to the NDT
map M should maximize the likelihood function (8) or,
equivalently, minimize the negative log-likelihood (9).

− log(L(X ,Θ|M)) = −
nX∑

j=1

log(L(T (xj ,Θ)|M)) (9)

Fig. 3. Likelihood plot for 1D point distribution with heavily broadened
likelihood.

Similar to the NDT P2D registration cost function and
the conclusions from the effect of normalization term on the
registration cost function (Fig. 1), the StDT P2D registration
algorithm will minimize the approximation of the negative
log-likelihood as given in (10), over the space of transfor-
mation parameters Θ

fStDT = −∑
[
1 + k2

ν (T (x,Θ)− µ)TΣ−1(T (x,Θ)− µ)
] ν+d

2

(10)
where ν is the degree of freedom and d is number of spatial
dimension. By increasing the value of ν, the Student-t distri-
bution approximates the Normal distribution. By increasing
the value of ν, the Student-t distribution approximates the
Normal distribution as shown in Fig. 2. Fig. 2 shows the
likelihood plot of Gaussian and Student-t distribution for 2d
point distribution with ν = {5, 50, 100} and the number of
points is 30. Given that the Student-t likelihood has broader
tails for ν = 5 and the NDT cell with np ≥ 5 was
used during experiments, we report the StDT registration
results with ν = 5. Higher values of ν were also used for
experiments, but not much difference was observed.

B. Heavily broadened likelihood NDT (HBL-NDT) registra-
tion cost function

The aim of using the Student-t likelihood function was its
robustness and capability of better likelihood estimation for
a small sample size because of broader tails compared to
normal distribution. We have proposed a way to artificially
broaden the likelihood curve of the normal distribution to
smoothen the cost function, reducing discreteness. For a
normal distribution, lowering the value of k2 in Equation
(3) and (4) makes the likelihood tail broad. Fig. 3 shows
the effect of k2 on tail broadness for normal distribution in
the case of 2D point distribution. This modification can be
interpreted as inflating the covariance matrix with a factor
of s = 1/k2. We experimented with different values of
k2 = {0.05, 0.15, 0.5} and reported the best result obtained
using k2 = 0.15.

C. Overlapping grid cells NDT (OGC-NDT) registration
cost function

The NDT map’s discreteness due to grid cells can be
viewed as discreteness in estimating the surface geometry

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

44



Fig. 4. NDT map representation for (b) non-overlapping grid cells and (c)
overlapping grid cells for (a) Bunny point cloud of Stanford Dataset.

using the NDT cell’s covariance matrix. Fig. 4 displays plots
of covariance matrices as ellipsoids representing the approx-
imate surface geometry for NDT map representations. In
previous work, overlapping grid cells were created by adding
an NDT cell at the boundary of two regular NDT cells, which
reduces the discreteness but increases the computation time
dramatically due to an increase in the number of NDT cells.
In our approach, the computation of the mean and covariance
for NDT cells do not change the number of cells; hence the
computation time does not change much. Equations (11) and
(12) show the calculation for distribution’s mean µ′ using the
points inside the grid cell and calculation of distribution’s
covariance Σ′ using points in a box bigger than the cell
size (a) positioned at the center (c) of the cell. In Eq.12,
k is a factor to increase the point search radius parameter
in proportion to cell size for covariance calculation. During
experiments, we used k = 1.2.

µ′ =
1

n

n∑

i

pi,∀pi : |pi − c| < a/2 (11)

Σ′ =
1

n′ − 1

n′∑

i

(pi − µ′)(pi − µ′)T ,∀pi : |pi − c| < k × a

(12)

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation

We evaluated the modified NDT registration methods
using the Pomerleau dataset [14] following the protocol
described in [15]. The Pomerleau dataset includes a protocol
file and validation file for each scenario. The protocol file
specifies the scan pair and initial pose to be used, and
the validation file includes information on the initial pose
difficulty, overlap ratio of the scan pair, and ground truth
pose. We uniformly sub-sampled 10% of the scan pairs
from the protocol file for each scenario. Additionally, we
compared our modified NDT methods with several state-of-
the-art registration algorithms, including ICP, NDT, CPD,
TEASER++ [16], and FuzzyPSR [17] registration to provide
a comprehensive analysis of the registration methods.

The success rate of scan registration for rotation and
translation is reported separately and compared for differ-
ent registration algorithms. The registration was considered

successful if the translation error (et) was less than 10cm and
the rotation error (er) was less than 2.5◦. The translation and
rotation error is calculated using (13) and (14) respectively,
given the ground truth pose variation (∆T ) between two
scans and estimated pose variation (∆T̂ ) from registration.

et = ||δt|| (13)

er = cos−1

(
1

2
(trace(δR)− 1)

)
(14)

where,

δ = ∆T̂−1∆T =

[
δR δt
0 1

]

For optimization of the registration cost function, we used
the Ceres Solver [18], which uses auto-differentiation; hence,
the derivative of cost functions was not manually derived. In
all cases, the initial guess of the pose (Θ) for optimization
was the identity matrix. All-to-all correspondence was used
for all NDT and StDT registrations to get the best registration
result. For distribution-based transform registration, the grid
cell size was 0.5m in all experiments.

The evaluation results for different registration algorithms
for difficulty in pose and point cloud overlap are shown in
Fig. 5 and Fig. 6, respectively. The plots show the successful
registration rate (%) vs. different scenarios in the Pomerleau
dataset for various registration algorithms.

B. Results

1) Comparison of NDT P2D and StDT P2D registration
cost function: From Fig. 5 and Fig. 6, we observe that
the overall successful translation registration rate for StDT
P2D registration (22.25%) is close to the successful registra-
tion rate for NDT P2D registration (23.69%) for different
pose difficulty or point cloud overlap. The reason might
be the similarity in the likelihood plots for both Gaussian
and Student-t distributions, as shown in Fig. 2. The StDT
likelihood has a broader likelihood tail, but the broadness is
not enough to curb the discreteness in NDT maps; thus, no
improvement in registration results can be seen.

2) Effect of heavily broaden likelihood: This modifi-
cation involves reducing the value of k2 in equations 3
and 4, resulting in a heavily broadened likelihood, which
in turn leads to a smoothened registration cost function.
The smoothening effect due to the modification is similar
to inflating the covariance matrices resulting in increased
continuity in the NDT maps. This continuity can result in
improved registration results, as evidenced by the results
in Fig. 5 and Fig. 6. The successful translation registration
increased from 27.7% to 34.7% by this simple modification.
It is worth noting that the improvement obtained with this
modification was higher in translation alignment compared
to rotation alignment for different pose difficulties and point
cloud overlap. From the results, it can be concluded that the
modification of reducing the value of k2 in equations 3 and
4 can lead to improved registration results in the context of
NDT point cloud registration.

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

45



Fig. 5. Line graph showing the successful translation (Top Row) and rotation (Bottom Row) registration (%) vs. registration algorithms for easy (Left),
medium (Middle), and hard (Right) pose difficulty. The line graph is used to enhance visibility.

Fig. 6. Line graph showing the successful translation (Top Row) and rotation (Bottom Row) registration (%) vs. registration algorithms for high (Left),
medium (Middle), and low (Right) point cloud overlap. The line graph is used to enhance visibility.

TABLE I
OVERALL SUCCESS RATE (%) FOR VARIOUS REGISTRATION METHODS ON THE POMERLEAU DATASET.

apartment eth gazebo plain stairs wood Total
T R T R T R T R T R T R T R

ICP 6.25 0.89 0.00 19.20 0.89 11.16 0.15 16.82 1.49 5.95 1.49 4.17 1.71 9.70
NDT P2D 6.55 3.27 28.72 19.35 41.07 21.58 29.91 17.71 6.25 1.93 29.61 19.64 23.69 13.91
StDT P2D 4.61 1.93 28.87 19.64 39.43 20.83 27.68 17.11 4.76 1.19 28.12 18.30 22.25 13.17
CPD 27.23 23.96 21.58 95.83 59.08 63.39 28.12 34.97 33.04 37.80 35.86 35.71 34.15 48.61
NDT D2D 32.14 17.11 20.39 16.67 34.23 19.64 18.01 13.99 26.79 15.18 34.67 21.28 27.70 17.31
NDT HBL 37.80 18.15 28.72 21.73 45.54 21.88 22.32 16.07 36.90 19.79 36.90 20.83 34.70 19.74
NDT OGC 38.84 19.49 22.17 20.24 43.01 21.28 22.77 15.03 37.50 19.20 36.76 20.09 33.51 19.22
TEASER++ 79.46 78.87 13.54 96.88 58.04 59.08 7.29 11.01 31.99 32.59 32.29 40.62 37.10 53.17
FuzzyPSR 38.10 41.22 17.56 82.74 53.87 54.32 8.93 11.61 25.74 31.25 29.17 29.17 28.89 41.72
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3) Effect of overlapping grid cells: In this modification,
we create overlapping grid cells using the criterion given in
Eq.12, which slightly increases the number of NDT cells
(∼1–2%) compared to the classic NDT map. This slight
increase in the number of cells has only a minor effect on
computation time while majorly improving the registration
results compared to NDT D2D registration, as evident from
Fig. 5 and Fig. 6. Interestingly, the OGC-NDT registration
method shows less performance improvement than the HBL-
NDT registration method, OGC-NDT: 33.5% and HBL-
NDT:34.7%. However, the successful rotation registration
rate was slightly higher for OGC-NDT (19.2%) than for
HBL-NDT (17.7%). Overall, these results demonstrate the
effectiveness of the proposed modification in improving the
registration accuracy of NDT point clouds with only a small
increase in NDT cells.

V. DISCUSSION AND CONCLUSION

This study investigated the distribution-based registration
approach to improve the registration results by comparing
several novel variants of NDT-based registration. The first
part of our investigation involved an analysis of the effect
of the normalization term of the Gaussian distribution on
the registration cost function. Adding this term increased
the local minima in the cost function, making optimization
more difficult. We then examined the use of the Student-t
likelihood as an NDT-based registration cost function and
found that better likelihood estimation using Student-t does
not consistently improve the registration results.

Based on the broader likelihood tail concept, we intro-
duced and evaluated the HBL-NDT cost function, which
smoothens the cost function and results in better registra-
tion. We also evaluated the OGC-NDT, which reduces the
discreteness in the NDT map, resulting in successful regis-
tration rates. However, none of the proposed modifications in
NDT showed significant improvements in successful rotation
alignment compared to successful translation alignment, with
cost function smoothening (HBL-NDT) having better results
than overlapping grid cell NDT (OGC-NDT) overall. On the
individual scan pair level, there were a few cases where one
modification in NDT worked better while others did not.
However, it is hard to pinpoint the reason for this.

We also compared various registration algorithms and
found that the feature-based registration method, TEASER++
had the best performance overall regarding the percentage
of successful registration, with consistent results for the
initial pose difficulty and point cloud overlap. The best-
performing registration algorithm for easy and hard pose
difficulties was HBL-NDT and CPD, respectively. For high
and low point cloud overlap, CPD and TEASER++ had
the best performance, respectively. We did not compare
the algorithms based on computation time, but the CPD
algorithm was the most time-consuming as it computed all-
to-all correspondence between points.

The performance of NDT registration was consistent with
the scene complexity and is heavily impacted by the initial
pose difficulty. HBL-NDT has the best performance for easy

initial pose difficulty cases making it suitable for SLAM
tasks. However, further improvements in data association
techniques can help improve its performance for rotation
alignment.

In conclusion, our study provides insights into the
distribution-based approaches and proposes modifications
to improve registration results. Our findings also provide
a comparative analysis of various registration algorithms,
which can guide researchers in selecting the best algorithm
based on the specific requirements of their application.
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Enhancing Door–Status Detection for Autonomous Mobile Robots
during Environment–Specific Operational Use

Michele Antonazzi, Matteo Luperto, Nicola Basilico, N. Alberto Borghese

Abstract— Door–status detection, namely recognising the
presence of a door and its status (open or closed), can induce a
remarkable impact on a mobile robot’s navigation performance,
especially for dynamic settings where doors can enable or
disable passages, changing the topology of the map. In this
work, we address the problem of building a door–status detector
module for a mobile robot operating in the same environment
for a long time, thus observing the same set of doors from
different points of view. First, we show how to improve the
mainstream approach based on object detection by considering
the constrained perception setup typical of a mobile robot.
Hence, we devise a method to build a dataset of images taken
from a robot’s perspective and we exploit it to obtain a door–
status detector based on deep learning. We then leverage the
typical working conditions of a robot to qualify the model for
boosting its performance in the working environment via fine–
tuning with additional data. Our experimental analysis shows
the effectiveness of this method with results obtained both in
simulation and in the real–world, that also highlights a trade–
off between the costs and benefits of the fine–tuning approach.

I. INTRODUCTION

Autonomous mobile robots are nowadays increasingly
employed for cooperating with humans in a variety of tasks
settled in indoor public, private, and industrial workplaces.
A challenge posed to these service robots is coping with
highly dynamic environments characterised by features that
can rapidly and frequently change, very often due to the
presence of human beings [1]. Consider, as examples, a
domestic setup in an apartment or a workspace with several
offices. In a time span of hours or days, the topology itself of
these environments might frequently change its connectivity,
since doors may be left open or closed, hence modifying
in time the reachability of free spaces. This phenomenon
strongly impacts the capability of robots to efficiently navi-
gate and perform their tasks. At the same time, during their
operational time, robots are often exposed to large amounts
of data about their surroundings that offer an opportunity
to track, model, and predict doors’ statuses (and topology
variations). The relevance of this problem is well–established
in the literature. Different works, such as [2], [3], show how
modelling the status of doors across a long time span and
predicting the changes in the environment topology improves
a robot’s task performance. Intuitively, better paths can be
planned by taking into account whether a room will be
reachable or not upon arriving there.

Central to unlocking such enhanced indoor navigation be-
haviours is what we call in this work door–status detection:

All authors are with the Department of Computer Science, University of
Milan, Milano, Italy name.surname@unimi.it
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

(a) (b) (c)

Fig. 1: A robot, navigating from A to B, can observe the
status (open or closed) of different doors (highlighted in the
top image). In this condition, door–status detection can be a
difficult task as, from the robot’s point of view, doors can be
nested (a–b), doors can be hidden in the wall (c), or instead of
a door sometimes there are just passages (a–c). The bounding
boxes of open (closed) doors, as identified by our method,
are shown in green (red). For the remainder of this work, we
follow the same colour schema.

the robot’s capability to extract, from visual perceptions, the
presence and location of a door and, at the same time, to
recognise its traversability (open or closed status).

In this work, we propose a method to endow a robot with
door–status detection capabilities that can be run during task–
related autonomous navigation.

Door–status detection is particularly challenging for mo-
bile robots operating indoor since clear and well–framed
views of a door are seldom encountered during navigation.
Fig. 1 depicts some typical instances of these challenges.
While navigating, the robot can view nested doors (Fig. 1a,
1b), doors that are partially occluded (Fig. 1b, 1c), or closed
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doors difficult to distinguish from their background (Fig. 1c).
To tackle the above problem, our approach starts with the

choice of modelling door–status detection as a variant of
object detection (OD) performed with deep neural networks.
However, we found that OD deep learning methods, despite
their great capabilities, exhibit important shortfalls when
cast into the indoor robot navigation setting. Hence, our
approach proposes a deployment methodology specific for
mobile robots that allows harnessing the potentials of OD
based on deep learning while solving what we recognised as
the two most important limitations of such techniques in this
domain.

First, OD methods are usually trained on large–scale
datasets whose images are acquired from a human point of
view. As a result, training examples follow a distribution that
could be significantly different from the one generating the
data perceived by a mobile robot. We show how popular
datasets employed to train state–of–the–art deep learning
detectors [4], [5], do not properly represent the embodied
perception constraints and uncertainty typically characteris-
ing a mobile robot [6], thus causing generalisation issues.

Second, deep–learning OD modules are commonly trained
with the main objective of obtaining a general detector.
This model is trained once, stored, and is meant to work
in previously unseen environments. These practices are not
optimal when considering the typical working conditions of
an indoor service robot. After an initial deployment phase,
the robot is commonly used in the same environment for
a long time, sometimes even for its entire life cycle. In
such persistent conditions, the robot eventually observes the
same doors multiple times, from different points of view, and
under various environmental conditions. Also, different doors
may present similar visual features (e.g., multiple doors of
the same model). Against this operative background, and
from a practical point of view, the ability to generalise in
new environments becomes less important, while correctly
performing door–status detection in challenging images from
the deployment environment becomes paramount.

To address the first limitation, we devise a method for
acquiring a large visual dataset from multiple photorealistic
simulations taking into account the robot’s perception model
along realistic navigation paths. This allows us to train a
deep general door–status detector with examples following
a distribution compliant with the robot’s perception capa-
bilities. To deal with the second limitation, we exploit the
robot’s operational conditions to tailor our general detector
for a given target environment. We obtain what we call
a qualified detector, whose performance can substantially
improve from the robot’s experience enabling door–status
detection in challenging instances (see the examples of
Fig. 1). Our solution relies on fine–tuning sessions [7]–[9] of
the general detector (which shall be considered as a baseline)
with new examples from the target environment. These data
can be collected and labelled, for example, during the robot
installation phases or while the robot carries out its duties. (A
setting motivated also by our on–the–field experience with
assistive robots [10].)

We evaluate our approach by assessing its performance,
also in the challenging cases exemplified in Fig. 1, with
an extensive experimental campaign conducted in simulated
settings and in different real–world environments and condi-
tions, as perceived by a mobile robot during its deployment.

II. RELATED WORKS

Detecting a door’s location can be useful for several tasks,
as room segmentation [11], i.e., to divide the map of the
environment into semantically meaningful regions (rooms),
to predict the shape of unobserved rooms [12], or to do
place categorisation [13], [14], which assigns to the rooms
identified within the occupancy map a semantic label (e.g.,
corridor or office) according to their aspect.

Recent studies [2], [3] show how recognising door sta-
tuses can improve the navigation performance of robots in
long–term scenarios. The work of [3] models the periodic
environmental changes of a dynamic environment in a long–
term run, while [2] proposes a navigation system for robots
that operate for a long time in indoor environments with
traversability changes.

Detecting doors in RGB images has been addressed as
an OD task. Classical methods are based on the extraction
of handcrafted features [15]–[17]. Deep learning end–to–
end methods [18] provide significant improvements thanks to
their capability of automatically learning how to characterise
an object class, robustly to scale, shift, rotation, and exposure
changes. As a significant example, the work of [19] describes
a method for door detection with the goal of supporting and
improving the autonomous navigation task performed by a
mobile robot. A convolutional neural network is trained to
detect doors in an indoor environment and its usage is shown
to help a mobile robot to traverse passages in a more efficient
way. Another approach, proposed in [20], focuses on robustly
identifying doors, cabinets, and their respective handles in
order to allow grasping by a robot. The authors use a deep
architecture based on YOLO [9] to detect the Region Of
Interest (ROI) of doors. This allows to obtain the handle’s
location by focusing only on the area inside the door ROI.

These works are representative examples of methods
partially addressing the door–status detection problem in
the mobile robotics domain. Indeed they do not explicitly
consider the point of view of a mobile robot or do not take
advantage of the robot’s typical operational conditions. In
this work, we devise an approach to overcome such limits.

III. BUILDING A DOORS DATASET FOR MOBILE ROBOTS

One of the key prerequisites to exploit deep learning to
synthesise an effective door–status detector for a mobile
robot is the availability of a dataset consistent with its
challenging perception model (see Fig. 1). The examples
contained in the dataset should follow three main desiderata.
Images (i) should represent different environments with
different features, thus allowing the model to learn how to
generalise; (ii) should contain doors as observed from a point
of view similar to the one of a robot navigating in an indoor
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environment; (iii) should be taken from real environments or
with an adequate level of photorealism.

An effective but impractical and time–consuming way to
comply with the above requirements would be to deploy a
robot on the field and having it exploring different environ-
ments while acquiring image samples of doors. The large
overheads of such a procedure are well–known and a popular
alternative is to rely on simulations [21] or publicly available
datasets [4], [22], [23].

Meeting the desiderata (i)-(iii) in simulation is not
straightforward since these are seldom guaranteed by avail-
able frameworks. For example, simulation tools popular in
robotics such as Gazebo [24] or Unreal [25], while providing
accurate physics modelling, fail to represent the realism and
complexity of the perceptions in the real world. At the same
time, public datasets as [4], [22], [23], do not well represent
the point of view of a robot in its working conditions [6]. To
address these issues, we resorted to Gibson [26], a simulator
for embodied agents that focuses on realistic visual percep-
tions, and to the environments from Matterport3D [27], an
RGB–D dataset of 90 real–world scans.

Given a simulated environment, we extract a set of poses
that could describe views compatible with a mobile robot by
applying a set of principles; the key ones include lying in
the reachable free space (feasibility), ensuring a minimum
clearance from obstacles, and being along the shortest paths
between key connecting locations in the environment’s topol-
ogy. We achieve them with an extraction algorithm working
in three phases: grid extraction, navigation graph extraction,
and pose sampling.

The grid extraction phase aims at obtaining a 2D occu-
pancy grid map, similar to those commonly used by mobile
robots for navigation. We start from the environment’s 3D
mesh, and we aggregate obstacles from multiple cross–
sections of the 3D mesh performed with parallel planes. The
result is then manually checked for inaccuracies and artefacts
produced during the procedure.

The navigation graph (shown in Fig. 2a) is a data structure
that we use to represent the topology of the locations on
the grid map that correspond to typical waypoints a robot
occupies while navigating in the environment. We compute it
from a Voronoi tessellation of the grid map by using obstacle
cells as basis points [28], extracting graph edges from those
locations that maintain maximum clearance from obstacles.

We then perform pose sampling on the navigation graph.
The algorithm extracts from the graph a list of positions
keeping a minimum distance D between them (this parameter
controls the number and the granularity of the samples). A
visual example of the algorithm’s results is shown in Fig. 2b.

To build the dataset we acquire an image from the points
of view of a robot’s front–facing camera simulating its
perceptions in the virtual environment from the sampled
poses. Specifically, in each pose on the grid map, we acquire
perceptions at two different height values (0.1m and 0.7m
– to simulate different embodiments of the robots) and at
8 different orientations (from 0◦ to 315◦ with a step of
45◦). Each acquisition includes the RGB image, the depth

(a) Navigation graph (b) Sampled poses

Fig. 2: Different phases of the pose extraction algorithm.

information, and the semantic data from Matterport3D. Since
the semantic annotation of Matterport3D presents some in-
accuracies, data labelling is manually performed by a human
operator who specifies the door bounding boxes and the
door status as open or closed. We considered 10 different
Matterport3D environments (small apartments or large villas
with multiple floors and a heterogeneous furniture style) by
setting D = 1m. The final dataset we obtained is composed
of approx. 5500 examples.

IV. DOOR–STATUS DETECTION FOR MOBILE ROBOTS

In this section, we first detail how we synthesised a Gen-
eral Detector (GD, Section IV-A) using a dataset generated
with the approach of Section III. Subsequently, leveraging
the assumption that the environment e will not change in its
core features (location and visual aspect of doors) during the
robot’s long–term deployment, we introduce our Qualified
Detector for e (QDe) by applying a procedure based on fine–
tuning [7]–[9], [29] of the GD on additional data that, in our
envisioned scenario, can be acquired and labelled during the
first setup of the robot in e.

A. General Door–Status Detector

As previously introduced, we aim at building and deploy-
ing door–status detectors for mobile robots leveraging deep–
learning for object detection. In a preliminary experimental
phase, we evaluated and compared three popular models
suitable for such a task: DETR [29], Faster–RCNN [8],
and a YOLO architecture [30]. We decided to adopt DETR
since, with respect to the other two methods, it turned out
to be easier to deploy in our robotic setting primarily due
to two key features. First, DETR does not require setting
in advance the number and dimension of anchors (i.e., sets
of predefined bounding boxes used to make detections)
according to the image resolution and the objects’ shape,
a task that instead the YOLO architecture requires. Second,
both competitors require a final non–maximum suppression
step to discard multiple detections of the same object.
DETR, instead, matches each bounding box to a different
object by construction. Hence, the methodology we describe
in this paper and the empirical results evaluating it shall
develop around DETR–based detectors. However, we stress
the fact that our methods can be applied to any architecture,
including those mentioned above, and, eventually, to their
improvements.

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

50



DETR combines a CNN backbone based on ResNet [7]
to produce a compact representation of an image and a
transformer [31]. We used the pre–trained version of DETR
on the COCO 2017 [4] dataset and, to adjust for door–status
detection, we chose the smallest configuration provided by
the authors.

The model requires setting one hyper–parameter, N , which
determines the fixed number of bounding boxes predicted
for each image. As a consequence, to filter out the detected
doors, we select the n ≤ N bounding boxes whose confi-
dence is not below a threshold ρc. We tuned N to be higher
(but close) to the maximum number of doors in any single
image of our dataset.

To train the general detector, we fixed the first two layers
of the CNN backbone (as in [29]) with the weights of the
pre–trained model. We then re–trained the remaining layers
with images from the dataset of Section III. To achieve data
augmentation, we generated additional samples by applying
a random horizontal flip and resize transformation to a subset
of the images (each training sample is selected for this
procedure with a probability of 0.5).

B. Qualification on a Target Environment

Given a new environment e we use a randomly sampled
subset of the images collected in it to fine–tune the GD,
obtaining the qualified detector QDe. To be used in the fine–
tuning procedure, these images need to be labelled specifying
the bounding boxes and the status for each visible door.

In our envisioned scenario, this data acquisition and la-
belling tasks can be carried out by a technician during
the robot’s first installation in e or in a second phase
by uploading the data to a remote server. Such a setup
phase requires to build the map of the environment (either
autonomously or with teleoperation) by observing the en-
tirety of the working environment and is very relevant to
many real–world installations of collaborative robots, as we
recently experienced with extensive on–the–field testing in
the use case of assistive robotics [10]. This manual labelling
task is quite time–expensive; yet it is required. In princi-
ple, we could use pseudo–labels automatically obtained by
running the GD over the additional samples for incremental
learning. Despite intriguing, we empirically observed that
this is particularly challenging due to the fact that pseudo–
labels are not enough accurate for this process. Recently,
the work of [32] showed how pseudo–labels are particularly
noisy and inaccurate: while they can be used to improve
performance in tasks where precise labels are less important
(like semantic segmentation), they are still too inaccurate to
be used in object detection tasks, like the one investigated in
this work. We observed how fine–tuning a general detector
using pseudo–labels results in a performance degradation of
about 20% when compared with the GD. These challenges
are well-known and the approach we follow in this work is
customary. See, for example, the work of [33], where manual
annotations have been used to label 3D objects to fine–tune
a model employed in long–term localisation. The study of

methods to ease the burden of this task will be addressed as
a part of our future work.

Finally, note that, while we focus here on a specific GD
based on DETR [29], this method to obtain a qualified detec-
tor QD is general and can be applied to other deep learning–
based models, such as YOLO [30] or Faster–RCNN [8].

V. EVALUATION IN SIMULATION

A. Experimental Setting
We evaluate our method using simulated data D ob-

tained, as described in Section III, from 10 different Mat-
terport3D [27] environments. We test the performance of
our detectors on each environment e independently. First,
we train the general detector GD−e using the dataset D−e,
where D = {D−e,De}, De contains all the instances
acquired from poses sampled in environment e, and D−e =
D \ De. This general detector will be used as a baseline
in most of the evaluations we present. Then, we randomly
partition the first subset as De = {De,1,De,2,De,3,De,4},
where each De,i contains the 25% of the examples from e,
randomly selected.

While De,4 is reserved for testing, the remaining subsets
are used to perform a series of fine–tuning rounds to obtain
the corresponding qualified door–status detectors. Specifi-
cally, we fine–tune GD−e using these three additional data
subsets: {De,1}, {De,1,De,2}, and {De,1,De,2,De,3}. We
denote the obtained qualified detectors as QD25

e , QD50
e , and

QD75
e , respectively. The superscript denotes the percentage

of data instances from e that are required to fine–tune
the general door–status detector. Such a percentage can be
interpreted as an indicator of the cost to acquire and label
the examples. To give a rough idea, labelling the 25% of
the dataset (approximately 150 images) took a single human
operator an effort of about 1 hour.

We empirically set the parameters of the door–status de-
tector as N = 10 (number of bounding boxes) and ρc = 0.75
(confidence threshold). We conducted an extensive prelimi-
nary experimental campaign spanning different batch sizes
({1, 2, 4, 16, 32}) and the number of epochs ({20, 40, 60})
selecting 1 and 60 for the general detector and 1 and 40 for
the qualified ones, respectively.

We measure performance with the average precision score
(AP) used in the Pascal VOC challenge [5] by adjusting for
a finer interpolation of the precision/recall curve to get a
more conservative (in the pessimistic sense) evaluation. The
AP is a popular evaluation metric widely adopted for object
detection tasks, it represents the shape of the precision/recall
curve as the mean precision over evenly distributed levels of
recall. To accept a true positive, the bounding box computed
by the network must exhibit an Intersection Over Union area
(IOU ) with one true bounding box above a threshold ρa, that
we empirically set to 50%.

The source code of our simulation framework (Section III),
the door–status detectors (Section IV), and the collected
datasets are maintained in a freely accessible repository1.

1https://github.com/aislabunimi/
door-detection-long-term
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B. Results

Table I reports the mean AP scores (averaged over the 10
environments) reached by the 4 detectors divided by label
(closed door, and open door), the average increments (with
respect to the detector immediately above in table) obtained
with fine–tuning, and the standard deviation (σ). We also
report the AP scores for every environment in Fig. 3. These
results show the trade-off between performance increase (via
fine–tuning) and costs due to data collection and labelling.

Exp. Label AP σ Increment σ

GD−e
Closed 34 12 – –
Open 48 12 – –

QD25
e

Closed 55 15 70% 58
Open 60 10 30% 34

QD50
e

Closed 64 12 21% 21
Open 68 10 14% 11

QD75
e

Closed 72 10 14% 9
Open 72 9 7% 5

TABLE I: Average AP in Matterport3D environments.

Fig. 3: AP scores in Matterport3D environments.

Results from Table I and Fig. 3 show that the general
detector GD−e, thanks to our dataset’s consistency with the
robot’s perception model (see Section III), is able to correctly
detect doors statuses in those cases where they are clearly
visible, as shown in Fig. 4. However, while such a perfor-
mance allows its use on a robot, there is significant room for
improvement in detecting more challenging examples.

More interestingly, qualified detectors achieve a steep
increase in performance. Unsurprisingly, the performance
improves with more data (and data preparation costs) from
QD25

e to QD75
e . However, it can be seen how QD25

e , despite
requiring a relatively affordable effort in manual labelling,
obtains the highest performance increase. From a practical
perspective, this shows how the availability of a few labelled
examples from the robot target environment could be a good
compromise between performance and costs to develop an

Fig. 4: Door–statuses found by the general detector GD−e.

environment–specific door–status detector. This suggests that
the number of examples that have to be collected and labelled
on the field can be limited, thus promoting the applicability
of our proposed framework. An example of this is shown in
Fig. 5, where it can be seen how a QD25

e (bottom row) fixes
the mistakes of its corresponding general detector GD−e (top
row) in challenging images with nested or partially observed
doors.

Fig. 5: Door–statuses as identified by GD−e (top row) com-
pared to QD25

e (bottom row) in Matterport3D environments.

VI. EVALUATION IN THE REAL WORLD

A. Experimental Settings

In this section, we evaluate the performance of our method
with a real robot by using images collected by a Giraff–X
platform [10] (Fig. 6a) during a teleoperated exploration of 3
single–floor indoor environments with multiple rooms from
two buildings in our campus. Images were extracted from
the robot’s perceptions during navigation at 1 fps. As it
commonly happens with real–world robot data, images are
acquired in noisy environmental conditions with low–quality
cameras, thus making the detection task even more difficult.
In our setting, we used 320x240 RGB images acquired with
an Orbbec Astra RGB–D camera.

First, we consider two general detectors. One is trained
with simulated data D, as in the previous section but with all
the 10 environments. Another one is trained with real–world
images from the publicly available DeepDoors2 dataset
(DD2) [23], which features 3000 images of doors that we re-
labelled to include the ground truth for challenging examples
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not originally provided. Comparing these two general detec-
tors, we aim at assessing the advantages of training with a
dataset following the principles we proposed in Section III
instead of relying on mainstream datasets for classical object
detection.

Subsequently, following the same steps of Section V-A,
we qualify both GDs by using the 25, 50, and 75% of data
collected in the three real environments.

B. Evaluation metrics

Analogously to what is done in simulation, we report the
AP scores, but we argue that the real–world evaluation of our
method can be conducted also with additional metrics, which
are more representative of the actual application domain
where door–status detection is meant to be cast.

The AP (as well as other metrics used in computer vision)
presents some limitations when used in our context. Such a
metric considers as false positives multiple bounding boxes
assigned to the same door, as in Fig. 6b. However, a robot can
easily disambiguate this by leveraging additional data such
as its estimated pose and the map of the environment. On
one side, although an erroneous localisation of the bounding
box of a door (Fig. 6c) penalises the AP, it might have
little effect in practice. On the other side, the AP is very
marginally affected by a wrong detection of the door status
if the bounding box is sufficiently accurate due to the fact
that different labels are treated as two independent object
classes, as the case in Fig. 6b. Conversely, the error of
misleading a closed passage for an open one (and vice versa)
can significantly impact the robot’s performance when the
robot translates such information into actions.

(a)

(b)

(c)

Fig. 6: Examples (b–c) of different types of errors made by
a door–status detector mounted on our Giraff–X robot (a).
While the AP considers all these errors in a similar way,
our proposed metric considers them differently, according to
their potential impact on robot performance.

To address this shortcoming and better capture perfor-
mance in our robotic setting, we introduce three additional
metrics. Consider a door i in a given image. If multiple
bounding boxes are matched to i, where matching means
IOU ≥ ρa, the one with the maximum above–threshold (ρc)

confidence is selected. If the status of the door is correctly
identified, we consider it as a true positive (TP ). Otherwise,
we classify it as a False Positive (FP ). All the remaining
bounding boxes matched to i are, as per our previous
considerations, ruled out from the evaluation. Finally, when
a bounding box does not meet the IOU condition with
any door in the image, we count it as a Background False
Detection (BFD). A False Positive and a Background False
Detection are errors that can play very different roles inside a
robotic use case. While the first is likely to affect the robot’s
decisions, the second one might increase the uncertainty in
the robot world–model. We scale the above metrics using
the true number of doors in the testing set, denoted as GT ,
thus obtaining TP% = TP/GT , FP% = FP/GT , and
BFD% = BFD/GT .

C. Results

Table II compares the average AP of the GD trained with
DD2 [23] with that trained with our dataset D. Intuitively, a
model trained with real–world data (such as those featured
in DD2) should have higher performance when used with
real–world images, if compared with a model trained with
simulated data (as D). However, Table II shows how the
GD and QDs trained with D have higher performance than
those trained with DD2. This is because training images of
D, collected from the simulated point of view of a robot,
better represent the actual distribution of robot perceptions,
allowing us to fill, to some extent, the sim–to–real gap.
Moreover, Table II shows that the fine–tuning operation to
qualify general detectors to the target environment works
remarkably well also when used in real–world conditions.
For these reasons, from now on, we present results referring
to the general detector trained with D.

DeepDoors2 (DD2) Simulation dataset (D)
Exp. Label AP σ Inc. σ AP σ Inc. σ

GD
Closed 5 3 – – 13 10 – –
Open 18 5 – – 31 11 – –

QD25
e

Closed 33 9 631% 240 53 9 508% 424
Open 43 14 134% 20 55 14 83% 19

QD50
e

Closed 52 7 66% 51 65 8 24% 15
Open 51 14 18% 7 70 7 29% 22

QD75
e

Closed 55 8 5% 6 72 8 10% 5
Open 65 8 32% 18 78 8 13% 1

TABLE II: Average AP in real–world environments when
DD2 dataset and our one (D) are used to train the GD.

The performance of QDs is similar to that obtained in
the far less challenging dataset of Table I. Most importantly,
the performances of QD25

e corroborate our findings from
Section V-A, confirming how few additional examples can
induce a significant increase in performance. Beyond the im-
provements observed in the average scores, QD25

e managed
to provide correct door–status detection in very challenging
cases. We report in Fig. 7 some representative examples. As
it can be seen, our detectors correctly recognised cases with
nested doors, partially visible frames, and narrow side views.
Another relevant example is in the second image (top row)
of Fig. 7, where the qualified model succeeds in detecting a
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white closed door in the background while, at the same time,
not making a false detection of the white wardrobe doors on
the right.

Fig. 7: Challenging door–statuses detected by QD25
e in the

real environments e1, e2, and e3 (ordered by columns).

Env. Exp. GT TP (TP%) FP (FP%) BFD (BFD%)

e1

GD 235 71 (30%) 18 (7%) 51 (21%)
QD25

e 235 145 (61%) 10 (4%) 64 (27%)
QD50

e 235 179 (76%) 4 (1%) 44 (18%)
QD75

e 235 190 (80%) 4 (1%) 36 (15%)

e2

GD 269 96 (35%) 17 (6%) 56 (20%)
QD25

e 269 192 (71%) 11 (4%) 87 (32%)
QD50

e 269 206 (76%) 6 (2%) 66 (24%)
QD75

e 269 228 (84%) 7 (2%) 60 (22%)

e3

GD 327 62 (18%) 19 (5%) 108 (33%)
QD25

e 327 183 (55%) 22 (6%) 190 (58%)
QD50

e 327 230 (70%) 13 (3%) 103 (31%)
QD75

e 327 248 (75%) 8 (2%) 75 (22%)

TABLE III: Extended results in the real–world environments.

Table III reports the detailed results, for all three envi-
ronments, of the metrics we defined in Section VI-B. The
results show that GD, although it has a low number of
wrong predictions (FP and BFD), is capable of detecting
only a few of the GT doors in the images (TP ). On
the contrary, QDs dramatically improve performance, with
QD25

e showing a TP% of 62% on average.
Among the three environments considered, we argue that

e3 is the more challenging, as it can be seen by the higher
number of BFD. To cope with this, there are two possible
directions. First, increasing the number of manually labelled
examples reduces BFD (as can be seen already with QD50

e ).
Alternatively, adopting a more conservative selection rule by
increasing the confidence threshold ρc, at the cost of slightly
reducing the number of TP . In Fig. 8, we show how TP%,
FP%, and BFD% for QD25

e3 change when varying ρc in e3.
Such an instance confirms how ρc = 0.75 is an acceptable
trade–off among TP% (high) and BFD% (low) for such a
detector.

In long–term runs, the illumination conditions of an envi-
ronment might change from those of the initial setup, and this
may affect the performance of the door–status detector. To
test the robustness of our approach to this event, we acquire
(following the same procedure of Section VI-A) data from
environments e1 and e2 during nighttime, when only artificial

Fig. 8: TP%, FP%, and BFD% obtained by QD25
e3 for

increasing confidence thresholds.

light is present and some rooms are dark. Then, we use these
images to test the GD and the QDs fine-tuned with data
acquired during the initial setup time, with daylight.

Exp. Label AP σ Increment σ

GD
Closed 14 18 – –
Open 31 8 – –

QD25
e

Closed 38 8 781% 1016
Open 45 11 46% 3

QD50
e

Closed 48 8 26% 8
Open 53 17 17% 8

QD75
e

Closed 54 8 14% 1
Open 56 16 6% 5

TABLE IV: Average AP results in e1 and e2 tested in
different light conditions with respect to those used to qualify
the detector (day/night time).

Env. Exp. GT TP (TP%) FP (FP%) BFD (BFD%)

e1

GD 1079 334 (30%) 56 (5%) 150 (13%)
QD25

e 1079 532 (49%) 62 (5%) 306 (28%)
QD50

e 1079 572 (53%) 65 (6%) 299 (27%)
QD75

e 1079 634 (58%) 56 (5%) 248 (22%)

e2

GD 1051 335 (31%) 68 (6%) 276 (26%)
QD25

e 1051 584 (55%) 55 (5%) 357 (33%)
QD50

e 1051 690 (65%) 40 (3%) 217 (20%)
QD75

e 1051 700 (66%) 48 (4%) 236 (22%)

TABLE V: Extended results in e1 and e2 tested in different
light conditions with respect to those used to qualify the
detector (day/night time).

The average AP obtained with different lighting conditions
is reported in Table IV while the results of our extended
metric (presented in Section VI-B) are shown in Table V.
Comparing them with Tables II and III respectively, we
can see how the performances of the GD are robust to
illumination changes, as they are similar to those obtained
during daytime. More interestingly, it can be seen how the
improvement of QDs from the fine–tune is maintained also
with different light conditions, with a slight performance de-
crease if compared to the results of Tables II and III. This is
a direct consequence of the fine–tune, which produces QDs
that slightly overfit the illumination conditions seen during
training. Despite this, our method ensures a performance
improvement to the GD when used in long–term scenarios
with illumination changes, enabling the QDs to still solve
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challenging examples, as shown in Fig. 9. Once again,
QD25

e , albeit using a few examples for fine–tuning, ensures
the best performance improvement also under variable light
conditions. See the video attachment, also linked in the
repository, for additional examples of our method.

Fig. 9: Challenging nighttime examples classified by GD
(top row) and QD25

e (bottom row). QD25
e is fine–tuned with

examples obtained with daylight.

VII. CONCLUSIONS

In this work, we presented a door–status detection method
for mobile robots. Our method, based on a deep learning
architecture, allows robots to recognise open or closed doors
in challenging situations. To train our model, we built a
dataset of labelled images from photorealistic simulations
taking into account the point of view of a mobile robot.
We then fine–tuned a general model into a qualified one to
increase performance in the robot’s working environment.

Future work will investigate how to quantify and reduce
the effort needed for labelling examples to qualify a general
detector. Furthermore, we will investigate online fine–tuning
methods towards the goal to have a robot that can learn with
experience to better distinguish features in its environment.
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Self-supervised Learning for Fusion of IR and RGB Images in Visual
Teach and Repeat Navigation

Xinyu Liu∗1, Zdeněk Rozsypálek∗2 and Tomáš Krajnı́k2

Abstract— With increasing computation power, longer bat-
tery life and lower prices, mobile robots are becoming a viable
option for many applications. When the application requires
long-term autonomy in an uncontrolled environment, it is
necessary to equip the robot with a navigation system robust
to environmental changes. Visual Teach and Repeat (VT&R)
is one such navigation system that is lightweight and easy to
use. Similarly, as other methods rely on camera input, the
performance of VT&R can be highly influenced by changes
in the scene’s appearance. One way to address this problem is
to use machine learning or/and add redundancy to the sensory
input. However, it is usually complicated to collect long-term
datasets for given sensory input, which can be exploited by
machine learning methods to extract knowledge about possible
changes in the environment from the data. In this paper, we
show that we can use a dataset not containing the environmental
changes to train a model processing infrared images and
improve the robustness of the VT&R framework by fusion
with the classic method based on RGB images. In particular,
our experiments show that the proposed training scheme and
fusion method can alleviate the problems arising from adverse
illumination changes. Our approach can broaden the scope
of possible VT&R applications that require deployment in
environments with significant illumination changes.

I. INTRODUCTION

Navigation is a crucial ability for robots to find a safe
and suitable path from the starting point to the goal point
[1]. Various sensors, including LiDAR and cameras, have
been used for this purpose, leading to different solutions.
Vision has emerged as a popular sensory modality, and visual
navigation for mobile robots has become a widely studied
research area [2]. Visual teach & repeat navigation (VT&R)
is a framework that uses a camera to guide the robot along
a learned trajectory. In the paper, we focus on a particular
type of VT&R, which does not require a precise metric map
and relies on a convergence theorem to repeat the path [3],
[4], [5]. It is simple and reliable, making it suitable for
warehouse logistics and inspection applications. However,
many visual systems tend to perform poorly in uncontrolled
outdoor environments during a long-term deployment [6],
[7]. The degraded performance is usually caused by signif-
icant appearance variations of the scene due to day&night
changes, sun glare or seasonal changes.
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Machine learning methods have proven to be effective in
addressing the challenges posed by environmental changes
[8], [9]. By using pairs of images containing the environment
changes to train neural networks, it is possible to extract
features (or dense representations of the image) invariant to
these changes, which makes them far more effective than
hand-crafted features [10], [11]. As a result, these trained
feature extractors can be deployed for navigation tasks in
uncontrolled outdoor environments with day-to-night and
seasonal changes [12].

The usage of RGB images with the learned features for
the VT&R system can significantly improve the performance
of navigation during long-term deployment [13], but RGB
images are shown to be susceptible to adverse illumination
conditions, such as sun glare and dark nights. In contrast,
infrared images are typically more robust to these distur-
bances and can perform well in many different illumination
conditions [14]. Hence, the incorporation of infrared images
into visual stack can possibly help alleviate the problems
arising from various illumination changes.

In this paper, we propose a method for training a model
to produce a lighting-invariant representation of the image
in the IR domain without having a dataset containing these
variations. Obtaining image pairs containing environmen-
tal changes can be challenging because it usually requires
prolonged data collection. In addition, different IR cameras
can capture different light spectra, which could make the
model bound to usage on a particular device. We show that
using only a limited number of RGB-IR image pairs to
train a model which can produce representations invariant
to environmental changes is possible. This is achieved by
inserting an RGB model robust to appearance variations
into the contrastive learning pipeline to train the IR model.
In addition, we benchmark multiple decision-level fusion
methods, which exploit RGB and IR models.

The paper is structured as follows: Firstly, we review re-
lated work on infrared and RGB image fusion and contrastive
learning. Then, we describe the image-matching pipeline
and fusion methods. Further, we present the experimental
methodology and results. Finally, we discuss the results and
their implications.

II. RELATED WORK

The problems arising from the appearance change of the
environment are widely studied in the robot vision field.
In this section, we provide a brief review of methods used
to address the environmental changes for the navigation of
mobile robots. We also shortly discuss appearance-based
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VT&R navigation systems and fusion methods in the field
of IR and RGB image fusion.

Visual Teach and Repeat navigation (VT&R) is a popu-
lar navigation framework that has been deployed on both
autonomous ground vehicles and unmanned aerial vehicles
(UAV) [15]. In the teaching phase, the system typically
stores a map consisting of the action commands and images
captured by the robot’s front camera during the trajectory
traversal. In the repeat phase, the robot replays the velocity
commands and uses the map images to determine its position
and adjust the heading. The corrections in the heading
ensure the robot converges to the original trajectory. The
convergence of this framework was mathematically proven
by [5]. However, the proof assumes that we have an estimator
which can output the correct value of horizontal pixel dis-
placement between the map and live images. The horizontal
displacement between images is easier to estimate compared
to a 6DoF transformation for localization in metric maps.
However, environmental variations can still pose a challenge
even for this simplified task.

Many approaches have been applied to address the chang-
ing environment. One of the ways is that the robot gathers the
experiences during every traversal of a certain path. These
experiences can be exploited to adjust the robot’s behaviour
based on the current state of the environment [16], [17],
[18]. The obvious shortcoming is that the robot first needs to
observe the current state of the environment, and only after
that can it choose the most suitable version of the map to
navigate itself. This can be addressed by using the gathered
experiences to create a model of the environment and predict
its state in given time or conditions [7], [19]. However,
all of these methods require gathering the experiences by
traversing the path multiple times to ensure robust behaviour.
In addition, these experiences are not general and are tied to
specific trajectories.

A different approach is having some prior knowledge of
the world, usually obtained from large-scale datasets. In
general, this knowledge can be used in multiple ways to
improve the robustness of navigation. One of the approaches
is to traverse the path once and try to generate maps of the
same path under different conditions [20]. This reduces the
importance of gathering a large number of experiences but

choosing the most suitable map to navigate the robot is still
necessary. A more straightforward way to exploit the prior
knowledge is to train a model that can be used to create
a representation of the map, invariant to common changes
present in the real world [21].

It has been shown that contrastive learning is suitable for
training a model that can capture the structure of provided
dataset [22]. The learned representations have better gener-
alization ability and provide more information than features
[23]. A Siamese network, which takes two images containing
the appearance change as input, can capture similarities
and variations in various scenes. The Fully-convolutional
Siamese network has been successfully applied in the VT&R
[12]. Other research also suggests that the pipelines with dual
backbones can be used to transfer some quality of one model
to another in a self-supervised manner [24].

It has been shown that infrared images can be more
robust to ambient illumination and work well in different
lighting conditions [25]. On the other hand, RGB images
are high-resolution and provide a considerable amount of
detail. Fusing these two types of images can provide signif-
icant benefits [14], [26]. Besides, both types of images are
easily acquired, and many cameras used in mobile robotics
come with both types of lenses. Therefore, IR and RGB
image fusion can improve the performance of visual systems
for many applications. Several fusion methods operate at
the pixel or feature level. Most of them use multi-scale
transform [27], [28], sparse representation [29], and neural
network [30], [31] strategies to generate high-quality fused
images. Decision-level fusion is a straightforward strategy
that combines decisions or results made by infrared and RGB
images to produce a final output [32]. It has been used for
face recognition in different illumination conditions, which
shows potential for recognizing places in various illumination
conditions [33].

We propose decision-level fusion methods for infrared and
RGB images using a backbone neural network trained via
self-supervised learning that can improve the performance
of the pixel displacement estimation. Specifically, we obtain
a dense representation of IR and RGB images, which are
then cross-correlated with each other to produce likelihood
histograms. These histograms are then combined in different

Input image 
(CH, H, W)

Convolution 
Batch Norm. 

ReLu 
Max Pooling

3, 384, 512 Convolution 
Batch Norm. 

ReLu 
Max Pooling

16, 192, 256 Convolution 
Batch Norm. 

ReLu 
Max Pooling

64, 96, 128

Convolution 
Batch Norm. 

ReLu 
Max Pooling 256, 48, 64

Convolution 
Max Pooling 512, 24, 64

Output
Representation 16, 8, 64

Fig. 1: The architecture of CNNs used in this paper. This particular version is for RGB image since it has 3 input channels.
For the IR images is the architecture similar except the input having only one channel. The architecture tailored for mobile
robots, thus it is simple and lightweight with only few convolutional layers.
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ways to produce the final histogram indicating horizontal
displacement. In our experiments, we used a neural network
presented in [12]. We do not describe in detail how the
CNNRGB was trained, and we treat it as a pretrained model,
which can be further exploited for training models with
different input types without needing to collect long-term
datasets. The architecture of all the CNNs is shown in Figure
1.

III. METHOD DESCRIPTION

This section explores the various fusion methods for
correlating different types of representations and fusing their
corresponding likelihood histograms. Specifically, we will
delve into four methods: a baseline method without fusion
utilizing only RGB images and three fusion methods using
both RGB and IR images.

For our evaluation purposes, we collected pairs of IR and
RGB images which serve as our source images, denoted as
IIRs and IRGB

s , respectively, and which comprise our map.
Additionally, we collected other pairs of images taken at
the exact locations but under different lighting conditions,
referred to as target images, denoted as IIRt and IRGB

t . We
aim to use a CNN to produce image representations and cal-
culate their horizontal displacements ∆p. We benchmark the
performance of the methods on collected datasets similarly
as in [21], [12]. It has been shown that this methodology is
suitable for evaluating the performance of the displacement
estimator for the VT&R navigation.

A. Non-fusion method with single RGB images

In this method, one public network [12], trained on RGB
images, is used to process two images input. As shown
in Fig. 2, the Siameses-RGB pipeline processes the input
images, IRGB

s and IRGB
t , and outputs corresponding rep-

resentations. The target representation is shifted along the
source representation and calculates the similarity, i.e., likeli-
hood over all possible displacements using cross-correlation.
One histogram, likelihood versus displacement, is generated
based on these data and indicates the most likely displace-
ment. The process can be written as:

L(∆p|IRGB
s , IRGB

t ) = C(fRGB(I
RGB
s )) ⋆ fRGB(I

RGB
t ),

(1)
where IRGB

s is the input source RGB image. fRGB is
the function of CNN in Siamese-RGB, which outputs the
neural representation of one RGB input. Then, the source
representation is circular pad C and cross-correlated with
target representation to compute the likelihood histogram L.

B. Neural network training

The fRGB network, as described in [12], is designed to
generate representations invariant to lighting and seasonal en-
vironmental changes. In this paper, we aim to train a second
network that takes a different input of a similar modality
(in our case, an IR image) and produces representations
suitable for decision-level fusion. To achieve this, we utilize

a contrastive learning pipeline similar to the original method
but with a few modifications.

Firstly, we use two networks in our pipeline - the pre-
trained fRGB network with fixed weights and a randomly
initialized fIR network that we train in the process. Secondly,
we only use pairs of IR and RGB images obtained simultane-
ously during data gathering in our training set. The training
pipeline is depicted in Fig. 3. The loss function used for
training is binary cross-entropy, and the target is constructed
on the fly based on the position of the random crop of the
IR image.

The main idea behind this approach is that the lighting
invariant representations learned by the fRGB network can
be utilized by the second network, fIR, for fusion. The
advantage of this method is that it eliminates the need to
collect IR images with different lighting conditions. Instead,
we only require a dataset with corresponding RGB and IR
images. The fIR network can extract the invariant properties
of the representations from the fRGB network.

C. Fusion methods

We have two neural networks outputting lighting and
seasonal invariant representations R of RGB and IR images.
The network fRGB is taken from [12], and the fIR is trained
via the pipeline presented in Figure 3.

RRGB = fRGB(I
RGB) (2)

RIR = fIR(I
IR). (3)

In equation 1, only one type of input for map and the live
image was used, but now we can similarly process the IR
image and use it to improve the results. The following sub-
sections present multiple ways to exploit IR representations.

1) IR-IR, RGB-RGB multiplication: First, the representa-
tions of the same input type are cross-correlated:

LIR = L(∆p|IIRs , IIRt ) (4)

LRGB = L(∆p|IRGB
s , IRGB

t ). (5)

The likelihood of all displacements is then calculated as the
element-wise product of the individual histograms:

Lfusion1 = LIR · LRGB . (6)

2) IR-RGB concatenation: In this method, we concatenate
the representations of RGB and IR images along the channel
dimension and perform cross-correlation using this concate-
nated representation. The method can be written down as
follows:

Lfusion2 = C([RRGB
s , RIR

s ]) ⋆ [RRGB
t , RIR

t ]. (7)

3) IR-RGB, IR-IR, RGB-RGB cross multiplication: The
last fusion method is similar to the first one but exploits
the similarity between IR and RGB representations. We first
define this cross-domain likelihood:

Lcross = L(∆p|IIRs , IRGB
t ) · L(∆p|IRGB

s , IIRt ). (8)
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Fig. 2: Diagram of the architecture used for displacement estimation. The estimator is a Fully-convolutional Siamese neural
network, which has two images as inputs and outputs histogram corresponding to the likelihoods of possible displacements.
The image shows the method without any fusion - both branches of the network have CNN with the same weights, and the
inputs are only in the RGB domain.

Fig. 3: Diagram of the training pipeline for the infrared model. The CNNs do not share weights and have different input
types. During training, the existing model CNNRGB has fixed weights and only the part with the new model CNNIR is
updated. The target vector is constructed on fly based on the known position of random crop during training.e This newly
obtained model is then used for fusion.

Using this notation, the last fusion method can be written as:

Lfusion3 = LIR · LRGB · Lcross. (9)

This method is computationally more expensive but exploits
the most information about the scene in both visible and IR
spectra.

D. Final displacement estimation

The output histograms from these four methods can be
used to find the horizontal displacement directly. We denote
the final displacement between source (map) images and
target (live) images for method M as δpM . The pixel
displacement is outputted as:

δpM = argmax(LM ), (10)

where LM denotes the histogram obtained by one of the
fusion methods or the original method without fusion.

IV. EXPERIMENT

In this section, we first describe the dataset construction,
experimental setup and its details. Then, the results of
comparative experiments are presented to demonstrate the
performance of the proposed methods.

A. Datasets

To show the viability of our method, we use two different
datasets. One dataset is used to train the neural network
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processing the IR images, and the second is used to eval-
uate various fusion methods. All the images are resized to
512× 384 pixels. The training dataset comprises 5000 pairs
of corresponding IR and RGB images captured using Intel
Realsense D435i. We scheduled the data collection to take
the images in various lighting conditions (sun glare, night).
Note that this camera has slightly different placement (a few
centimetres) of RGB and IR sensors, which results in slightly
different pixel positions of close objects. The CNN squeezes
the width by a factor of eight, which makes the embeddings
robust to these minor inaccuracies.

The second dataset was captured by a robot operating at a
parking lot next to the Škoda factory. The robot traverses the
same path many times during the day while collecting the
rosbags. The robot is equipped with the same camera type
as we used to collect the training data. Similarly, the camera
simultaneously captures the IR and RGB images as in the
test data. To emulate the VT&R position uncertainty, only
the odometry of the robot is used to extract images every one
meter. The dataset is constructed from 15 traversals, yielding
1725 pairs of IR and RGB images (920 pairs in normal
daylight conditions, 460 pairs with sun glare, and 345 pairs at
night). Finally, we form pairs from traversals with drastically
different environmental conditions to create quadruples of
IR and RGB images taken at the same locations, resulting
in three datasets - sun glare vs daylight, daylight vs night
and sun glare vs night. Some examples of the quadruples
are shown in Figures 4 and 5.

B. Experimental setup

To evaluate our proposed method, we conducted experi-
ments comparing all the methods using the Škoda dataset.
We tested the ability to find horizontal displacement ∆p. The
metrics to evaluate the quality of the estimator are absolute
error (AE) and standard deviation (SD). The AE represents
the absolute difference between the calculated displacement
and the ground truth in pixels. AE is used to evaluate the
methods’ performance, while SD is used to evaluate the sta-
bility of the methods’ performance. In addition, we used the
pairwise T-test to show that the performance improvement of
the fusion method over the non-fusion method is statistically
significant.

C. Experimental results

Results of the experiments are visualised in Figures 4(a),
4(b) and 4(c). The quantitative evaluation of the methods is
done in Table I. It is visible that without fusion, the sun glare
can significantly reduce the performance of displacement
estimation. We show that all presented fusion methods that
use both the IR and RGB images can reduce the influence
of sun glare on the quality of the estimate. It is also visible
that there is little to no performance decrease for other
challenging scenarios, such as day&night difference. This
is also supported by presented p-values, which show that
for the scenarios with sun glare, there is a statistically
significant difference between expected error, while for the
day&night scenarios, the p-values suggest that the difference
in the performance is rather insignificant. Note that there is
a theoretical limit for the method’s precision (≈ 4 pixels)
arising from different sizes of CNN’s input and output. Even
though the scenarios are pretty challenging, the results for
the two of them are close to the capabilities of the estimator.
It is also possible that the ground truth annotations contain
inaccuracies in terms of a few pixels because the lenses for
IR and RGB are not precisely in the same position. That is
one of the reasons why we perform statistical tests, which
further support our claims about the performance increase.

Overall, cross multiplication performs best in our ex-
periments and significantly outperforms all the methods in
the sun glare vs night scenario. We believe that in this
particular scenario, the Sun glare and reflections can be
interpreted as bright objects in a night image, and the term
Lcroos in equation 9 can help to resolve this ambiguity.
However, all the fusion methods help alleviate the issues
arising from sun glare thanks to the additional information
in the IR image. The neural networks used for creating
the representations from the image are relatively shallow
and lightweight for easy deployment on a mobile robot. In
terms of computational requirements, the multiplication and
concatenation are comparable. In contrast, cross multiplica-
tion is the most demanding due to the term Lcross, which
requires the calculation of two additional cross-correlations
of the image representations. This overhead is not significant
because most of the computation time (≈ 90%) takes the
forward pass of CNN.

TABLE I: This table shows the performance of methods in three changing illumination conditions. We report the average
error (MAE) in pixels, standard deviation (SD) for all methods and the p-value of pairwise T-test for the presented fusion
methods.

Method
sun glare & daylight dark night & daylight sun glare & dark night

MAE SD p-value MAE SD p-value MAE SD p-value

No fusion 5.57 ± 6.06 - 5.25 ± 5.59 - 20.39 ± 33.39 -

Multiplication 5.46 ± 6.58 0.27 7.08 ± 10.77 10−8 19.87 ± 45.91 0.78

Concatenation 4.53 ± 5.07 10−97 5.57 ± 7.81 0.09 15.58 ± 36.43 0.003

Cross Multiplication 4.84 ± 5.68 10−25 5.64 ± 9.30 0.13 10.11 ± 24.78 10−12
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(a) sun glare vs daylight

Ⅰ

Ⅱ
Ⅲ

(b) daylight vs night

Ⅳ Ⅴ Ⅵ

(c) sun glare vs night

Fig. 4: Horizontal displacement estimation quality of the compared methods. The mean absolute errors in pixels are in the
top row and standard deviations are in the bottom. The x-axes of the graphs indicate the index of the traversal pair. The
Roman numbers I-VI indicate particularly difficult conditions, shown in Figure 5.

(a) Daylight versus night. These three pairs of sample images correspond to the peaks in Figure 4(b), where the cross
multiplication method shares similar performance with the non-fusion method in displacement estimation.

(b) Sun glare versus night. These three pairs of sample images correspond to the peaks in Figure 4(c), where the fusion
methods significantly improve the displacement estimation.

Fig. 5: Example image pairs captured in particularly difficult conditions indicated by Roman numbers in Figure 4.
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V. DISCUSSION

We hypothesize that the existing model fRGB can be
used to train a new neural network using inputs obtained
from different sensors (IR, depth, event-based) with the same
modality (image). One of the contributions of this paper
is the training scheme, which enables the incorporation of
different sensory inputs into the VT&R pipeline without the
necessity of collecting long-term datasets.

The significant advantage of the training scheme is that
the robustness to the environment changes can be translated
from the existing model fRGB to the new model, which has a
different type of input. We demonstrate the feasibility of this
process in the domain of IR images. The collected training
dataset only contains information on bridging the RGB and
IR domains. However, the trained network fIR still shows
robustness to significant changes in the scene appearance and
can improve the performance of the displacement estimate.

VI. CONCLUSION

We present a self-supervised learning pipeline to train
a model for infrared images, which is robust to environ-
mental changes, without the necessity of collecting long-
term datasets. Further, we benchmark three methods that
can fuse the IR model with the existing RGB model and
improve the accuracy of horizontal displacement estimation,
which is a crucial subtask of appearance-based VT&R. We
test the performance of presented fusion methods on three
challenging datasets. We show that the fusion method can
outperform the original method without fusion with high
statistical significance. Our method can be applied to improve
the robustness of VT&R frameworks to drastic illumination
changes.

In the future, we will investigate deployment of similar
learning pipelines in scenarios, where miniature bio-hybrid
robots with vision-only sensors operate in environments with
adverse visibility [34]. These scenarios include not only
search and rescue missions [35], but also robot navigation
in and exploration of social insect colonies [36], [37].
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White-box and Black-box Adversarial Attacks to Obstacle
Avoidance in Mobile Robots

Iñaki Rañó Anders Lyhne Christensen

Abstract— Advances in artificial intelligence (AI) play a
major role in the adoption of robots for an increasingly broader
range of tasks. However, as recent research has shown, AI
systems, such as deep-learning models, can be vulnerable to
adversarial attacks where small but carefully crafted changes
to a model’s input can severely compromise its performance. In
this paper, we present two methods to find adversarial attacks
against autonomous robots. We focus on external attacks against
obstacle-avoidance behaviour where an attacker — a robot —
actively perturbs the sensor readings of a goal-seeking victim
robot. In the first (white-box) method, we model the interaction
between the victim and attacker as a dynamical system and
generate a series of open-loop control signals for the attacker to
alter the victim’s behaviour. In the second (black-box) method,
the assumption that the attacker has full knowledge of the
system’s dynamics is relaxed, and closed-loop control for the
attacker is learnt through reinforcement learning. We find that
both methods are able to find successful attacks against the
victim robot and thus constitute viable techniques to assess the
robustness of autonomous robot behaviour.

I. INTRODUCTION

The increased use of robots poses a significant challenge
in terms of security and privacy [1], [2]. Security includes
resilience against malicious actors who aim to disrupt the
robots’ operation or perniciously change their behaviour. Ad-
versarial attacks have already been successfully demonstrated
against deep learning models [3], [4] and other learning
mechanism [5]. Significant research efforts are currently
being devoted to hardening such models to make them robust
against adversarial attacks [6]. However, as we show in
this paper, robots relying on well established, non-learned
control can be equally vulnerable to adversarial attacks. We
present two methodologies to generate adversarial attacks
to robot behaviour than can be implemented by a second
physical robot that interferes with the sensors of the first.
We show that it is possible to control the behaviour of a
robot, the victim, by physically interfering with its sensors
through an attacking robot, the attacker. The first method
is an alternative approach to optimal control that uses only
initial conditions instead of boundary conditions, making
the search for an attack simpler. It can generate attacker’s
behaviour fast and provides an empirical way to quickly find
whether an attack is possible, however, its applicability is
limited by the assumptions made. On the other hand, as we
will show, attacks can also be generated using reinforcement

I. Rañó is with the Electronics and Computing Dept. of the University
of Santiago de Compostela, Spain, ignacio.rano@usc.es. A.L.
Christensen is with the SDU Biorobotics Unit of the University of Southern
Denmark, Denmark. e-mail: andc@mmmi.sdu.dk.
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learning which leads to more general attacker behaviour at
the expense of longer training time.

In this study, the victim robot implements obstacle avoid-
ance via potential field methods (PFM) [7], a well established
mechanism with well known limitations [8]. Although many
excellent alternatives to obstacle avoidance exist [9], [10],
[11], [12], the mathematical formalisation of the state transi-
tion equation to generate a dynamic model of obstacle avoid-
ance is outside the scope of this work, hence, for simplicity,
we will stick to the PFMs. In our experimental scenarios, the
victim of the attack performs obstacle avoidance in a static
environment trying to reach its predefined goal location. The
attacker robot is situated in the same environment and must
force the victim to a false target area by occupying positions
that affects the victim’s behaviour. In the reminder of this
paper, goal refers to the victim’s predefined goal location,
whereas target refers to the attacker’s desired destination for
the victim. Our experimental results show that adversarial
attacks to PFM for obstacle avoidance are possible in mobile
robots, and we present two alternatives to generating these
attacks, namely using (i) an open-loop strategy, and (ii) a
closed-loop non-linear controller.

The rest of the paper is organised as follows. Section II
presents the underlying assumptions and the two methodolo-
gies for an attacking robot to learn how to move in order to
change the victim’s trajectory so that it reaches the attacker’s
target. We focus on attacking PFM for obstacle avoidance but
both methodologies can be applied to other behaviours. The
simulated results for the two methodologies are presented
in a series of scenarios in Section III. Finally, Section IV
presents our conclusions and future research directions.

II. ATTACKS TO ROBOT BEHAVIOUR

This section presents two methods to generate adversarial
attacks to robot behaviour. We cast the attack design as an
optimisation problem where the objective of the attacker is
to optimise a function of the trajectory of the victim and the
target. Specifically, the objective of the attacker is to drive
the victim to a predefined target area instead of the victim’s
own goal location. The first is a white-box approach, Section
II-A, which leads to an open-loop control signal for the
attacker, while the second is a black-box approach, Section
II-B, which builds a non-linear controller using an extended
state of the victim-attacker system.

A. White-box open-loop attacks

This section begins with a general formulation of the prob-
lem of attacking robot behaviour modelled as a dynamical
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system, and then moves on to instantiate attacks against PFM
for obstacle avoidance. Let us denote the victim’s state as xv

and assume the evolution of its state is given by a C1 class
vector function which includes the state of the attacker as
an independent variable. We denote the attacker’s state by
xa and assume its dynamics can be shaped by a control
signal u(t). We will further assume the attacker has access
to the victim’s state. Under these assumptions the dynamic
behaviour of the victim and the attacker can be stated as:

ẋv = Fv(xv,xa)

ẋa = Fa(xa,xv,u(t)), (1)

where Fv(·) and Fa(·) are, respectively, the functions defin-
ing the dynamics of the victim and the attacker. It is
worth noting that the dynamics of the victim must depend
on the state of the attacker so that it can influence the
victim’s dynamics. Furthermore, we will assume the victim
is unaware of the attack so that it takes no countermeasure.
The dynamics of the attacker will depend on its own state
and the state of the victim, which we assumed known to
the attacker. If we consider that the control input u(t) is
parameterised through a vector Φ, i.e. u(t) = u(t,Φ), and
assume that the attack starts at t = 0 with a horizon tf , we
can define the following error function:

E(Φ) =
1

2

∫ tf

0

|ta − xv(t)|2dt, (2)

where ta is the centre of the target area to which the attacker
should drive the victim. The error depends on the parameters
through the system’s dynamics (1) and the problem is to
find Φ∗ = arg min

Φ
E(Φ), i.e. the optimal parameters of

the attacker’s input which minimises the error subject to the
constraints defined by the dynamics of the system eq. (1).
Although this can be achieved through optimal control [13],
we approach the problem as a direct minimisation of E(Φ)
using a gradient descent algorithm. Such an approach can
be also used to learn the dynamics of the victim if Fv(·) is
known up to a set of parameters [14]. The gradient of the
error (2) w.r.t. the parameters Φ is:

∇ΦE(Φ) = −
∫ tf

0

(ta − xv(t))∇Φxv(t)dt, (3)

where ∇ΦE(Φ) and ∇Φxv(t) are the gradients of the error
and the victim’s state w.r.t. the parameters (Φ) of the control
input of the attacker.

The challenge to calculate the gradient, eq. (3), is to obtain
∇Φxv(t) as the way the victim’s trajectory changes with Φ
is not known. However, if we calculate the derivatives of
eqs. (1) w.r.t. Φ we get:

∇Φẋv = ∇xvFv∇Φxv +∇xaFv∇Φxa

∇Φẋa = ∇xaFa∇Φxa +∇xvFa∇Φxv +∇ΦFa, (4)

where ∇xv
Fv and ∇xa

Fv are the Jacobians of the victim’s
dynamics w.r.t. the victim and attacker’s states, ∇xa

Fa and
∇xv

Fa are the Jacobians of the attacker’s dynamics w.r.t. the
attacker and victim’s state, and ∇ΦFa is the Jacobian of the

attacker’s dynamics w.r.t. the parameters of the input u(t,Φ).
If the derivatives of the state variables ẋv and ẋa change
smoothly with time (t) and parameters (Φ), we can exchange
the order of the gradient and time derivative in eqs. (4). Then
defining the matrices Dv = ∇Φẋv and Da = ∇Φẋa we can
rewrite equation (4) as:

Ḋv = ∇xvFvDv +∇xaFvDa

Ḋa = ∇xa
FaDa +∇xv

FaDv +∇ΦFa (5)

Simultaneously integrating eqs. (1) and (5), we obtain the
gradient ∇Φxv(t) = Dv needed to find ∇ΦE, and hence
optimise the error (2) using gradient descent. In this way,
the dynamic constraints of the system are accounted for
through the integration of (5) with zero initial conditions as
the system’s initial state does not depend on the parameters.

To instantiate the formulation above to a PFM for obstacle
avoidance, in the rest of this section we assume both robots
(attacker and victim) operate in 2D according to a single
integrator model (ṗ = u). Let’s assume the victim starts at
position pv(0) ∈ <2 and has goal tv ∈ <2 in an environment
containing obstacles, while the attacker starts at position
pa(0) ∈ <2. Obviously these points should not be inside any
obstacle grown with the Minkowski sum of their bodies, nor
should they be so close to one another that the robots’ bodies
overlap. Both robots have to perform obstacle avoidance and,
since both follow the single integrator model, we assume the
dynamics of the system is given by:

ṗv = Fo
v(pv,pa) + Fg

v(pv)

ṗa = Fo
a(pa) + Fg

a(pa,pv) + u(Φ), (6)

where Fo
v(·) and Fo

a(·) are the repulsive forces of the
obstacles for the victim and attacker, respectively, Fg

v(·) and
Fg

a(·) are the attractive forces of the goal for the victim and
the attacker, and u(Φ) is the parametric input to the attacker
dynamics. While the victim has its obstacle avoidance goal,
we can set the goal of the attacker to be the current position
of the victim. In general, if the input u(Φ) is not bounded,
the attacker can generate large actions attack the victim
potentially leading to collisions with obstacles. However,
one can select a maximum action uM smaller than the
maximum norm of the contributions of the obstacles making
the trajectories of the attacker obstacle free, i.e. imposing a
constraint on the maximum allowed input u(Φ). We will rely
on this approach also in our second mechanism to generate
adversarial attacks.

B. Black-box Attacks via Reinforcement Learning

Although the approach presented in Section II-A can
find an input to drive the victim to the attacker’s target,
it entails an assumption unrealistic in practice, namely that
the attacker knows the dynamics of the victim F(·). To
relax this assumption, attacks can be generated through
reinforcement learning (RL) [15] where the additional input
to the attacker’s dynamics u, the policy in this case, depends
on the states of the attacker (xa) and the victim (xv). For the
obstacle avoidance attacks, we created an RL state st with
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the positions of the victim and the attacker’s target relative
to the attacker’s position and also included the velocity of
the victim, which can be estimated from the sequence of
position pv . The dynamics of the system then becomes:

ṗv = Fo
v(pv,pa) + Fg

v(pv)

ṗa = Fo
a(pa) + Fg

a(pa,pv) + u(st), (7)

where st = [pv−pa, ta−pa,vv]. Although the RL problem
can be defined with a state st that does not include the
victim’s velocity, our tests showed that including this infor-
mation greatly helped to speed up the learning process, while
using vv does not necessarily imply knowledge about the
victim’s dynamics. Furthermore, the dynamics of the attacker
could be fully learnt, i.e. without superposing the obstacle
avoidance mechanism, but that would entail including some
type of range sensing in the attacker as part of the state (st).
This in turn means a more complex learning mechanism with
more inputs and more training data since the attacker would
have to learn to avoid obstacles while performing the attack.
Given that the attacker dynamics already includes a term for
obstacle avoidance, the reward function to optimise in the RL
problem was simply defined to be a function of the distance
from the victim to the target position of the attacker:

r(st) =

{
rM if |pv − ta| ≤ ε
−α|pv − ta| if |pv − ta| > ε,

(8)

where ε defines an area around the attacker’s target, rM > 0
is a positive reward and α is a scaling factor. This reward
function penalises with a negative reward the distance be-
tween the victim and the attacker’s target and gives a positive
reward when the victim enters a region of radius ε centred
at t, which also indicates the end of the RL episode.

III. EXPERIMENTS OF ADVERSARIAL ATTACKS

In this section, we show results of simulated experiments
with the two approaches presented in Section II. The attacker
and the victim run potential field-based obstacle avoidance
with different parameters, specifically the attacker parameters
allow it to move faster and to get closer to obstacles. Both
the victim and the attacker can perceive the locations and
sizes of nearby obstacles.

A. Open-Loop Attacks

This section presents simulations where the attacker com-
putes an open-loop control signal to combine with the PFM
to drive the victim towards a target area using the method-
ology presented in Section II-A. The equations to compute
the gradient of the error (3), i.e. equations (1) and (5) were
integrated simultaneously using Euler’s method with a step
size of ∆t = 0.05. The parameters Φ used are the discretised
control signal of the attacker u(t) as a piece-wise constant
function, u(tk), which is initially set to zero, i.e. Φ = 0
as initial guess for the control commands. Initialising Φ to a
random vector would likely not bring any benefit, while other
initialisations could improve the optimisation but are difficult
to guess. In all simulations shown in this section, the starting
position of the victim was xv(0) = [0, 8] and its goal was

tv = [0,−8]. The maximum speed of the victim was set to
1m/s, while the attacker had a maximum speed 20% higher,
which we found experimentally to give the attacker enough
time to approach and drive the victim towards the attacker’s
target.

Figure 1 shows the trajectories of the victim and the
attacker for a configuration where the initial position of the
attacker was xa(0) = [−3,−2] and the target to drive the
victim to is ta = [−3, 3]. Figure 1(a) shows the resulting
attack in a scenario without obstacles, where the red and
blue trajectories corresponds to the attacker and the victim,
respectively. The target is represented by a green circle while
the final position of the attacker corresponds to the red
circle. The transparency level of the trajectories represents
the time evolution, i.e. the beginning of the trajectory has
a higher transparency and same level of transparency in the
two trajectories corresponds to same time step. As it can be
seen in the figure, the optimisation process found a temporal
sequence of attacker velocities to drive the victim to the
target area, and the whole trajectory lasted around 9 seconds.
The trajectory (see Figure 1(a)) is just a sequence of straight
lines driving the victim to the attacker’s target.

For the next scenario we placed one obstacle in the at-
tacker’s way. The resulting trajectory is shown in Figure 1(b),
and despite the presence of the obstacle, the attacker is
able to drive the victim to its target, although in this case,
the attacker required 12 seconds to complete the attack.
Figures 1(c) and 1(d) show the result of attacking trajectories
for the scenario with two and three obstacles, respectively,
where obstacles were added in new positions of the arena
to further disturb the trajectories of the attacker and the
victim. While the second obstacle affects the trajectory of
the attacker, the third obstacle only affects the trajectory
of the victim, yet in both cases the attacker successfully
finds appropriate trajectories to drive the victim to its target.
The time it took to complete the attack was 13 and 11
seconds, respectively. All the time horizons for the attacks
were empirically set for each scenario.

B. Attacks with Reinforcement Learning

In this section, we present simulation results for the RL
approach discussed in Section II-B. For all the experiments
shown here the attacker’s policy was represented by a
neural network with two hidden layers (30× 30 units) with
hyperbolic tangent output, and a linear output layer which
corresponds to the additional input to the attacker’s dynamics
u(st) in eq. (7). The network architecture was selected
through an empirical evaluation of different network sizes.
The final velocity of the attacker was limited through its
maximum speed of 1.2 m/s. The networks were trained
using the Proximal Policy Optimisation (PPO) algorithm [16]
where the hyper-parameters (batch size and epochs) were
empirically changed from scenario to scenario to optimise
the results for each scenario. A scenario is defined by an
environment with a fixed number and location of obstacles
(no obstacles, one and two obstacles). For each scenario
we experimented with three configurations of the initial
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(a) No obstacles

(b) One obstacle

(c) Two obstacles

(d) Three obstacles

Fig. 1. Examples of trajectories adversarial attacks as an optimisation
problem in the control input (open-loop) of the attacker (victim’s goal tv =
[0,−8])

position and target of the attacker: (i) a fixed position for the
attacker’s target with random initial positions of the attacker
inside some area, (ii) a random position for the attacker’s
target inside some area with fixed attacker initial position,
and (iii) random attacker target and initial position. The
starting position of the victim was xv = [0, 8] and its goal
tv = [0,−8].

We trained 15 different policies for each of the three
scenario and three configurations resulting in a total of
15 × 3 × 3 = 135 policies. Once trained, the success rate
of each policy was calculated over 1000 trajectories (with
random positions of the attacker, the target or both depending
on the configuration) and counting the number of trajectories
which drove the victim to the target area. Although some
of the trained policies had a success rate of zero, specially
for the most challenging scenario with two obstacles, the
lowest success rate among the easiest scenario (no obstacle)
was 97% (i.e. 97 out of 100 attacks with that policy were
successful).

Figure 2 shows samples of 50 trajectories of attacks
for each of the three configurations without obstacles (first
scenario), i.e. random position of the attacker (Fig. 2(a)),
random position of the target (Fig. 2(b)), and random attacker
and target (Fig. 2(c)). The blue and red lines correspond
respectively to the victim’s and attacker’s trajectories. The
starting position of the victim is shown with a blue circle and
its goal with a blue ‘+’. The initial positions of the attacker
are shown with a red ‘+’. In Figures 2(b) and 2(c), the black
rectangle depicts the area where the random target of the
attacker was selected. As the figures show, the trajectories
of the attacker and victim are highly prototypical, and the
strategy of the attacker is to move towards the right of the
environment to drive the victim towards the target on the
left side. In terms of success rate, the best policies for all
configurations lead to a 100% success, which means that for
all the sample trajectories in the scenario without obstacles,
the attacker drove the victim to the target.

In view of the trajectories shown in Figure 2, we exper-
imented with placing an obstacle along the trajectories of
the attacker, see Figure 3, and trained this new scenario for
the three configurations. Figures 3(a), 3(b) and 3(c) show 50
sample trajectories for these configurations of attacker and
target defined in the scenarios above. Interestingly, in the
first two scenarios (where only the target or attacker’s initial
position are random) the trajectories pass on one side of the
obstacle, while in the last scenario the trajectories pass on the
other side, which could mean there is more than one possible
strategy to perform the attack. The strategy of the attacker
to move towards the right side of the environment is still
present since its target is on the left side, and, in this way, the
attacker drives the victim towards the left. It is worth noting
that the rightmost points of the trajectories of the attacker
are further to the right than in the no obstacle scenario since
the victim moves to the right to avoid the obstacle. As for
the success rates of the policies in these scenario, the best
policies for the three configurations reached between 98%
and 100% success in the 1000 random trials performed.
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(a) Random attacker’s position (b) Random target (c) Random target & attacker’s position

Fig. 2. Sample trajectories of adversarial attacks using a neural policy for scenarios with no obstacles

(a) Random attacker’s position (b) Random target (c) Random target & attacker’s position

Fig. 3. Sample trajectories of adversarial attacks using a neural policy for scenarios with one obstacle

(a) Random attacker’s position (b) Random target (c) Random target & attacker’s position

Fig. 4. Sample trajectories of adversarial attacks using a neural policy for scenarios with two obstacles

Figure 4 shows the random test trajectories for the scenario
with two obstacles, where the second obstacle was added
to perturb the trajectories in the configurations shown in
Figures 3(a) and 3(b), forcing the attacker to let the victim
approach its goal and then pushing it back towards the
attacker’s target. As Figures 4(a) and 4(b) show, this strategy
was successfully learnt by the policies, yet interestingly one
of the simulated trajectories in Figure 4(c) drives the victim
between the two obstacles. The success rates of the policies
in this scenario were significantly reduced with one, four and
five policies failing to drive the victim to the attacker’s target

for the three configurations. The best policies achieved a
success rate between 98% and 100%. From the success rates
achieved by the 15 learnt policies across scenarios one could
infer that the more obstacles in the environment the more
difficult is to learn a successful attacking policy, although
successful policies can be found to create close to perfect
attacks in all the scenarios tested.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes two methodologies to generate adver-
sarial attacks to robot behaviour with PFM-based obstacle
avoidance as a case study. Although this can be seen as
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a simplistic example since real robots use combinations of
planning and obstacle avoidance, it might be possible to
find attacks for such behaviours too. Our simulations showed
that attacks to this obstacle avoidance strategy can be found
even though good policies are less frequently found in more
complex environments (environments with more obstacles).
Although the proposed methodologies worked for our case
study, an outstanding open question is how far these attacks
can go, i.e. which other robot behaviours are vulnerable to
attacks? If so, can adversarial attacks to robot behaviour be
avoided or at least detected?

Our next objective is to apply these methodologies to gen-
erate adversarial attacks to other obstacle avoidance methods,
such as those designed for unicycle type robots and deploy
them in real robots, where sensor noise and other effects
might play a key role on the feasibility of the attacks.
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Evaluating Techniques for Accurate 3D Object Model Extraction
through Image-based Deep Learning Object Detection and Point Cloud

Segmentation*

Alicia Mora, Alberto Mendez and Ramon Barber

Abstract— Accurate 3D object model extraction is essential
for a wide range of robotics applications, including grasping and
object mapping, which require precise knowledge of objects’
shape and location to perform optimally. However, high accu-
racy can be challenging to achieve, particularly when working
with real-world data where factors like occlusions, clutter and
noise can greatly influence results. Several techniques can be
found in literature for integrating 2D deep learning and point
cloud segmentation. Nevertheless, comparative studies on these
algorithms are very limited. In contrast, this paper evaluates
methods for obtaining 3D object models using a combination
of deep learning object detection and point cloud segmentation.
We compare a number of existing techniques, some of which
have been improved for performance, on real-world data.
More specifically, the paper examines four methods for 3D
object extraction: two for bounding box object detection, one
for instance segmentation and a fourth method that involves
estimating an object mask in the image inside the bounding box.
We compare these techniques qualitatively and quantitatively
using several criteria, providing insights into their strengths
and limitations.

I. INTRODUCTION

The ability of robots to perceive and comprehend their
environment is gaining importance as applications for them
spread throughout society. One essential aspect for this is the
capacity to extract 3D object models. These models enable
robots to understand the geometry and spatial arrangement of
objects in their surroundings. This information is particularly
important in tasks where precise data about the objects shape
and position is necessary. For instance, it allows to create se-
mantic maps where the precise location of objects determines
the zones at which robots will be capable of interacting with
people [1]. Another example is estimating the 6-DoF grasp
from a partial object view for a gripper [2]. In both cases,
an error in the 3D object model extraction has a direct effect
on the methods results. However, accurately extracting 3D
object models from real-world data is a challenging task,
especially in the presence of factors such as occlusions or
cluttered backgrounds. In this work, we explore the potential
of combining deep learning object detection with point cloud
segmentation to extract accurate 3D object models. This
study’s objective is to assess the performance of various
existing techniques while looking into their applicability to
robotics.

*This work was supported by RoboCity2030 DIH-CM project
(S2018/NMT-4331, RoboCity2030 Madrid Robotics Digital Innovation
Hub)

RoboticsLab, Universidad Carlos III de Madrid, Leganés, Spain. al-
morav@ing.uc3m.es, albmende@pa.uc3m.es, rbarber@ing.uc3m.es

(a) (b)

Fig. 1. Visual representation of the presented problem: (a) original point
cloud, (b) segmented point cloud, where the desired object (bottle) is colored
in orange. The box occluding the object is successfully filtered.

Although there are methods that directly detect 3D ob-
jects in point clouds such as [3], they are computationally
expensive and require big amounts of labeled data for train-
ing. Furthermore, since their utilization is not as prevalent
compared to image object detection, there is a scarcity of
pre-trained models readily accessible. Of the few models
that are available, many are designed for autonomous driving
applications, so they are not directly applicable for robotic
applications. That is why the combination of image object
detection and its subsequent projection onto the correspond-
ing point cloud offers great advantages for applications like
navigation, mapping or grasping.

A fundamental task in computer vision is object detec-
tion, and there are several methodologies for spotting and
locating objects in pictures. In this paper, we investigate
two main methodologies: bounding box detection and in-
stance segmentation. While bounding box detection provides
a rectangular bounding box around the detected object,
instance segmentation segments each image pixel separately.
Even though bounding box detection is computationally less
expensive than instance segmentation, it requires more point
cloud segmentation processing to extract 3D object models
accurately, given that the box does not precisely adjust to
the object shape. Instance segmentation, on the other hand,
provides more detailed object localization and segmentation
but it also has some drawbacks, including the need for
larger dataset creation, greater computational requirements
and more challenging training than bounding box detection.

Point cloud segmentation is the second step required
for obtaining precise 3D object models. In this study, we
investigate ways to segment point clouds enhanced by the
prior detection of the object in the corresponding image. To
do this, the point cloud projection onto the image plane is
used to determine which points of the cloud correspond to
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the detected object. Depending on the detection technique, a
different local point cloud will be obtained after projection,
so different filtering techniques will be required for the final
3D model extraction. In the case of bounding box detection,
segmentation techniques will be necessary to remove points
corresponding to background areas or occlusions, since the
box does not fit the exact object shape. In the case of instance
segmentation, special attention will be paid to points on the
mask edge, as they may be outside objects. These approaches
are evaluated and compared in this work to determine their
effectiveness for real-world applications in terms of accuracy
and time. An example is shown in Fig. 1, where a bottle is
detected and segmented successfully despite occlusions.

II. REVIEW: 3D OBJECT MODEL EXTRACTION

In this section, we review several techniques proposed in
literature for integrating image-based object detection and
point cloud segmentation. These works have been divided
according to their application: grasping and mapping. In both
cases, we can find strategies based on the two main object
detection techniques: bounding box and instance segmenta-
tion. Furthermore, they share point cloud segmentation and
filtering techniques. Hence, our objective is to gather their
main features to subsequently test their performance.

A. Grasping Applications

3D object models allow robots to approach and grasp ob-
jects with dexterity and accuracy. Without this information,
a robot may struggle to determine the best approach to grasp
an object, leading to suboptimal performance or even failure.

Several works have proposed to combine bounding box
object detection and point cloud segmentation to solve this
issue. Authors in [4] propose a bin picking solution where
YOLOv2 first recognizes objects and then the point cloud
data is segmented using the bounding box as a mask. Point
cloud data is projected onto the image frame and points
inside the box are selected. The fact of selecting points
within the box that do not belong to the object is not taken
into account. In [5], this fact is considered for grasping
objects with a humanoid robot. Points outside of the robot
manipulation range are removed, as well as the horizontal
plane corresponding to the object supporting plane. However,
other factors such as occlusions are not considered.

Other works propose the use of instance segmentation
instead. Studies on using robots for harvesting like [6], [7]
detect fruits using instance segmentation and apply the re-
sulting mask to extract the corresponding point cloud, which
is then fitted into a sphere model to estimate grasping. Sim-
ilarly, in [8] 3D object models are estimated using instance
segmentation and their point clouds are fitted into either a
plane of a cylinder model. Additionally, ICP is applied for
pose refinement. Authors in [9] apply the same technique
for pick-and-place tasks and include a shape completion
method to obtain a more accurate 3D model. Finally, authors
in [10] use GrabCut to select the foreground object of an
image cutout coming from a bounding box detection, better

fitting the object shape and approaching the way instance
segmentation works.

B. Mapping Applications

The 3D object model estimation for mapping provides the
opportunity to improve the perception that robots have of
their environment. For instance, it enables the creation of
higher-level maps including semantic information [11]. Some
works like [12] determine object locations using the center
of the estimated bounding box to obtain depth. However,
this point does not always belong to the object itself, so
obtaining a complete 3D model of the object could improve
this estimation.

Several works rely on initially detecting objects using
bounding boxes to segment point clouds accordingly. Au-
thors in [13] propose an object-aware map where 3D object
models are included, fusing information from multiple view
angles as explained in [14]. They first use the bounding box
as a mask to crop the point cloud, which is then segmented
using Locally Convex Connected Patches (LCCP). This algo-
rithm, presented in [15], segments the point cloud into small
blocks through supervoxel segmentation, which are later
clustered into larger objects using a region growth algorithm
based on convex-concave relationships. The biggest cluster
is selected as the desired object. However, this could cause
errors such as choosing areas that do not belong to the object,
such as ground or background regions, in case they occupied
more space. In [16], plane models are extracted from the
cropped point cloud for visual semantic SLAM on a UAV.
Other works like [17], [18] propose to remove ground points
from the cropped point cloud using RANSAC before apply-
ing Euclidean filtering. The main problem of these methods
is how to appropriately select the distance threshold, which
will highly influence the segmentation performance. Authors
in [19] propose to segment the point cloud before cropping
it using the bounding box. Then, clusters are projected into
the image plane. Those containing an area above a certain
threshold inside the bounding box are selected as part of the
detected object. This method has the advantage of merging
multiple clusters belonging to the same object.

Regarding instance segmentation, multiple works make
use of this technique for mapping. In [20], the resulting mask
is used to crop the point cloud. No information regarding
cloud filtering is provided, which could cause errors in
the final object shape estimation. Works presented in [21],
[22], [23] generate object-aware semantic maps based on
SLAM. In all these cases, a filtering step is applied after
cropping the point cloud. In [21], a seeded region growing
algorithm is proposed to remove points in the mask contour
that do not belong to the object. In [22], DBSCAN and a
connected component analysis are combined for the same
purpose. In [23], the point cloud is segmented according to
estimated normals. Other works like [1] apply other filtering
techniques like statistical filtering and Euclidean clustering
to create semantic maps, where object points are projected
onto the map plane. Special attention should be paid to the
performance of these filters, since a small error in the edges
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of the instance mask can cause large errors in the 3D object
shape estimation.

This overview on 3D object model extraction highlights
that the variety of applications has turned out into a va-
riety of algorithms. For a practical comparison of several
approaches, we analyze the performance of four methods:
region growing, LCCP, GrabCut and instance segmentation.

III. IMPLEMENTED 3D OBJECT SEGMENTATION
ALGORITHMS

Of all the reviewed methods, four have been selected to be
compared among each other. All of them start with obtaining
an image and a point cloud from an RGB-D camera. Three
of the methods are based on object detection using bounding
boxes, while the fourth one is based on the mask obtained by
instance segmentation. In all these cases, a relationship must
be established between the 3D point cloud and the 2D image.
Subsequently, the procedure for image object detection, as
well as the projection of 3D points onto the image plane
and the applied segmentation techniques are explained. Code
has been developed using the PCL library in C++ [24] and
Open3D in Python [25].

A. Object Detection

Object detection is performed in the 2D image after the
data capturing stage. In order to achieve this objective, a
convolutional neural network (CNN) that works in real-time
is used in this work: YOLOv5 [26]. This object detection
can be done in two different ways: bounding box detection
and instance segmentation. An example of the outcome from
these two methods is shown in Fig. 2. The main difference
between the two proposals is that bounding boxes delimit
objects using a rectangle, which may lead to imprecise ob-
ject localization. Meanwhile, instance segmentation delimits
objects pixel by pixel, maintaining objects’ shapes [27]. This
has a significant impact during the CNN training. Instance
segmentation requires larger datasets and more training time.
Also, object labeling is more difficult and it takes more time
per object instance. In this research, it is intended to test
different 3D object model extraction algorithms using the
two object detection methods to analyze their impact in 3D
segmentation and to determine when it is recommended to
use bounding box detection or instance segmentation.

(a) (b)

Fig. 2. Object detection methods: (a) bounding box detection, (b) instance
segmentation.

B. 2D - 3D Correspondence

In all of the four proposed methods, a correspondence
between 2D image pixels and 3D point cloud points is
required. More specifically, 3D points need to be projected
to the image plane to see whether they correspond to the
object region obtained from the object detector (bounding
box or mask) or not. For that purpose, the pinhole camera
model is used, as shown in Fig. 3.

Fig. 3. Point cloud and image correspondence based on the pinhole camera
model.

For establishing the relationship between a 3D point
P = (Xb, Yb, Zb) and a 2D point p = (Xb, Yb), the
following equations are used:

xb =
fx ·Xb

Zb
+ cx, yb =

fy · Yb
Zb

+ cy (1)

where xb and yb are the image coordinates of the point p,
Xb, Yb and Zb are the point cloud coordinates of the point
P , fx and fy are the focal lengths of the camera in the x and
y directions respectively, and cx and cy are the coordinates
of the image center.

C. Point Cloud Segmentation

In this section, the four selected segmentation methods are
explained, three of them based on the output from bounding
box detection and a fourth one based on the mask obtained
from instance segmentation.

1) Region growing Algorithm: The region growing-based
method is inspired by the work presented in [19]. In the
proposed research, the whole point cloud was segmented
using an incremental segmentation algorithm and then a
criterion was set to see which clusters corresponded to the
desired object by checking if they were inside the object
bounding box. This criterion was checked from several points
of view. However, in our research we are only focused on
single view applications, so the method has been modified
to be applicable to these situations. The first step is applying
the region growing algorithm to the global point cloud.
Region growing is a point cloud segmentation technique that
groups neighboring points based on similarity criteria such
as color, intensity, or distance. The output is a set of clusters
corresponding to either objects or object parts. This last
case is mostly found in non-convex objects such as chairs,
which are typically divided into backrest and seat. Then, each
cluster is projected into the image plane using the pinhole
model. For each projected cluster, the ratio of cluster points
inside the bounding box over the total number of cluster
points is calculated. If this value is over 0.9, the cluster
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is selected as part of the object. In this way, background
and occluding objects are filtered, since it is assumed that
their shape cannot be fully or almost fully contained in the
bounding box. An example of region growing segmentation
is shown in Fig. 4. According to the defined criterion, only
the purple cluster would be selected as part of the object.

Fig. 4. Region growing segmentation applied on a point cloud. According
to the proposed criterion, the purple cluster corresponding to the bottle
would be selected. Red points are outliers.

2) LCCP: The LCCP-based method is inspired by the
works presented in [13], [14]. In their research, authors
proposed to crop the point cloud first by selecting the 3D
points inside the object 2D bounding box. Then, the LCCP
algorithm was applied on the local point cloud. The LCCP
algorithm identifies connected regions with locally similar
geometry and appearance, and assigns a unique label to each
region based on its convexity and connectedness properties.
It relies on two main stages: division into small voxels using
supervoxel segmentation and merging voxels by computing
an adjacency graph. An example of these two steps is shown
in Fig. 5.

(a) (b)

Fig. 5. LCCP stages: (a) supervoxel segmentation, (b) supervoxel merging
based on an adjacency graph. The green cluster corresponds to the desired
object.

In order to select the cluster corresponding to the object,
authors assumed it to be at the center of the bounding box
and to occupy most area in the box. However, this assumption
cannot be made, specially for non-convex objects. LCCP
tends to oversegment objects like chairs, since it pays special
attention to convex shapes. Hence, a strategy for selecting
more than one cluster is needed in case the object is divided
into two or more parts. For that reason, we propose to select
clusters assuming that they are at the center of the point
cloud (instead of the center of the bounding box) and that
they are greater than other clusters. In this way, small clusters

corresponding to occlusions are removed because of their
size and large background clusters are also filtered because
they are too far from the center.

3) GrabCut: The GrabCut-based method is inspired by
the work presented in [10]. The objective is achieving similar
2D object detection results as with the instance segmentation
method but using a CNN that performs bounding box detec-
tion. The proposal consists of two main processes: 2D object
extraction and point cloud segmentation. Object extraction
is performed using OpenCV’s GrabCut [28]. The algorithm
uses a Gaussian Mixture Model (GMM) to model the pixel
color distribution on an image. Then, a graph is built based
on it, where its weights depend on pixel similarity. Finally,
a min-cut algorithm generates the binary mask that delimits
the object using a minimal cost function. This process is
repeated until convergence is achieved. Once an image from
the camera is received, it is cropped using the bounding box.
It is in this crop where GrabCut is applied so that the object
shape is better defined. Then, like in the previous methods,
the points in the point cloud corresponding to that region are
selected. Given that the GrabCut mask is not as precise as the
instance segmentation one and that occlusions may not have
been filtered, an additional step is added to remove unwanted
data. A density-based clustering algorithm, more specifically
DBSCAN [29], segments the point cloud into several clusters
according to a neighborhood distance threshold. Then, for
each cluster the mean distance to the center of the picture
is calculated, and the cluster with the minimum distance
is selected as the final point cloud object. Fig. 6 shows a
representative example of the proposed stages.

(a) (b) (c)

Fig. 6. GrabCut-based method stages: (a) the image is cropped using the
bounding box delimitation, (b) GrabCut is applied to remove backgroud
pixels, (c) 3D points inside the mask are selected and filtered to remove
background and occlusions.

4) Instance Segmentation: The instance segmentation-
based method is the most straight forward proposal. The
pinhole camera model is again applied to see which points
from the 3D point cloud are inside the calculated mask,
which has the shape of the object. However, the output needs
to be filtered in case that the mask does not perfectly fit
the object shape. It could happen that the mask boundary
is outside the object, so points that are far from the object
would be selected, as shown in Fig. 7. For that reason, the
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mask is first eroded using a disk-shaped kernel of radius 3.
Then, an outlier removal filter is applied in order to be sure
that only points corresponding to the object are selected.

(a) (b)

Fig. 7. Instance segmentation errors: (a) general point cloud view, (b)
close-up view. If the segmented cloud is not filtered, boundary points on
the mask could correspond to other objects. In this case, they correspond
to an occluding box.

IV. EVALUATION

For the purpose of testing the accuracy of the proposed
methods, their results are evaluated with several metrics.
First, data is captured from a varied number of objects, cor-
responding to both workspaces for manipulation and larger
objects for navigation and mapping. Then, after applying the
proposed methods, the segmentation quality is assessed by
comparing results against human labeled data. Results are
hereunder presented, both qualitatively and quantitatively.

A. Dataset

In order to test the presented algorithms, a dataset was
required. For that purpose, a set of aligned RGB images and
point clouds have been recorded using an RGB-D camera.
The selected hardware is a RealSense D-435i. Regarding
software, ROS has been chosen as the link between the
hardware and the algorithms. ROS provides a standardized
interface for obtaining and processing data from RGB-D
cameras, simplifying the development of applications that
use this type of sensor data. With respect to the selected
objects, the main intention is to verify how the methods
behave with both small and large objects. The goal is to
observe if there is a differentiation between both, in order
to recommend their application for manipulation, navigation,
or both. Hence, the dataset has been divided into workspace
objects and larger objects. A total of 26 frames were
recorded, with an image resolution of 640 × 480 px and
its corresponding aligned point cloud. A summary of all the
collected samples is shown in Table II. It must be specified
that each sample contains only one object of interest, but

there may be more than one point of view for the same object
in separated samples. The dataset is publicly available1.

TABLE II
DATASET SUMMARY

Workspace objects
Obj. type # objects # samples

Knife 1 1
Book 2 4

Monitor 1 2
Bottle 2 5

Larger objects
Obj. type # objects # samples

Chair 3 8
Washbasin 1 1

Bag 1 1
Fridge 1 1
Sofa 2 2
Toilet 1 1

B. Quantitative Results

Regarding the quantitative evaluation of the proposed
methods, four different metrics have been applied. The first
one is execution time, with the aim of checking if methods
are valid for real-time applications. The code has been
executed on a 12th Gen Intel(R) Core(TM) i7-12700H CPU.
The second metric is intersection over union (IoU), which
quantifies the overlap between two 3D bounding boxes,
one corresponding to the ground truth point cloud and the
other one to the output from the specified method. For this
purpose, each point cloud is delimited by its corresponding
3D bounding box. It is a unitless value scaled between 0
and 1. The third metric is Chamfer distance (CD), another
similarity metric calculated as the sum of the distances
between each point in one cloud and its nearest neighbor
in the other cloud. Finally, the distance between the center
of the ground truth point cloud and the estimated one is
also measured. These metrics were selected to quantify the
performance of each method as they are the most popular
ones in state-of-the-art works. With this we aim to facilitate
further comparisons of our proposals with others. Results

1https://www.kaggle.com/datasets/aliciamorav/object-segmentation-
dataset

TABLE I
PERFORMANCE METRICS FOR THE FOUR PROPOSED METHODS

Time (s) IoU CD (m) Distance (m)

RG 0.0599 ± 0.0105 0.5808 ± 0.2623 4.9550 ± 10.2449 0.0327 ± 0.0426 workspace objects
0.4415 ± 0.2291 0.4512 ± 0.2243 997.7513 ± 841.9354 0.2085 ± 0.1225 larger objects

LCCP 0.0058 ± 0.0044 0.6042 ± 0.3363 7.7770 ± 10.8200 0.0489 ± 0.0872 workspace objects
0.0383 ± 0.0217 0.4551 ± 0.2591 704.7949 ± 522.7520 0.2250 ± 0.1773 larger objects

GC 1.0789 ± 0.1589 0.5076 ± 0.2330 5.0067 ± 2.8707 0.0326 ± 0.0373 workspace objects
2.3043 ± 1.3372 0.4525 ± 0.2566 600.1952 ± 490.6789 0.1934 ± 0.1631 larger objects

INST 0.0070 ± 0.0027 0.5246 ± 0.2391 4.4195 ± 3.5965 0.0263 ± 0.0302 workspace objects
0.0124 ± 0.0083 0.4763 ± 0.2038 459.2447 ± 425.6846 0.2195 ± 0.1367 larger objects
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(a)

(b)

(c)

(d)

Fig. 8. Methods’ main limitations when challenging conditions appear. Two workspace objects and two larger objects have been selected as representative
examples: (a) thin book placed on a table, (b) bottle occluded by a box, (c) sofa on a cluttered environment, including occlusions, (d) chair with holes on
its back. Results are presented from left to right in the following order: initial colored point cloud, RG, LCCP, GC and INST.

are collected in Table I, where the mean values as well as
standard deviations are provided. Results have been divided
for the two types of selected data: workspace objects and
larger objects. The best value for each metric has been
marked in bold.

By taking a look at time, it can be seen that GrabCut (GC)
takes longer to execute than the rest of the methods for both
object types. This is a key factor for selecting a segmenta-
tion method, since some applications may require real-time
computations. Due to this fact, the most appropriate methods
would be LCCP and instance segmentation (INST), since in
our case all execution times were under the rate at which the
camera captures data (30 fps). Regarding accuracy metrics,
there is a clear differentiation in the methods performance
with respect to the object type. All methods perform better
with workspace objects in comparison to larger objects.
Overall, instance segmentation provides the best results in
both cases. In the case of workspace objetcs, RG and LCCP
provide better results for IoU, but they are worse for CD and
distance. Even so, these are minor differences. In the case
of larger objects, only GC outperforms INST in distance.
Although in this case the differences are also minor in IoU
and distance, according to CD, INST is significantly better
than the other options.

C. Qualitative Results

A visual representation of the methods’ performance is
shown in Fig. 8, where the most common errors for each
method have been selected. Pictures are organized as follows:
each row corresponds to a different object and each column
corresponds to a different method. Column 1 is the initial

colored point cloud and columns 2, 3, 4 and 5 are the results
from RG, LCCP, GC and INST, respectively. By looking at
the visual output obtained with each method, we can detect
their main limitations.

Regarding workspace elements, Fig. 8(a) shows the exam-
ple of an object that protrudes very little from the surface that
supports it. More specifically, it is a book resting on a table.
The first tested method, RG, is not capable of separating
the object from the background into different clusters, so the
object is defined with every point that is inside the bounding
box. The rest of the methods, LCCP, GC and INST are
able to clearly define the object shape. In the case of Fig.
8(b), a bottle with a box occluding it can be found. In this
case, LCCP and GC have problems separating the different
elements of the scene, since they include box points as part
of the bottle. RG and INST differentiate both elements.

With respect to larger objects, two situations are shown: a
complex-shaped object in a cluttered environment and an ele-
ment with internal holes that allow the capture of background
information through them. Fig. 8(c) shows the first case,
where a sofa is detected. It has multiple elements around
and it is additionally partially occluded by a table. In this
case, the occlusion is correctly filtered by the four methods.
However, the only methods that correctly segment the object
are RG and INST. GC includes a part of another nearby
object and LCCP includes a gib amount of background data.
Finally, Fig. 8(d) shows a chair with holes on its back. RG
and GC are capable of removing background points. The
first one additionally does not include floor points, whereas
GC does. LCCP does not remove floor points and includes
background data. INST is capable of removing floor points
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but background points are included in the model since they
are also part of the object mask.

The described situations directly affect grasping and map-
ping performances. In the case of workspace objects like
Fig. 8(a) and 8(b), grasping points would not be accurate
because the point cloud does not perfectly fit the object
shape. In the case of larger objects such as Fig. 8(c) and 8(d),
their estimated location and dimension would be incorrect,
even leading to conflicts between multiple objects that could
overlap in the final map.

V. CONCLUSIONS

In this work, several 3D object model extraction methods
have been presented. According to our results, instance
segmentation provides the fastest and most accurate results.
Due to its limitation in terms of dataset elaboration and
training time, methods based on bounding box detection
could be chosen. For workspace objects, the most accurate
method is LCCP, while for larger objects, the use of GrabCut
is recommended whenever it is not necessary to work in real
time. Overall, it can be stated that point cloud segmentation
via 2D object detection is a promising approach for obtaining
accurate models.

As future work, we intend to combine the proposed
segmentation strategy using YOLO and the corresponding
point cloud with an object reconstruction strategy that will
allow us to complete the hidden area of the detected objects.
This will facilitate the correct functioning of the inclusion of
real-time models for mapping or grasping tasks, since object
shapes will be more accurate.
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TAICHI algorithm: Human-Like Arm Data Generation applied on
Non-Anthropomorphic Robotic Manipulators for Demonstration*

Blanca Lopez1, Adrian Prados1, Luis Moreno and Ramon Barber

Abstract— In household settings, Learning from Demonstra-
tion techniques can enable end-users to teach their robots new
skills. Furthermore, it may be necessary for the demonstrations
to be accessible through a straightforward setup, such as a
single visual sensor. This study presents a pipeline that uses
a single RGB-D sensor to demonstrate movements taking into
account all the key points of the human arm to control a non-
anthropomorphic arm. To perform this procedure, we present
the TAICHI algorithm (Tracking Algorithm for Imitation of
Complex Human Inputs). This method includes detecting key
points on the human arm and mapping them to the robot,
applying Gaussian filtering to smooth movements and reduce
sensor noise, and utilizing an optimization algorithm to find
the nearest configuration to the human arm while avoiding
collisions with the environment or the robot itself. The novelty
of this method lies in its utilization of key points from the
human arm, specifically the end-effector and elbow, to derive a
similar configuration for a non-anthropomorphic arm. Through
tests encompassing various movements performed at different
speeds, we have validated the efficacy of our method and
confirmed its efficiency in replicating the desired outcomes on
the robot’s end-effector and joints.

I. INTRODUCTION
The use of mobile robotic manipulators in dynamic envi-

ronments, such as domestic scenarios, requires the capacity
to acquire new skills to adapt to the changes of the envi-
ronments in which the robot operates. Techniques such as
Learning from Demonstration (LfD) [1] present a feasible
alternative to traditional programming, allowing end-users to
program the robot without the need of an expert and adapting
it to their environment. One of the most important factors
in this type of method is the generation of demonstrations.
To carry out this process, a large number of techniques
are available, which can be divided into two groups: direct
demonstrations and indirect demonstrations [2].

Direct demonstrations encompass those techniques where
the data collection process requires the use of the robot.
Kinesthetic learning [3] is based on the physical interaction
between the teacher and the robot’s body, allowing a series
of data to be generated directly with the robot’s own sensors.
Another method within direct demonstrations is the use of
teleoperation [4]. The data collection process can be accom-
plished using various devices, such as joysticks, tactile sen-
sors, or wearable devices. These devices enable robot control
and data acquisition through the robot’s internal sensors, but

*This work was supported by RoboCity2030 DIH-CM
project(S2018/NMT-4331, RoboCity2030 Madrid Robotics Digital
Innovation Hub)

Robotics Lab, Universidad Carlos III de Madrid, Leganés, Spain.
e-mail: bllopezp@ing.uc3m.es, aprados@pa.uc3m.es, {moreno, rbar-
ber}@ing.uc3m.es.1Both authors contributed equally.

a cb

Fig. 1. Human demonstrations applying TAICHI algorithm. (a) Pose
from human demonstrator, (b) Pose generated by the method in MujoCo
simulation environment, (c) Pose in the real ADAM robot.

without the need for direct physical contact. Indirect demon-
strations [5] encompass those techniques where no contact
with the robot is required and the data collection process can
be performed in a separate environment to that of the robot.
These approaches are highly recommended for teaching
high Degrees of Freedom (DoF) or non-anthropomorphic
robots [1]. Within indirect demonstrations, and focusing
on manipulation tasks, a highly used approach consists of
learning how to replicate human movements. For accurate
tracking of people, research centres often make use of motion
capture systems (MoCap), formed by several cameras or
vision systems [6]. These systems have clear disadvantages,
such as the use of large spaces to mount the camera system
or the need of using body markers as references. This
prevents their direct application in real environments such
as home scenarios. In this kind of setting, the use of simple
visual sensors such as cameras presents a very convenient
alternative, allowing for comfortable working.

By employing these sensors, it becomes possible to extract
essential characteristics of the human body, which will then
be utilized in the imitation process. Once the human move-
ment is observed, it must be translated into suitable robot
motion. However, in the context of non-anthropomorphic
robotic arms, this transfer process is not straightforward.
Typically, what can be demonstrated through human move-
ments is solely the desired trajectory of the end-effector (EE).
These data allow to transform EE motion to joint motions
using Inverse Kinematics (IK) for the specific arm model.
This method is not only used for LfD but is also commonly
used for teleoperation of robotic arms [7]. Relying just on the
end-effector as a tracking system for a non-anthropomorphic
arm poses the risk of collisions with the environment since
the remaining arm joints are not directly controlled. This is
particularly hazardous in redundant arms, where multiple IK
solutions are possible. Moreover, if the recorded trajectory
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contains noise, it adversely affects the robot motion in terms
of tracking accuracy and smoothness.

In this paper, we propose a pipeline for generating motion
demonstration data, considering not only the end-effector
(EE) of the human arm but also identifying the most suitable
elbow configuration for a mobile robot equipped with non-
anthropomorphic arms. To achieve this, our approach focuses
on observing human movements using a single RGB-D sen-
sor, which captures the position of key points on the human
arm (see Fig. 1). We employ a Gaussian filtering method to
reduce noise in the collected data, followed by an algorithm
that utilizes a cost function to optimize the configurations
of the robotic arm. To evaluate the effectiveness of our
method, we conduct various types of movements and assess
the goodness of fit in the relation to the recorded data, as well
as the performance of the robot’s motion on the end-effector.
Our contributions are summarized as follows:

• Detection of relevant points of the human arm (wrist
and elbow) using a single RGB-D camera and gener-
ation of an algorithm that optimises the position and
orientation of a non-anthropomorphic arm to match the
most human-like structure.

• Use of Gaussian filtering to smooth the collected human
movements, considering demonstrations of different
shapes and speeds.

• Implementation of the demonstration pipeline appli-
cable in both MATLAB and Python, which includes
human tracking, smoothing the obtained data and gen-
erating the robot trajectories and movements both in
Matlab and MujoCo based simulators.

• Carrying out simulated and real tests on the ADAM
mobile manipulator robot (see Figure 1c).

II. RELATED WORK
The process of tracking a person using depth sensors is

widely used to capture natural human-related movements.
One of the most common approaches to perform this process
relies on solely tracking the hand palm. This procedure is ap-
plicable to both teleoperation and imitation. In teleoperation
[8], a comparison is presented between human hand tracking
systems based on data gloves and systems based on the use of
optical hand tracking sensors like Leap Motion. In imitation
[9], a 3D tracking of the human palm based on Fuzzy fusion
is applied to estimate the configuration of the rest of the
human arm. Another method based on palm tracking is
presented in [10], where a vision-based data acquisition of
the KUKA IIWA is presented by applying MediaPipe for
hand coordinates extraction to obtain the orientation.

The use of RGB-D sensors for full-body tracking is
also very common to be applied for this purpose. In [11],
an ASUS Xtion PRO and OpenPose are used for body
estimation, enabling movement control for bimanipulation
tasks in the CENTAURO robot. Other approximations are
presented in [12], where a motion capture system and data
post-processing are used for characterization of a full upper
limb robot. A similar idea is presented in [13], where using a
Kinect camera and a skeletonization process of the human are

used to teleoperate a low-cost arm. Regardless of whether the
whole body tracking is used or not, all of the aforementioned
methods are applied directly to non-redundant anthropomor-
phic manipulators. Consequently, tracking specific critical
points of the human arm, such as the elbow, is not essential as
anthropomorphic arms exhibit similar behavior to the human
arm. Thus, by appropriately processing the end-effector data
alone, satisfactory results can be achieved.

Only few works have been presented regarding the ap-
plication of human data acquisition through sensors such as
cameras directly to non-anthropomorphic manipulators. In
the work presented in [14], the authors propose an initial
solution to address this problem. They utilize an RGB-D
camera along with OpenPose for motion capture, enabling
end-effector processing for data acquisition. This data is
then employed to control a UR3 arm by employing an
analytic inverse kinematics (AIK) process. Other works such
as [15] present a similar idea using BodyPoseNet for body
feature extraction for dual parallel manipulation, taking into
account the position of the opposite arm. Additionally, the
works discussed in [16], [17] also employ an RGB-D system
for data acquisition in the context of an UR3 arm. These
studies focus on applying filtering techniques to refine the
raw data obtained from the camera. By employing these
filtering methods, they successfully generate smoother and
more human-like movements in the robotic arm. However,
none of these methods consider other key points of the
human arm to determine the most appropriate human-like
robotic configuration. Instead, they often rely on default
configurations. Additionally, these methods do not take into
account the layout of the surrounding environment or poten-
tial collisions with it, as the discussed robotic arms are not
mounted on a real mobile robot.

In contrast to the aforementioned methods, our proposed
approach involves extracting key points from the entire hu-
man arm to control a non-anthropomorphic robotic arm using
a single RGB-D camera. Furthermore, we employ Gaussian
filtering techniques to enhance the smoothness and accuracy
of the collected human-like data. To achieve configurations
that closely resemble the human arm, we combine an analytic
inverse kinematics (AIK) method with an optimization pro-
cess for the elbow position. This integrated approach takes
into consideration both the robot’s singularities and potential
collisions with environmental elements, resulting in more
realistic and safe arm configurations.

III. METHOD
The subsequent section introduces our approach, referred

to as TAICHI (Tracking Algorithm for Imitation of Com-
plex Human Inputs). This method is specially developed
for indoor environments, such as residential houses, where
deploying an extensive human tracking system to generate
a training dataset for Learning from Demonstration (LfD)
systems applied to non-anthropomorphic robotic arms may
not be feasible. The general scheme of this algorithm is
shown in Fig 2. The algorithm is divided into four main
stages. The first stage involves extracting essential key points
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Fig. 2. General scheme of the TAICHI algorithm. The pipeline is made
up of four different stages: human position tracking (green), filtering of the
camera data (blue), optimisation of the arm configurations (purple) and the
simulation or sending to the real ADAM robot (red).

of the human arm while performing a trajectory, specifically
the shoulder, elbow, and wrist positions, as well as several
key points of the hand. To accomplish this, we have de-
veloped a system that utilizes a RealSense D435i RGB-D
camera. By leveraging Mediapipe [18], [19], we can extract
the 2D positions of these significant landmarks of the human
arm, along with their corresponding depth information. This
allows us to accurately determine the 3D location of these
points relative to the user’s shoulder.

Once the data is obtained, it is necessary to filter out
intrinsic noise from the camera and smooth the captured
human movements. For this purpose, we have implemented
a Gaussian filter [20], which acts on the computed position
and orientation of the human elbow and wrist. The filtered
data is then passed to the optimization algorithm, which
aims to determine the most human-like position for each
configuration of the human arm. This algorithm takes into
account both the joint limits of the arm and the physical
constraints of the robot’s body to avoid collisions.

After obtaining the arm configurations, the algorithm
enables the representation of the results in both the simulators
implemented in Matlab and in MuJoCo [21]. Furthermore,
these configurations can be directly transferred to the ADAM
robot [22], which serves as the platform for the application
of this work. The algorithm has been designed in such a
way that anyone can easily modify the code in order to be
applied to other non-anthropomorphic manipulator models
and has been implemented in both Python and Matlab and is
available in https://github.com/AdrianPrados/
TAICHI. Each of the stages are explained in detail below.

A. Human tracking and data extraction
To acquire human data through demonstrations, it is

crucial to capture users’ movements. For this purpose, the
information obtained from the RGB-D camera undergoes
processing using MediaPipe, an open-source framework that
facilitates 2D person detection and extraction of key points
to analyze their movements. Determining depth information
is also essential to obtain 3D positional and orientation data,
and this is accomplished by utilizing the point cloud provided
by the sensor. Once this information is obtained, it becomes
necessary to shift the reference frame from the camera to
that of the robotic arm base. This process involves breaking

down human tracking into three stages: 2D pose estimation,
3D correspondence, and reference frame transformation.

The first stage consists on detecting people and estimating
their pose in the 2D plane corresponding to the RGB image.
MediaPipe estimates the user’s pose via 33 markers. These
markers are then analyzed in conjunction with the depth
information to extract the estimated pose of each marker.
In this particular case, we are interested in extracting the
poses of the left arm. Therefore, we focus on and save three
markers: the shoulder, elbow, and wrist, along with a fourth
marker (right shoulder) for reference. The shoulder points
are used to estimate the central point of the person and to
correct the orientation of the human body, ensuring that the
body is always facing the camera. In this research, the robot
is thought to employ a gripper to manipulate objects. Conse-
quently, the orientation of the end-effector is determined by
the hand plane formed by three additional specific marker
points: wrist point W , index finger methacarpophalangeal
(mcp) I and pinky finger mcp P of the left hand, as shown
in Fig. 3a. These points allow us to generate two vectors,

W

IP

Xi

Xr

(Xp, Yp, Zp)

Yr

Zi

Yi

Xc

Yc

Zc

a b

Zr

Fig. 3. (a) Palm plane for end-effector orientation extraction re-
ferred to image frame, where the blue point represents N⃗ , (b) camera
frame (Xc, Y c, Zc), image frame (Xi, Y i, Zi) and robot arm frame
(Xr, Y r, Zr). The line joining the camera origin and the pixel (u, v) is de-
fined by rs2DeprojectPixelToPoint, that obtains the 3D point (Xp, Y p, Zp)
for each of the keypoints (red points).

W⃗ I = I⃗ − W⃗ and W⃗P = P⃗ − W⃗ that can be used to
obtain the normal vector (blue point in Fig. 3a) using the
cross product and normalising its value as follows:

N⃗ = W⃗ I × W⃗P , N̂ =
N⃗

N
(1)

The second objective involves converting each 2D point of
the human arm, measured in pixels, into a 3D point in
meters based on the camera reference frame. To achieve
this, the pinhole camera model is utilized in conjunction
with point cloud data to convert from pixel-based to spatial
information. The function rs2DeprojectPixelToPoint from the
Python wrapper PyRealsense2 is employed to accomplish
this task. This function is responsible for generating a 3D
vector that represents the ray passing through the (u, v) pixel
coordinates. The outcome of this process is the intended
3D point in relation to the camera reference frame. Fig.
3b illustrates a schematic explanation of this method. The
proper alignment of data from both the RGB image and the
point cloud enables this task to be carried out. The final
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task involves transforming the 3D points from the camera
reference frame to that of the robot arm base, which aligns
with the reference frame of the human shoulder. These are
represented in Fig. 3b. Furthermore, a re-scaling process is
essential to establish a correspondence between the robot arm
and the human arm. This involves generating a correction
factor based on the user’s arm length, which allows mapping
the positions of the wrist and elbow to ensure that the
maximum range of the human arm matches the maximum
range of the robotic arm.

a b c d

Fig. 4. Different hand poses captured through MediaPipe. (a) Hand fully
open, (b) Fist, (c) Hand partially occluded, (d) Tilted hand.

It is worth noting that methods relying on RGB-D sensors
for human tracking can be sensitive to occlusions, which
may obstruct relevant body parts. In this study, if the captured
data deviates significantly from the expected data considering
the user’s arm length and the intended trajectory, occlusions
are likely responsible for information loss. In such cases,
the positions of the wrist and elbow are estimated using a
similar re-scaling projection process. Regarding the detection
of human hand landmarks, it is worth mentioning that the
MediaPipe framework offers a robust method for capturing
the 3D positions of these key points. As depicted in Fig.4,
even in challenging scenarios such as when the hand is in
a fist position, partially occluded, or tilted, the algorithm
is capable of accurately estimating the feature points. This
capability allows us to compute the hand orientation, as pre-
viously discussed. However, it is important to monitor these
situations closely, as they can indeed potentially degrade the
quality of the captured data, especially when abrupt changes
in human positions are recorded.

B. Gaussian Smoothing
Pre-processing and filtering data generated by demonstra-

tions before being used for trajectory generation allows for
noise smoothing of the acquired data. This filtering allows
not only to improve the data by eliminating possible sources
of error or noisy data, but is also beneficial when mapping
to the robot arm. This is because continuous and even paths
generate smoother responses on the robotic arms, which
avoid over-oscillations when establishing the response to the
human input data. In this work, a Gaussian filter has been
applied for signal processing. This filter is a convolution
operator that is used to remove noise from a signal. In this
sense it is similar to the mean filter, but it uses a different
kernel which stands for the shape of a Gaussian hump. These
filters are characterized by narrow bandwidths, sharp cutoffs,
and low overshoots. The main advantages against other
methods such as Kalman Filters or Low pass filters are its

simplicity, straightforward implementation and the absence
of a complex, dynamic model. Focused on data acquisition
using RGB-D cameras, Gaussian filters are a preferable
option due to their ability to remove high frequency noise
without negatively affecting low frequency components and
preserve important data details. The Gaussian filter is based
on the following Gaussian function:

G(x) =
1

σ
√
2π
e

−(x−µ)2

2σ2 (2)

where −∞ ≤ x ≤ +∞, σ represents the standard deviation
and µ represents the mean. The filter is applied by the func-
tion gaussianFilter(input, σ) to both the elbow and wrist
position and orientation values, for each of its components.
The application of this filter for the EE position is depicted
in Fig. 5. Empirically it has been observed that the best σ
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Fig. 5. Components for EE with respect to the human shoulder. The
Gaussian filter (orange lines) smooths the values taken by the camera (blue
lines) eliminating the peaks derived from sensor noise.

values for our application are in the range σ = [0.5, 1.3]. For
values lower than 0.5 the filter does not generate any filtering,
and for values higher than 1.3 the filter starts to eliminate
important information, especially for the wrist orientation.
For our experiments, a constant value of σ = 1 has been set.

C. Posture optimization
Once the filtered position and orientation data for the

human arm are available, it is time to obtain the most human-
like configurations for the non-anthropomorphic arm from
these captured data. For this process, we have followed the
concepts and methodologies presented in [23], adapting and
applying them specifically to a non-anthropomorphic model
like the UR3 arm. The applied human-robot mapping method
pursues the minimisation of the distance between the elbow
of the human arm and the rest of the joints of the robotic arm,
except for the shoulder and the end-effector. A simplified
schematic of this method can be seen in Fig. 6.

This method makes use of a combination of both an ana-
lytical inverse kinematics (AIK) of the non-anthropomorphic
arm to obtain the 8 possible solutions and an optimization
model based on direct kinematics to obtain the distances for
each of the generated configurations. The AIK allows the al-
gorithm to be able to solve the configurations in a very short
time and minimise the EE error in position and orientation.
The use of the cost function based on the distances to the
human elbow allows estimating the most human-like position
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Fig. 6. The method is based on the minimization of the discontinuous
lines between human elbow and the rest of the joints (red points) of the
robotic arm. Green arm represents the UR3 arm and blue arm represents
human arm. In both arms the Pshoudler and the Ptarget are the same.

that the arm can reach among the possible options. The cost
function in the first place depends on the positions of the
EE. Let XR = fR(qR) denote the Forward Kinematics (FK)
mapping for a non-anthropomorphic robot with n Degrees
of Freedom (DOF), where qR ∈ Rn is the vector of the
desired joint angles, and let XH ∈ R3 denote the human
end-effector position. Hence, the metric for the EE position
goal is defined as:

dRp(qR) = ||XR −XH ||2 (3)

The orientation influence is given using the robot EE ori-
entation hR = (ar, br, cr, dr) and the human orientation of
the EE hH = (ah, bh, ch, dh), both expressed in quaternions.
The orientation divergence is then expressed using:

d̄Ro(hR, hH) = arccos(arah, brbh, crch, drdh) (4)

To prevent problems derived from arm singularities, the cost
function takes into account the antipodal points in S3, so the
Equation 4 is finally defined as:

dRo(hR, hH) = min(d̄Ro(hR, hH), d̄Ro(hR,−hH)) (5)

In order to obtain the joint position distances, the metrics use
the human elbow position as a reference. Let SHelbow

∈ R3

be the position of the human elbow in 3D space, and Sj , j =
1, ..., n be the position of each robot joint in 3D space for an
specific configuration obtained by AIK. The distance metric
(excluding the shoulder and the EE) is given by:

D =

n∑

j=1

||SHelbow
− Sj ||2 (6)

Finally, a continuity error ErrorW1 is added to the cost
function. This factor enables continuity to prevent abrupt
variations in the robot wrist orientation. Hence, the cost will
be lower when the configuration of the previous state and
the next state are as similar as possible. By combining all
the previously explained equations, the final cost function is
expressed as:

FRH = min(Wp ∗ dRp(qR) +Wo ∗ dRo(hR, hH)

+WH ∗D + ErrorW1)
(7)

where Wp,Wo and WH are weights for position, orientation
and humanity respectively that adjust the relative importance

of each factor. Before deriving the cost function for each
arm configuration, the algorithm initially assesses two crucial
factors. Firstly, it determines if the resulting configuration
leads to any collisions with the robot’s body or surrounding
environment. Secondly, it verifies whether the configuration
remains within the arm limits, which are unique to each
model and assembly of the robot. If either of these two
constraints occur, the resulting configuration will be directly
ruled out from the possible solutions. In addition to the
latter, it is important to note that by making the robotic arm
follow natural human arm configurations, potential singular
configurations are inherently discarded.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the accuracy of the developed

TAICHI method applied to our ADAM robot. To conduct the
evaluation, muliple users recorded a series of movements in
real-time in front of the camera. The algorithm was then
executed and the human-likeness of the generated robotic
movements, the accuracy of the end effector tracking capa-
bilities and the smoothness of the generated trajectories are
analysed. A video with different examples of the experiments
is available in https://youtu.be/rSynqgXa_Yc.
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Fig. 7. Examples of how the robot follows human left arm poses.

A. Human-likeness Analysis of Posture
To demonstrate the performance of our method, we con-

ducted various tests aimed at achieving robotic configurations
that closely resemble human arm positions. The objective
was to leverage the RealSense D435i camera to enable the
robot to imitate the user’s arm configurations as accurately
as possible. Fig.7 illustrates the results of several qualitative
tests, demonstrating the effectiveness of the method outlined
in Section III in imitating human arm configurations despite
the robot’s different structure. It can be observed that the
developed method enables the generation of positions where
the robot arm configuration is as similar as possible to that of
the human arm. It is important to acknowledge that achieving
an exact match in configuration between both arms is highly
challenging due to their structural disparities. Consequently,
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it is qualitatively evident that the algorithm takes into account
the unique arm structure while pursuing the desired EE goal
position and orientation.

B. Accuracy Analysis of End-effector
To evaluate the accuracy of the method in terms of end-

effector tracking, various trajectories with different starting
points, end points, and velocities were executed. Fig. 8
illustrates an example case where the three-dimensional
solution paths for both the human arm and the robotic arm
are compared. As shown, the two paths are highly similar.

Fig. 8. Generated human (blue) and robot (green) end-effectors trajectories.

There exists a specific region where slight perturbations are
present in the human path. These disturbances are caused by
inherent physical constraints of the human arm, such as joint
limits. The algorithm has the capability to detect and correct
these perturbations, ensuring smooth robot movements while
maintaining the overall consistency with the human trajec-
tory. Overall, the three-dimensional end-effector trajectories
demonstrate a qualitative and accurate tracking of the human
data. If a quantitative comparison is made, and the previously
shown path is decomposed into its positional and orientation
components (see Fig. 10), it is observed that the error in both
cases is almost negligible.

The method demonstrates a high degree of positional
accuracy, closely matching the human path. The noticeable
errors primarily occur at specific points where the algorithm
optimizes and filters the errors originating from human data
collection. One such example is at index 40 in the Y
position. Examining the orientation errors reveals a similar
pattern, with the two orientations being nearly identical. The
maximum outlier value for orientation error is 0.114 radians.

To assess the algorithm’s effectiveness, various tests were
conducted involving individuals of different heights, genders,
and physical builds. These tests involved performing similar
movements at different speeds. The accuracy results obtained
from these tests are summarized in Table I.

TABLE I
POSITION AND ORIENTATION ERRORS

Max Outlier Error Mean Error
x (m) y (m) z (m) Θ (rad) x (m) y (m) z (m) Θ (rad)

Test 1 0.0230 0.0310 0.0241 0.1530 0.0014 0.0018 0.0014 0.0097
Test 2 0.0233 0.0311 0.0207 0.1147 0.0024 0.0022 0.0017 0.0084
Test 3 0.0294 0.0177 0.0156 0.0551 0.0050 0.0028 0.0027 0.0062
Test 4 0.0330 0.0401 0.0274 0.2011 0.0100 0.0052 0.0610 0.0146
Test 5 0.0350 0.0300 0.0170 0.1316 0.0036 0.0031 0.0030 0.0175
Test 6 0.0260 0.0160 0.0190 0.1543 0.0019 0.0021 0.0032 0.0187

Based on the results presented in Table I, it can be
concluded that the TAICHI algorithm effectively tracks the
human hand through the robot end-effector (EE) with high
accuracy. The algorithm achieves a mean positional error of
less than 1 cm and a mean rotational error of less than 0.02
radians. The maximum error values observed are localized
to specific points along the path where human joint limits or
captured data noise are encountered. However, the algorithm
successfully detects and corrects these errors, ensuring a
smooth trajectory for the robot. As a result, the positional
and orientation errors are consistently maintained below 4
cm and 0.2 radians, respectively.

TABLE II
JERK VALUES FOR HUMAN AND ROBOT MOTIONS

Human Jerk Values Robot Jerk Values
Elbow Wrist Elbow Wrist

Test 1 6.3708 10.4192 6.5617 10.6246
Test 2 4.6500 8.3615 4.7801 8.3400
Test 3 3.7849 5.8892 3.9124 6.0059
Test 4 3.1862 5.2660 3.2540 5.2305
Test 5 3.0215 7.2156 3.1247 7.4561
Test 6 3.5489 6.3384 3.7321 6.5101

In addition, a study of the jerk value for the different
trajectories has been carried out. Jerk is estimated as the
time derivative of acceleration, and it is an important factor
in both suppressing vibration and achieving high accuracy in
path generation. In our case study, the jerk values represent
the minimum variation in acceleration changes between the
human and robot arm movements. The more similar the two
results are, the more similar the trajectories of the robotic
arm will be and the more similar they can be assumed to be
to human trajectories. Table II presents the results of studies
for the critical points of the arm (wrist and elbow). The mean
value for the difference between the jerk values of the wrist is
0.1289 and 0.1337 for the elbow. Since the mean difference is
less than 0.15, it can be assumed that the TAICHI algorithm
generates movements similar to those of the human arm.
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Fig. 9. Smoothness study of robotic arm configurations for Test 1.

C. Smoothness Analysis of Joint Configurations
Finally, we have conducted a quantitative analysis of the

smoothness and feasibility of the computed robotic config-
uration trajectories. This analysis involved examining the
continuity of the joint values across different test runs. Fig.
9 presents an example of these results for a specific use
case. It is evident that the generated trajectories exhibit a
continuous and smooth profile, with no significant changes
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Fig. 10. Accuracy evaluation of end-effector tracking for Test 2.

in the configurations or abrupt changes in sign, which would
indicate sudden changes in joint configurations. This guar-
antees that trajectories computed by the TAICHI algorithm
are achievable by a real robotic platform.

V. CONCLUSIONS
In this paper, we have presented the TAICHI system,

which comprises an RGB-D sensor, a human position cap-
turing process, an AIK framework, Gaussian filtering, and
a configuration optimizer. The effectiveness of the system
in data acquisition for non-anthropomorphic arms has been
demonstrated, as it successfully obtains human-like config-
urations while considering arm limitations and achieving
minimal end-effector tracking errors. Moreover, the TAICHI
system is user-friendly, efficient, and adaptable to various
environments, making it suitable for LfD data collection.

For future work, we intend to enhance the tracking system
to support bimanipulation tasks. Additionally, we plan to
incorporate a tracking system for both hands simultaneously,
enabling the collection of grasping data.

REFERENCES

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.

[2] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of
imitation learning for robotic manipulation,” International Journal of
Intelligent Robotics and Applications, vol. 3, pp. 362–369, 2019.
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Abstract—Autonomous industrial mobile robots need advanced
perception capabilities to operate safely and human-compliantly
in shared working environments. To achieve a high-level un-
derstanding of the mobile robots’ surroundings, this paper
investigates Multi-Task Learning approaches to process multiple
tasks simultaneously and potentially improve the generalization
performance. Our work alleviates the scarcity of datasets that
are relevant for industrial settings by introducing and making
publicly available a simulated warehouse dataset (Warehous-
eSIM) covering semantic segmentation, depth estimation and
surface normals estimation tasks. We collect and examine nu-
merous MTL task-balancing techniques for industrial mobile
robot perception. Our experiments show that MTL methods
that have shown superior performance on different computer
vision datasets fail to improve over the single-task learning setup
in our scenario. This implies that the performance of those
approaches is very dependent on the considered dataset, which
further highlights the value of introducing new relevant datasets
focused on industrial mobile robot environments.

Index Terms—Multi-task learning (MTL), industrial mobile
robots, perception, warehouse dataset

I. INTRODUCTION

The usage of industrial mobile robots in production facilities
and warehouses has the potential to revolutionize the way
work is performed in these environments. This technology can
reduce costs and improve safety, ultimately replacing human
workers in hazardous or repetitive tasks. Additionally, mobile
robots can work around the clock, increasing productivity and
throughput. In order to achieve the desired effectiveness, it
is imperative that mobile robots exhibit both flexibility and
reliability within dynamic settings where they must seamlessly
integrate with human workers, lifters, and other autonomous
robotic systems, all of which contribute to the complex and
continuously changing nature of these environments. A rudi-
mentary level of environmental awareness has been attained
for industrial mobile robots, primarily by employing LiDAR

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

Fig. 1: Typical Novo Nordisk warehouse facility with a custom
mobile manipulator (top left), and reference color image of the
simulated warehouse facility taken from the WarehouseSIM
dataset (bottom right)

technology. Nevertheless, these approaches tend to concentrate
on the identification of obstacles rather than a comprehensive
understanding of the objects present within the surrounding
context. Mobile robots equipped with cameras and machine
learning algorithms can potentially perform more complex
tasks, such as object detection, and enhance their interaction
capabilities. While there are still many challenges to over-
come, such as the need for robust and reliable sensing and
perception algorithms, the potential benefits of adapting these
technologies to industrial mobile robots are clear [1]. Figure
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1 (top left) depicts an industrial mobile robot equipped with
a retrofitted module with additional sensors (3D LiDAR and
LiDAR camera) and an edge computing unit which has been
used to test various perception algorithms in the Novo Nordisk
warehouse and production facilities.

The development in this area has been significantly hindered
by the lack of publicly available datasets specific to these
environments. This scarcity arises due to the closed nature
of these facilities, where strict regulations necessitate privacy,
proprietary information protection, and adherence to industry-
specific safety and security standards. As a result, limited
access to comprehensive data from warehouses and production
facilities, in combination with the cost of the labeling process,
highlights the need for alternative approaches. To advance
AI-based perception for mobile robots in these specialized
environments we generated a simulated warehouse dataset
called WarehouseSIM, an example image of which is depicted
in Fig. 1 (bottom right).

The primary objective of this study is to enable industrial
mobile robots with limited computational resources with the
capability to perform scene understanding through perception.
The majority of AI-based perception algorithms require a
single task to be optimized, e.g. image classification or depth
estimation, and are usually trained individually for the specific
task. However, human perception mechanisms have the ability
to transfer knowledge across tasks, which is one of the most
important indicators of advanced intelligence. This knowledge
transfer plays an important role in improving the accuracy
of information and allows complex reasoning. Similarly, in
machine learning, it is possible to deploy a single model
that can learn multiple tasks at once, i.e multi-task learning
architectures (MTL), with the goal of improving the gener-
alization performance by processing all tasks simultaneously.
Another distinct advantage of MTL architectures over single-
task learning architectures is that their shared computations
across tasks result in faster and more efficient information
processing during inference, which is rather significant for
mobile robots. We test common task-balancing techniques—
typically used in computer vision tasks—and highlight an
important limitation of these techniques in our newly intro-
duced dataset. Specifically, we found that previously used task-
balancing techniques failed to improve single-task learning
results, calling into question their effectiveness in new datasets.
Our findings underscore the importance of carefully selecting
and designing multi-task learning strategies and highlight the
potential benefits of adopting a more systematic approach to
this problem. By addressing this critical challenge, our work
has the potential to significantly enhance the automation and
efficiency of warehouse robotics.

The contribution of this work is threefold: (i) We make
public a simulated warehouse dataset, with color image, depth,
semantic and surface normals information. Furthermore, (ii)
we collect and examine numerous MTL task-balancing tech-
niques for industrial mobile robot perception. Finally, (iii) we
provide a benchmark of multiple baseline results, laying the
groundwork for future progress and development.

II. RELATED WORK

Much of the progress in AI-based perception can be at-
tributed to the advancements made in the field of autonomous
vehicles and the broader domain of computer vision [2].
Although mobile robot perception has benefited from these
advancements, as it shares common underlying principles
and challenges, the necessity for domain-specific development
with focused datasets and models with real-time processing
capabilities is paramount. Late development in mobile robot
perception has pushed the boundaries of the field, moving
from basic navigation and obstacle avoidance to higher-level
scene understanding [3]–[6]. Graf et al. brought attention to
the gap between narrow perception tasks, such as 2D object
detection and 2D segmentation, that are typically solved in
isolation, versus developments in holistic scene perception
algorithms, which require tasks to be solved together [7].
Due to the intricate nature of the MTL problem, several
research findings indicate that definitive assumptions cannot
be made when designing a multi-task setting [8]–[11]. The
primary factor behind this is that when simultaneously training
on a shared set of features, the system often struggles to
strike a balance between competing optimization objectives.
The effectiveness of different approaches can vary based on
four key dimensions: the specific tasks involved, the model
architectures employed, the available data, and the perfor-
mance metrics considered. Regarding the tasks involved, some
works have focused on identifying task relationships and if
they should be trained together. In their study cited as [12],
Zamir et al. aimed at creating a computational model that
can effectively identify task relationships that are conducive to
transfer learning scenarios. In another work from some of the
same authors, a computational framework for differentiating
which tasks should be trained together and which individually
is presented [13]. Similarly, Finn et al. proposed an inter-task
affinity metric to measure task relationships [14]. Although
considerable effort has been devoted to researching how task
relationships affect the performance of each other, this remains
a complex problem that has not been solved. In the work of
Stadley et al., training an MTL network with surface normals
improved all other tasks, hurting, however, the performance of
surface normal estimation itself [13]. In [15] focusing on cross-
task consistency, Zamir et al. also showed that information
on surface normals helped improve the performance of other
tasks. Several studies have examined how the architecture
of the learning algorithm impacts the magnitude of poten-
tial improvement. In [16], a detailed comparison between
a standard multi-head split for each task and a multi-task
attention network (MTAN) [17] architectures shows that the
same weighting strategies affect each architecture differently.
A collection of architectures specifically designed for MTL
can be found in [18]. Vandenhende et al. provide a quantitative
analysis of different MTL architectures applied on NYUD-
v2 [19] and PASCAL [20] datasets [9]. Over the past few
years, attention has shifted toward developing effective task-
balancing techniques. These techniques aim to distribute the
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workload evenly across multiple tasks in a MTL scenario,
where a machine learning model is trained to perform multiple
tasks simultaneously. Vandenhende et al. [9] have categorized
task-balancing methods into two categories: indirect and direct
methods. Indirect methods, which are predominantly weight-
based methods, adjust the weight of individual task losses
relative to the total loss [17], [21]–[23]. Direct methods operate
on the shared task gradients to balance the learning process
among multiple tasks [24]–[28]. Recent work has shown that
task-balancing techniques that have previously dominated a
specific field, e.g. with a certain model architecture and a
specific dataset, fail to generalize in other architectures or
tasks, often resulting in worse results [29].

III. INDUSTRIAL MOBILE ROBOT DATASET

To support the optimization of multi-task learning (MTL)
architectures for industrial mobile robots, we have taken
the initiative to generate a comprehensive dataset specifi-
cally designed for this purpose. WarehouseSIM is a dataset
made using the Isaac Sim platform which is built based
on NVIDIA Omniverse. We utilized different randomization
components to create 3 different warehouse scenes. For each
scene, the lighting, transformations (object position, scale,
orientation) and textures where randomized. We incorporated
several mobile robots (MIR100) equipped with a robotic arm
(UR5), mirroring the physical robots utilized in our testing
facilities. We used these mobile robots to collect data as they
navigated in the environments by fixing a virtual camera to
their body. Once each scene was generated, we used the
synthetic data recorder tool to record data from all sensors. We
collected 2125 images with corresponding depth maps, seman-
tic segmentation, instance segmentation, 2D tight bounding
box and 2D loose bounding box. Due to the unavailability
of generating synthetic surface normals using the Isaac Sim
platform, we used the work of Boulch and Marlet [30] to
generate the surface normals from the synthetic depth maps.
By employing a technique based on local surface fitting, their
approach demonstrates strong performance when applied to
depth maps containing well-defined features. The histogram
representing pixel occurrences of the different objects existing
in the WarehouseSIM dataset are visualized in Fig. 3. The
mapping between class names and label numbers is presented
in Table I. Fig. 2 visualizes the distribution of depth values in
the scene, where each pixel is counted and categorized into
1-meter ranges. From the 2125 images of the full dataset,
we use 1456 images for training, 206 for testing and 463
for validation. The dataset is accessible online and can be
downloaded from the project repository by following the
provided link: https://github.com/DTU-PAS/WarehouseSIM.

IV. EXPERIMENTAL SETUP

A. Tasks

In this research, we focus on the dense prediction tasks:
semantic segmentation, depth estimation and surface nor-
mals estimation, which all require pixel-level predictions on
corresponding RGB images. Semantic segmentation requires

Fig. 2: Depth distribution in the WarehouseSIM dataset
counted in pixels within a depth range.

Fig. 3: Classes distribution in the WarehouseSIM dataset
counted in occurrences of pixels belonging to a class.

an image to be divided into different subgroups (segments)
that describe different classes. Using a simulated warehouse
environment as an example (see Fig. 4a), a label should be
assigned to each pixel in the image, resulting in floor, human,
mobile robot, racks, and other segments, as seen in Fig. 4b.
Depth estimation is the task of assigning a depth value to each
pixel of an image. The result is a depth map that contains
information about the distance of the depicted objects, as
seen in Fig. 4c). Finally, surface normals describe vectors
perpendicular to the plane at a given 3D point. Surface normal
estimation is the task of assigning a vector for every pixel of
the image (see Fig. 4d).

B. Architecture

Following previous practices [16], [23], we use the im-
proved version of DeepLabv3 [31] with a ResNet-18 shared
encoder with dilated convolutions, and task-specific heads for
each task designed using the Atrous Spatial pyramid Pooling
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TABLE I: Corresponding classes of the WarehouseSIM dataset

Number Name Number Name
0 Humans 9 Imported mobile robots
1 Purple Boxes 10 Pallets
2 Structural columns 11 Floor markings
3 Shelves 12 Shelf section signs
4 Walls 13 Floor
5 Trolleys 14 Plastic containers
6 Signs 15 Wall cabling
7 Cardboards 16 Electrical enclosures
8 Electrical plugs 17 Fire extinguishers

(a) Reference color image (b) Semantic labels

(c) Normalized depth map (d) Surface normals data

Fig. 4: WarehouseSIM dataset color image with
corresponding depth, semantic and surface normals data

(ASPP) module [32]. In light of the recent advancements in
hardware within the realm of robotics and edge computing,
models with increased size and complexity will exhibit the
capability to be applied in mobile robotic contexts. Therefore,
we also tested with ResNet-34 and Resnet-50 encoders but
found that the resulting improvement in performance was only
marginal, and came at the expense of a significant increase
in training time. Considering the significant number of tested
strategies and combinations, we ultimately opted to use solely
the ResNet-18 encoder for our experiments.

C. Training environment and Parameters

We use a NVIDIA Tesla V100 16 GB GPU, train for 200
epochs with Adam optimizer, a learning rate of 0.0001 and a
standard step scheduler reducing the learning rate every 100
steps with a gamma of 0.5. To reduce the computational load
we reduce the size of the images from their original resolution
to 240× 420 pixels.

D. Metrics

For a multi-task learning scenario involving semantic seg-
mentation, depth estimation, and surface normal estimation,
different metrics can be used to evaluate the model’s per-
formance on each of these tasks. For semantic segmentation,
two commonly used metrics are mean Intersection over Union

(mIoU) and pixel accuracy (pA). These metrics help to eval-
uate the accuracy of the model in segmenting objects and
identifying their boundaries. For depth estimation, common
metrics are absolute error (aE) and relative error (rE). Finally,
for surface normal estimation, the mean angle error (mE) and
percentage of points with an angle error less than 12.5, 22.5,
and 30 degrees (<12.5, <22.5, <30 respectively) are used.
Due to the multiple task and metrics per task we use the
∆MTL metric [16] that combines one metric from each task
to assess the overall performance of the multi-task learning
model. ∆MTL compares the depth aE, segmentation mIoU and
surface normals mE errors against the corresponding values
of the single trained networks, and produces a single metric
defining the percentage of improvement. Negative values of
∆MTL describe a network that is performing worse than the
single trained networks.

E. Task Balancing

The need for task-balancing techniques arose due to the
varying complexity and data availability of different tasks. If
one task dominates the learning process, the model may not
be able to learn the other tasks effectively, leading to sub-
optimal performance. Therefore, task-balancing techniques
have become crucial to achieving optimal performance in MTL
scenarios. We test common loss-based weighting techniques,
adding individual losses with equal weight (EW), dynamic
weight averaging (DWA), uncertainty weighting (UW), geo-
metric loss strategy (GLS) and random loss weighting (RLW).
Additionally, we test gradient normalization (GradNorm),
gradient surgery (PCGrad), conflict-averse gradient descent
(CAGrad), gradient sign dropout (GradDrop) and gradient
vaccine (GradVac) for gradient-based task balancing.

V. EXPERIMENTAL EVALUATION

A. Single-task training results

We first trained three networks, each as a single-task
learning process, focusing at the shared encoder and solely
one branch at a time, consequently optimizing for each in-
dividual task. Table II displays the three single-task learning
results, namely DeepLabv3-SingleS, DeepLabv3-SingleD and
DeepLabv3-SingleN, for semantic segmentation, depth estima-
tion and surface normal estimation respectively. The results of
the single-task learning networks are used as baselines against
which we evaluate the MTL strategies.

B. Multi-task task-weighting balancing results

With the aim of evaluating commonly employed methods,
we initiated the MTL experimentation phase by weighting
the losses of the individual tasks and subsequently the total
loss of each experiment, with results reported in Table III.
We tested the effectiveness of the learning process by training
across all three tasks with an equal weighting strategy for each
task-specific term of the loss (DeepLabv3-EW). The results
of EW indicate that handling the task-specific losses equally
does not enhance performance on individual tasks and leads
to a decrease of 5.38% as determined by the corresponding

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

86



TABLE II: Baseline results for single-task trained network

Single-task
Method Semantic Segmentation Depth Estimation Surface Normal Estimation

mIoU↑ pA↑ aE↓ rE↓ mE↓ <12.5↑ <22.5↑ <30↑
DeepLabv3-SingleS 0.7936 0.9799 - - - - - -
DeepLabv3-SingleD - - 0.2449 0.0404 - - - -
DeepLabv3-SingleN - - - - 5.289 0.8647 0.9187 0.9389

TABLE III: Comparison of task-weighting balancing methods on the WarehouseSIM dataset

Multi-task
Method Semantic Segmentation Depth Estimation Surface Normal Estimation Total

mIoU↑ pA↑ aE↓ rE↓ mE↓ <12.5↑ <22.5↑ <30↑ ∆MTL↑
DeepLabv3-EW 0.7812 0.9792 0.2463 0.0398 5.461 0.8609 0.9164 0.9372 -5.38
DeepLabv3-DWA 0.7791 0.9792 0.2455 0.0390 5.461 0.8615 0.9162 0.9368 -5.34
DeepLabv3-GLS 0.7862 0.9798 0.2578 0.0425 5.354 0.8639 0.9177 0.9378 -7.42
DeepLabv3-RLW 0.7783 0.9792 0.2487 0.0406 5.508 0.8603 0.9159 0.9368 -7.61
DeepLabv3-UW 0.7884 0.9796 0.2467 0.0411 5.378 0.8634 0.9173 0.9376 -3.05

TABLE IV: Comparison of gradient-based balancing methods on the WarehouseSIM dataset

Multi-task
Method Semantic Segmentation Depth Estimation Surface Normal Estimation Total

mIoU↑ pA↑ aE↓ rE↓ mE↓ <12.5↑ <22.5↑ <30↑ ∆MTL↑
DeepLabv3-EW-GradNorm 0.7866 0.9792 0.2568 0.0447 5.319 0.8642 0.9180 0.9382 -6.31
DeepLabv3-EW-CAGrad 0.7777 0.9786 0.2535 0.0435 5.301 0.8650 0.9188 0.9387 -5.73
DeepLabv3-EW-GradDrop 0.7810 0.9792 0.2437 0.0404 5.526 0.8606 0.9159 0.9366 -5.58
DeepLabv3-EW-GradVac 0.7804 0.9792 0.2468 0.0396 5.455 0.8619 0.9164 0.9368 -5.58
DeepLabv3-EW-PCGrad 0.7782 0.9792 0.2463 0.0402 5.418 0.8632 0.9171 0.9374 -4.95

∆MTL metric. Dynamic weight averaging (DeepLabv3-DWA)
gives very similar results with a best ∆MTL of -5.34%. DWA
requires a temperature parameter (T) to be defined, which
controls the elasticity of weighting. The recommended value
of temperature (T) in previous works is 2 [17], [18]. In our
case, for T=2, we experienced low elasticity in task-weighting,
as the three individual weighting values were confined to a
narrow range of 10% throughout the training. In practice,
due to the low elasticity, the DWA setting performed almost
identically to the EW strategy, across all training epochs.
We experimented with reducing the temperature parameter to
increase the elasticity, and subsequently the allowed scaling
of weights but got worse results. Geometric loss strategy
(DeepLabv3-GLS) and random loss weighting (DeepLabv3-
RLW) produced analogous results, worse than the aforemen-
tioned strategies (∆MTL of -7.42% and ∆MTL of -7.61%
respectively). Uncertainty weighting (DeepLabv3-UW) did
enhance the performance significantly resulting in a ∆MTL

of -3.05%, yet not managing to take advantage of the added
information of all tasks to produce a positive ∆MTL.

C. Multi-task gradient-based balancing results

Next, we assess the effectiveness of gradient-based bal-
ancing methods and document the results obtained when
employing these techniques on tasks that are weighted equally.
Gradient normalization (DeepLabv3-EW-GradNorm) performs
worse than the equal weighting baseline (DeepLabv3-EW)—
∆MTL of -6.31% opposed to ∆MTL of -5.38%—showing
that normalizing the gradients on all tasks is not an effective
strategy for our scenario. Similar results can be seen for

conflict-averse gradient descent (DeepLabv3-EW-CAGrad),
gradient sign dropout (DeepLabv3-EW-GradDrop) and gra-
dient vaccine (DeepLabv3-EW-GradVac) with ∆MTL of -
5.73%, -5.58% and -5.58% respectively. CAGrad focuses on
minimizing conflicts by updating gradients from only one
task that has minimal interference with the others, GradDrop
encourages diverse gradient directions through sparsity by
randomly dropping the sign information of a portion of
gradients, and GradVac injects task-specific gradient noise to
promote positive transfer. The only gradient-based balancing
technique that improves upon the equal weighting baseline
is gradient surgery (DeepLabv3-EW-PCGrad)—∆MTL of -
4.95% opposed to ∆MTL of -5.38%—showing that projecting
conflicting gradients to a mutually beneficial subspace does
indeed benefit the learning process in our scenario. Although
it is feasible to combine gradient-based balancing techniques
with task-weighting balancing techniques, our experimental
results did not demonstrate any notable enhancements across
the tested combinations.

VI. CONCLUSION

In this work, we have presented a detailed analysis of
common multi-task learning techniques in the new setting of
mobile industrial robots. We start by producing a simulated
warehouse dataset with color images and corresponding infor-
mation for three tasks, i.e. semantic segmentation, depth es-
timation and surface normal estimation. The WarehouseSIM1

dataset is made publicly available and can be used for both

1The dataset download link, source code and additional information on this
project are available at: https://github.com/DTU-PAS/WarehouseSIM
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single-task training and multi-task learning. Next, we test
various task-balancing techniques used in computer vision.
Throughout our experiments we demonstrate that these tech-
niques fail to improve upon single-task learning, questioning
their ability to be used in new scenarios, such as industrial
mobile robot perception. Future work includes augmenting
the synthetic dataset by incorporating additional scenes and
introducing greater variability, leveraging novel aspects of the
simulation platform like incorporating mobile human entities
to enhance the scenario, and integrating supplementary tasks
such as object detection, human pose estimation, and trajec-
tory estimation. Finally, we plan on revisiting task balancing
strategies to find solutions not tied to specific datasets and
tasks that will consistently produce improved metrics across
all tasks.
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Artifacts Mapping: Multi-Modal Semantic Mapping for Object
Detection and 3D Localization
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Abstract— Geometric navigation is nowadays a well-
established field of robotics and the research focus is shifting
towards higher-level scene understanding, such as Semantic
Mapping. When a robot needs to interact with its environment,
it must be able to comprehend the contextual information
of its surroundings. This work focuses on classifying and
localising objects within a map, which is under construction
(SLAM) or already built. To further explore this direction, we
propose a framework that can autonomously detect and localize
predefined objects in a known environment using a multi-modal
sensor fusion approach (combining RGB and depth data from
an RGB-D camera and a lidar). The framework consists of
three key elements: understanding the environment through
RGB data, estimating depth through multi-modal sensor fusion,
and managing artifacts (i.e., filtering and stabilizing measure-
ments). The experiments show that the proposed framework
can accurately detect 98% of the objects in the real sample
environment, without post-processing, while 85% and 80% of
the objects were mapped using the single RGBD camera or
RGB + lidar setup respectively. The comparison with single-
sensor (camera or lidar) experiments is performed to show that
sensor fusion allows the robot to accurately detect near and far
obstacles, which would have been noisy or imprecise in a purely
visual or laser-based approach.

I. INTRODUCTION

To boost navigation autonomy and contextual awareness of
mobile robots in unstructured environments, geometric infor-
mation collected from the surroundings and the associated se-
mantic data play key roles. The latter, in particular, includes
qualitative environment information that can contribute to
improving the robot’s autonomy for navigation, task planning
and manipulation, and simplifying human-robot interaction
(HRI). This problem is tackled in the Semantic Mapping
field, which aims to organize objects into classes and com-
pute their pose and shape in a specific fixed reference frame.
In this way, the environmental geometric information is
supported by high-level features which increase the robot’s
awareness of the environment. In our specific case, we deal
with the object detection and localization problem, which
nowadays is widely investigated. For instance, in the last
Darpa Subterranean Challenge1, the main objectives were
multi-robot exploration and object mapping in unknown
environments, and the overall score was calculated based on
the number of correctly detected and localized objects on the
map.

†Intelligent and Autonomous Systems, Leonardo Labs, Genoa, Italy
‡HHCM & HRII, Istituto Italiano di Tecnologia, Genoa, Italy
§Industrial Innovation, DISI, Università di Trento, Trento, Italy
Authors’ e-mail: {name.surname}.ext@leonardo.com
1Darpa Subterranean Challenge: https://www.subtchallenge.

com/

Fig. 1. An example of the framework during an experiment. On the left,
is the visual application where objects are shown with a landmark and a
spherical region of interest for the location in the Rviz visualization tool. On
the top right, is the instance segmentation inference of the image taken from
the robot camera while on the bottom right is the external representation of
the experimental scene.

Different works were proposed to cope with the semantic
mapping problem. Most recent results in robotics are facing
the problem of using only RGB data and some interactive
structures to be compliant with dynamic environments [1]
while others rely on RGB-D data exploiting older algorithmic
strategies (e.g. PnP algorithm) [2]. In autonomous driving,
the RGB camera and lidar sensor fusion for semantic under-
standing is a currently tackled problem [3]. For a broader
evaluation of the literature review see Sect. II.

Independently of the approaches used in robotics litera-
ture, the first thing which stands out is that most of them
rely only on camera sensors. Cameras can give lots of
dense information to the user especially if paired with depth
data. However, their accurate depth range is within a few
meters, leading to heavy depth measurement errors as the
distances increase, especially if the robot is moving. This is
particularly true for outdoor and vast indoor environments
(e.g., warehouses), where depth cameras are limiting and
object semantic mapping remains a major challenge for
far distances. In these cases, lidar sensors are an essential
camera partner, allowing to have precise depth measurements
for a wider distance range. Rather, in autonomous driving,
the lidar and the RGB camera are nowadays commonly
used but depth cameras are not considered due to their low
resolution in the wide outdoor areas commonly faced in
driving scenarios.

Another aspect not considered in most of the robotics
examined works is that they do not account for limited re-
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Fig. 2. This figure represents the whole Artifacts Mapping pipeline. The
top block groups the sensors’ data readings: (a) camera RGB image, (b)
camera depth image and (c) lidar point cloud. At the bottom, there are
(d) the RGB image inference performed with a Deep Neural Network for
instance segmentation, (e) the multi-modal sensor fusion for detection and
localization which uses as input the camera depth, the lidar point cloud
and the Neural Network inference, and (f) a representation of the artifacts
manager state-machines used to handle the sensor fusion detections and
stabilize them.

sources applications which should run on embedded devices
(e.g. Nvidia Jetson Nano2). Furthermore, Semantic Mapping
is often used in the context of grasping or augmented
reality scenarios while this work proposes an application for
detecting and localizing objects (a.k.a artifacts) for high-level
navigation tasks.

In our work, we aim to merge robotics and autonomous
driving applications’ strengths and present a modular archi-
tecture for semantic mapping3. We provide a multi-modal
(camera-lidar) online semantic mapping framework which
can fuse sensor information in real-time depending on the
object distance and sensor’s accuracies. We use image se-
mantic information to enrich objects’ filtered and stabilised
positions to have precise object localization. The artifacts’
shapes are simplified as spheres but they will be improved in
future development. Our work relies on external geometric-
based navigation frameworks such as SLAM algorithms or
other localization algorithms (e.g., AMCL [4]).

The proposed application demonstrates good accuracy for
both near and far objects thanks to the camera-lidar depth
fusion which, as far as the authors know, was not examined
in other robotic or autonomous driving semantic mapping
works. The application operates online also on low resources
embedded systems (see Sect. IV-B) which strengthens the
contributions of this paper. Moreover, we developed a Rviz4

application which improves the user experience (UX) for
visualization and interaction with the objects and the robot
(see Fig. 1). The authors will provide on-demand a Docker
application5 as an added contribution, for running the arti-
facts mapping applications in simulation or on a robot (see
Sect III-A-III-B and Sect. III-C).

The paper is divided as follows. In Sect. II a literature

2Nvidia Jetson Nano: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit

3Artifacts Mapping Youtube videos: https://www.youtube.com/
playlist?list=PLdibjJfM06zugiWd-yUcdGH-SRWKTA3nQ

4rviz: http://wiki.ros.org/rviz
5The authors will grant access to a Docker image with the compiled

application upon acceptance of the paper, based on the Freeware license.

review of some recent works in semantic mapping is pre-
sented. The framework developed for this work is explained
in Sect. III. We can distinguish the framework pipeline as two
perception modules and a manager one. The first perception
module performs 2D object detection while the second aims
to estimate 3D artifacts position by fusing camera and lidar
depth information (see Sect. III-A). The last module is
needed to stabilize the perception estimations and to filter
out noisy outliers (see Sect. III-B). An application of the
presented framework (see Sect. III-C) is proposed based
on two steps: (i) the robot can autonomously classify and
localize objects on a map and save them in a specified
format, (ii) the robot can load the artifacts as way-points
on the map and the user can interactively select them to
command the robot moving in that place to successively
accomplish various kind of tasks such as manipulation,
grasping, inspections or others. In Sect. IV the experiments
to validate the framework are evaluated and discussed, and
in Sect. V the conclusion and some future improvements are
provided.

II. RELATED WORKS

In literature, the semantic mapping problem was addressed
using several approaches both in robotics and autonomous
driving fields. Different surveys were presented that analysed
this topic from various points of view. In [5] the authors
explored the semantic mapping application in a human-robot
collaboration scenario in an indoor environment while in
[6] the semantic SLAM problem is presented in a general
fashion analysing the works also in terms of perception,
robustness, and accuracy. In [7], the less recent semantic
mapping works are reviewed (i.e., before 2014). This survey
is a good reference to analyse the first development for the
semantic mapping problem which yielded the more recent
applications.

Among the modern semantic mapping approaches pre-
sented in robotics literature in the last decade, some first
successful examples are [8] and [9]. In [8] the authors
presented a monocular SLAM system that uses a SURF [10]
feature extractor to check correspondencies and reconstruct
the object’s geometry. Instead, the authors in [9] showed
an object-oriented 3D SLAM based on an ICP [11] object
pose refinement and demonstrated that the introduction of
semantic objects in the SLAM loop improves performances.
the authors in [12] developed a monocular SLAM-aware ob-
ject recognition system based on multi-view object proposals
and efficient feature encoding methods giving as output a
semi-dense semantic map. In [13] the authors proposed a
framework which directly manages 3D objects. They use
a Kinect6 camera to reconstruct the 3D environment from
different points of view and classify them while estimating
their pose. In [14] the Data Associated Recurrent Neural
Networks (DA-RNN) is introduced, which is an RNN for
semantic labelling of RGB-D videos. The network output

6Microsoft Kinect camera https://en.wikipedia.org/wiki/
Kinect
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is fused with the KinectFusion algorithm [15] to merge
semantic and geometric data. In [16] a Convolutional Neural
Network (CNN) is used along with the ElasticFusion SLAM
algorithm [17] to provide long-term dense correspondences
between RGB-D video frames even in loopy trajectories. The
authors in [18] leveraged ORB-SLAM2 [19] to reconstruct
the geometric environment while using Single-Shot multi-
box Detector (SSD) [20] along with an unsupervised 3D
segmentation algorithm to place objects in the environment.

Moving towards more recent works, in [21] is presented
the Contextual Temporal Mapping (CT-Map). They modelled
the semantic inference as a Conditional Random Field (CRF)
to account for contextual relations between objects and
the temporal consistency of their pose. MaskFusion [22]
is a real-time object-aware semantic and dynamic RGB-D
SLAM algorithm. The greatest difference with respect to
its predecessors is that it can cope with dynamic objects
by continuously labelling them. Fusion++ [23] performs an
object-level SLAM based on a 3D graph map of arbitrary
reconstructed objects. They used RGB-D cameras, Mask-
RCNN [24] instance segmentation and the Truncated Signed
Distance Function (TSDF) to perform the semantic recon-
struction. In [25] is presented an approach that incremen-
tally builds a volumetric object-centric map with an RGB-
D camera. They used an unsupervised geometric approach
with instance-aware semantic predictions to detect previously
unseen objects. They then associated the 3D shape locations
with their classes if available and integrate them into the
map. This approach has limited time performances to be
used on a mobile robot because it runs at 1 HZ so it could
be impractical in real-time. Conversely, in [26] the authors
obtained a real-time dense reconstruction and semantic seg-
mentation of 3D indoor scenes. They used an efficient super-
voxel clustering method and conditional random fields (CRF)
with higher order constraints from structural and object cues,
enabling progressive dense semantic segmentation without
any precomputation. The CRF infer optimal segmentation
labels from the prediction of a deep neural network and
runs in parallel with a real-time 3D reconstructor which
utilizes RGB-D images as input. In [27] an open-source C++
library for metric-semantic visual-inertial SLAM in real-
time is presented. They provide a modular code composed
of a visual-inertial odometry (VIO) module, a pose graph
optimizer, a 3D mesh-building module, and a dense 3D
metric-semantic reconstruction module. The authors in [28],
used a UAV equipped with a lidar, an RGB camera and
a thermal camera to augment 3D point clouds and image
segmentation masks while also generating an allocentric
map.

One of the last available works which focus on this topic
is [1] which presented a semantic mapping framework which
uses only RGB data. They did not accomplish only object
mapping but they provided a framework that can also distin-
guish different rooms and buildings. They exploited the 3D
dynamic scene graphs [29] to abstract the different layers of
inference (i.e. object, room and building), to solve problems
such as loop closure detection and to cope with the mapping

problem. Instead, the authors of [2] used RGB-D cameras
to reconstruct an allocentric semantic map. They used a
keypoint-based approach for pose estimation using a CNN
keypoint extractor trained on synthetic data. Object poses
were recovered from keypoint detections in each camera
viewpoint with a variant of the PnP algorithm. The outputs
obtained from the multi-camera system were then fused using
weighted interpolation.

In autonomous driving, the multi-sensor fusion problem
for 3D object detection is faced in [3] which uses lidar
and RGB camera sensors to estimate the objects positions
in the environment through ground estimation and depth
completion. They use an end-to-end approach to train their
multi-task network. The authors in [30] build a semantic map
with a laser-based semantic segmentation of the point cloud
not requiring any camera data. In [31], the authors provided
a lidar-based SLAM for the geometric mapping and then use
a CRF to fuse and optimize the camera semantic labels to
obtain the semantic map. Instead, in [32], the camera and
lidar data are used to build a probabilistic semantic octree
map considering all the uncertainties of the sensors involved
in the process. The authors in [33] presented one of the latest
works in autonomous driving semantic mapping. They use an
RGB camera and a lidar to perform semantic segmentation,
direct sparse visual odometry and global optimization to
include GNSS data in the mapping process.

Our review of the state-of-the-art indicated that most of
the works on robotics platforms rely only on camera mea-
surements and the experiments are limited to small indoor
environments. Instead, in the autonomous driving scenario
the camera-lidar fusion is already used for semantic tasks
but they rarely use depth cameras, their lidars are generally
more powerful (i.e., they have 128-row lidars compared to
the 16 ones commonly used in robotics) and they test the
application in driving outdoor scenarios which offer different
challenges with respect to robotic indoor once. Hence, with
our work, we aim to stress the fact that RGB-D cameras and
lidars are complementary sensors also in robotic semantic
applications. For the semantic mapping application, we stated
that with both sensors we can correctly localize objects at
different distance ranges, improving detection accuracy.

III. ARTIFACT MAPPING FRAMEWORK

In this section, the whole framework is presented as a
conjunction of two blocks: Sect. III-A for object perception
and Sect. III-B for object managing. In Sect. III-C the
provided UI application is illustrated.

A. Artifacts detection and position estimation

The perception part can be conceptually divided into
two components: (i) 2D object segmentation, (ii) 3D object
position estimation using camera-lidar filtering.

1) 2D object segmentation: In this phase, a deep neural
network [34] is used to infer from RGB images (see Fig. 2a)
some predefined objects’ classes and their masks. During
the navigation, the robot takes pictures of the environment
using the camera mounted on it. The pictures are passed
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into an instance segmentation deep neural network which
outputs the classification labels and masks (i.e., a binary
image having 1 where the object is found and 0 elsewhere)
for each object recognized on the image (see Fig. 2d). The
outputs are grouped and passed to the next module which will
convert 2D data into 3D ones. An optional feature provided
in this module is the possibility to filter out classes in real-
time upon request. In this way, the robot can map different
objects online depending on the requirements proposed.
Other implementation aspects will be further explained in
Sect. IV.

2) 3D object position estimation using camera-lidar filter-
ing: This module fuses RGBD camera and lidar measure-
ments to have a precise estimate of the objects’ positions in
the environment. The input is composed of the classification
labels and masks found in the previous module, and depth
information extracted from the camera (see Fig. 2b) and
the lidar (see Fig. 2c). Sensors depth measurements are first
analyzed separately in the following.

The depth image obtained from the camera (see Fig. 2b) is
filtered using the recognized objects masks through element-
wise matrix multiplication. The output, containing only the
depth data of the object plus some sensor noise and environ-
ment outliers, is used to build a 3D point cloud projecting
the 2D image points in the 3D space using the formula in
the equation:
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where xC , yC , zC are the 3D point coordinates with respect
to the camera, u, v are the pixels on the image plane and
fx, fy , px and py are the camera intrinsic parameters (focal
distances and sensor’s centre). Note that zC is the depth
measured by the camera depth sensor.

The obtained point cloud is filtered using a voxel grid
downsampling filter7 to reduce the number of points and,
consequently, a radius outlier filter8 is applied to remove
the outliers induced by sensors noises and inference imper-
fections. The final point cloud is then used to compute the
camera artifact centroid XC as the mean of its points.

The 3D lidar centroid estimation is computed as follows.
Projecting the 3D lidar points (see Fig. 2c) in the 2D detected
masks images using Eq. 2, we are able to extract the object
points of interest from the point cloud (i.e., the points which
have the 2D projection inside the mask).
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where RC
L ∈ R3x3 and TC

L ∈ R3x1 are the rotation matrix
and the translation vector between the lidar and the camera,

7voxel grid downsampling filter: https://pointclouds.org/
documentation/tutorials/voxel_grid.html

8radius outlier removal: https://pointclouds.org/
documentation/tutorials/remove_outliers.html

Fig. 3. An example of the contribution weights of camera and lidar for
sensor fusion. The camera weight is in blue while the lidar one is in dashed
green. In the specific example, we considered the specifications of a generic
RGB-D camera you can find on the market: minC = 0.5, accC = 2.0
and maxC = 6.0.

xL, yL, zL are the 3D centroid position with respect to the
lidar and the other parameters are the same of Eq. 1.

The extracted point cloud, representing the noisy artifact,
will be then filtered using a radius outlier filter similar to
the one used for the camera. Both radius filter parameters
are directly dependent on the number of point cloud points
because different distances and sizes of objects affect the
point-cloud density and consequently the filtering. Finally,
the mean of the point cloud is computed to obtain the lidar
artifact centroid XL.

Once both centroid measurements are available, they are
fused in the artifact centroid X following the rules in the
equation:

X =





0 If distC < minC

XC If minC ≤ distC ≤ accC
ξXC + (1− ξ)XL If accC ≤ distC ≤ maxC
XL If distC > maxC ,

(3)
where distC is the euclidean distance between the 3D point
estimates and the camera, minC and maxC are the minimum
and maximum distances the depth camera can perceive, accC
is the distance within which the camera can have accurate
enough measurements to be used alone for the object local-
ization (the camera information are generally provided by
the sensors vendors), XL ∈ R3 and XC ∈ R3 are the lidar
and camera 3D centroid estimates and ξ ∈ [0, 1] ∈ R is the
fusion weight represented by the blue slope of the segments
between accC and maxC in Fig. 3 and it is computed as
follows:

ξ = − 1

maxC − accC
(distC − accC) + 1 (4)

Using the filtered camera and lidar point clouds, a rough
3D radius estimation ρ of the objects is performed. The
camera radius ρC and the lidar radius ρL are computed as
the mean of the two bigger dimensions along the X, Y and
Z point cloud axis. the final radius ρ is computed following
the same centroid fusion rules of Eq. 3 substituting X with
ρ, XC with ρC and XL with ρL.
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Also, the view angle ϕ of the artifact with respect to the
robot is computed. Such an angle is rotated with respect to
the map reference frame for implementation reasons with
equation:

ϕ = atan2(r21, r11) + atan2(yr, xr) , (5)

where the rij is the entry at row i and column j of the
rotation matrix Rm

r ∈ R3x3 between the map m and the robot
r and xr, yr are the x, y positions of the artifact centroid
with respect to the robot base. The two addends of Eq. 5
represent respectively the heading angle between the robot
and the map and the angle between the robot and the 3D
centroid.

B. Artifacts manager for data association

The manager (see Fig. 2f) is needed to filter out outliers
and to stabilize artifact position estimations provided by the
sensor fusion module. This process is generally known as
data association[5][14]. The manager is composed of two
modules: (i) object position filtering and (ii) object position
stabilization which runs asynchronously in parallel.

1) Position filtering: Using a temporary data structure, the
temporary buffer, we store and filter the perceived artifacts.
Once the manager receives the 3D artifacts position estima-
tions from the perception module (see Sect. III-A), it checks
if the artifacts were already seen before (i.e., the distance
between one of the already seen artifacts and the current one
is less than its 3D radius). If this is the case then the artifact
in the temporary buffer is updated. Otherwise, for each not
previously seen artifact received, the manager creates a new
artifact instance in the temporary buffer. These instances have
their own moving average filter which estimates the average
of the artifact centroid position and its radius with Eq. 6
and computes a variance based on the distances between the
position and the moving average in the filter horizon with
Eq. 7.

µ =
1

N

∑

χ∈ΩN

χ (6)

σ =
1

N

∑

χ∈ΩN

||χ− µ||2 , (7)

where N ∈ N is the number of measurement in the moving
average set ΩN of 3D points, χ ∈ R3 represent the current
3D position measurement, µ ∈ R3 is the 3D mean position
and σ ∈ R represent the variance of the filter.

2) Position stabilization: This module checks the stability
of the artifacts in the temporary buffer and stores stable
artifacts in another similar structure, the stable buffer. If an
artifact in the temporary buffer is stable, the stabilizer moves
the artifact from the temporary buffer to the stable one. An
artifact is considered stable when its moving average filter
variance σ is less than half its 3D artifact radius ρ and at least
half the average filter set ΩN is filled. This means that we
have enough stable object position estimations and the object

position average can be used for fixing the object position
on the map.

At the end of the Artifacts Mapping application, an
additional data association step is performed. The artifacts
belonging to the same class which overlay each other on the
XY plane are merged into a single artifact. This step reduces
the duplicated object which sometimes appears on the map
due to different point-of-view measurements and occlusions.
After that, the stable artifacts buffer is saved in a yaml file
which could be loaded into the user interface application
presented in the next section.

C. User Interface for goal sending

A User Interface (UI) application based on a Rviz plugin
(see Fig. 1) was developed to provide an intuitive visualiza-
tion of the artifacts on the map, to send commands to the
robot for moving near an artifact of interest and to delete
artifacts which the user do not need or are wrong. Such
artifacts can be loaded from the yaml file obtained with the
artifacts mapping application. Through the UI application,
the user can send nav msgs/goal ROS messages which can
be used by the robot to move towards the object (e.g., using
the ROS navigation stack as we do, see Sect. IV). The user
can interact with the artifacts by simply right-clicking on
them on Rviz and selecting the action Go To or Delete. Being
the artifacts centroid position inside the artifacts shapes, the
goal is moved in front of the artifact so that the robot stops
before colliding with the object. The other available option is
artifact deletion. If the user notices that an artifact is wrongly
identified (classification or position) then the user can delete
it and, once the UI application is closed, the loaded yaml
file is updated with the remaining artifacts.

IV. EXPERIMENTS

The experiments are performed both in simulation and
using a real robot in a laboratory environment. The experi-
mental setup is the same: some chosen objects are randomly
positioned in the experiment area and the robot, following a
predefined path, maps the predefined objects it encounters.
This strategy is chosen because the objective is the validation
of the artifacts mapping accuracy during an application,
for example during a patrol. In other application scenarios,
e.g. search and rescue, our framework could run in parallel
with an exploration algorithm and the robot could trigger
the exploration module every time an object of interest is
encountered to obtain a precise localization.

In the experiments, we compare the data fusion with the
mono-sensors application (i.e. using only an RGB-D camera
or only the lidar) to demonstrate that the data fusion highly
improves the detection accuracy and decreases the errors. For
each environment setup, the experiments are repeated three
times, one for each sensors configuration: only camera, only
lidar, and both.

This work focuses only on semantic mapping and does
not account for the robot localization which is assumed
to be given. Additional errors in mapping resulting from
localization are not considered in the final evaluation even if
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TABLE I
DETECTION RESULTS OF THE SIMULATION AND REAL EXPERIMENTS.

Simulation Real
Camera Lidar Fusion Camera Lidar Fusion

Correct detection 386 391 416 86 81 99
Wrong localization 12 13 7 10 14 2

Duplication 19 24 15 10 14 6
Wrong classification 0 0 0 7 11 6

Total detections 417 428 433 113 120 113
Total objects 422 101

they negatively affect our application. Moreover, is important
to notice that quadrupedal robots’ movements are jerky and
the sensors can suffer from that.

We set the parameters minC , accC and maxC of Eq. 3
as 0.3, 4, 6 respectively based on the camera hardware in-
formation provided by the camera vendors (Intel Realsense).

The final validation performance is based on the number of
objects which the robot can correctly find over the number of
total objects. Also, the number of correctly-detected objects
over the total number of detections is evaluated. The object
is considered found if the difference between the estimated
position and the real one is less than the real object radius
and the associated class label is correct. The errors are
categorized as duplicated objects, wrong localization and
wrong classification. The duplications occur when there are
more artifacts on a single object. they could be caused by
the wrong artifacts radius computation due to occlusions or
distinct point of view detection (i.e., viewed from different
perspectives: front and behind). The localization is consid-
ered wrong if the artifact’s estimated position is outside the
real object shape while the classification is erroneous if the
artifact’s class label is not correct.

For the simulation, the Whole-body Locomotion Frame-
work (WoLF)[35] is used on a notebook with an Intel®
Core™ i9-11950H processor and an NVIDIA Geforce RTX
3080 Laptop GPU. In the real scenario, a Unitree Go19

quadrupedal robot equipped with a RoboSense RS-Helios16
lidar10, an Intel RealSense D45511 and three Nvidia Jetson12

(two Jetson Nano 4GB and one Nvidia Xavier NX) are
used for the evaluation. The experiments are performed
with the instance segmentation algorithms Yolact++ [34] and
YolactEdge [36] trained on COCO [37] data set.

A. Simulation Experiments

Gazebo13 simulator is used to simulate the robot in two
different environments: the office14 and Maze worlds where a
predefined number of objects are positioned randomly at each

9Unitree Go1: https://www.unitree.com/en/go1/
10RoboSense RS-Helios16: https://www.robosense.ai/en/

rslidar/RS-Helios
11Intel RealSense D455: https://www.intelrealsense.com/

depth-camera-d455/
12Nvidia Jetson: https://www.nvidia.com/it-it/

autonomous-machines/embedded-systems/
13Gazebo simulator: https://gazebosim.org/home
14Clearpath robotics worlds: https://github.com/

clearpathrobotics/cpr_gazebo/tree/noetic-devel/
cpr_office_gazebo

Fig. 4. Percentage of the correctly mapped and labelled objects concerning
the total number of objects on the scene. On the left are the simulation results
and, on the right, are the real experiments. Each block has three histograms
representing the three sensors configurations used during the experiments:
only RGBD camera, only RGB + lidar, and both.

iteration. The chosen objects for the simulation evaluation
are vase, couch, plant and person. Specifically, in the office
world, there are 5 vases, 12 couches, 6 plants and 11 persons
while in the Maze world, there are 15 vases, 13 couches, 12
plants and 12 persons. The robot path is chosen randomly
in advance using some waypoints on the map. In total, for
each sensors configuration, 10 experiments were conducted,
5 for each environment, using different setups, for a total of
30 experiments.

The results of the simulation experiments are shown in the
left part of Fig. 4 in terms of the number of correct detected
objects. Specifically, considering the three ordered sensors
configurations (i.e. only camera, only lidar, and both), we
obtain the 92%, 93% and 99% of correctly localized and
classified objects. Moreover, analysing the total number
of detections produced, we obtain the distribution of the
detections represented in the left column of Table I and the
top part of Fig. 5 for the simulation experiment. Among all
the detection produced, considering again in order the three
sensors configurations, the 92%, 91% and 95% were correct
while the remaining 8%, 9% and 5% of them were wrong.

The farthest object correctly detected in simulation during
the camera-lidar sensor fusion experiments was at 15.47m
from the robot, while the nearest was at 1.23m.
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Fig. 5. Distribution of correctly and wrongly detected artifacts among
the total generated detections. The pie charts represent the distribution of
the correctly detected artifacts in green, the doubled objects in blue, the
wrongly localized ones in pink and the wrongly classified ones in red. On
the top row are the simulations results while on the bottom are the real
ones. For each row, experiments are divided into three columns depending
on the sensors configuration used during experiments: only camera, only
lidar, and both.

B. Laboratory Experiments

The real experiments were carried out in a laboratory
setting considering two scenarios, a one-room laboratory en-
vironment and a complete floor environment where the robot
can move through corridors. In these environments were
positioned umbrellas, chairs, cabinets, backpacks and TVs
in variable amounts. For each sensors configuration, A total
of 6 experiments were conducted, 3 for each environment,
for a total of 18 experiments. For each trial, the objects
were randomly moved and the illumination changed, i.e.,
switching off lights or closing shutters.

The results of the laboratory experiments are shown in
the right part of Fig. 4 in terms of the number of correct
detected objects. Specifically, considering the three sensors
configurations in order (i.e. only RGBD camera, only RGB
+ lidar, and both), we obtain respectively the 85%, 80% and
98% of correctly localized and classified objects. Moreover,
analysing the total number of detections produced, we obtain
the distribution of the detections represented in the right
column of Table I and the bottom part of Fig. 5 for the
real experiment. Among all the detection produced, the 76%,
68% and 88% were correct while the remaining 24%, 32%
and 12% of them were wrong.

The farthest object correctly detected during the camera-
lidar sensor fusion experiments was at a distance of 10.37m
from the robot, while the nearest was at 0.98m.

C. Discussion

The first thing to point out is that the farthest distances of
the detected object were greater than 10m both in simulation
and in real experiments. We take into account this distance to
show a qualitative comparison between the lidar and RGB-D
measurement in Fig. 6. The figure qualitatively upholds the
thesis that a lidar sensor along with the camera is necessary
to improve semantic mapping and, in general, other detection
algorithms in wide areas. Moreover, from the results obtained

Fig. 6. Qualitative comparison between RGB-D camera (left image) and
lidar (right image) point cloud detections at an approximate distance of 10m
from the wall. At the bottom centre, there is the representation of the scene
taken with the robot camera at that time instant. At large distances, the
camera data are noisier and less accurate with respect to the lidar one but at
small distances cameras provide a denser accurate point cloud while lidar
data are sparser. From this comparison can be deduced that a visual-lidar
sensor fusion can enhance semantic mapping.

from the experiments, it is clear that in our framework the use
of both sensors improves the robustness of the application
and decreases the detection errors. These improvements are
less evident in a simulation environment where we used
almost ideal sensors, i.e. the noise representation is not
realistic as in Fig. 6. Still, it impacts real scenarios where
there is more sensor noise.

The lidar can map far obstacles precisely while the camera
introduces lots of errors at high distances. If we adopt only
the camera, one solution to avoid erroneous measurements
could be to not consider the depth measurement out of the
accurate range guaranteed by the device specifications. By
the way, by doing this the robot could miss some artifacts if
it does not get close enough to them.

The camera, by providing more information at near dis-
tances with respect to the lidar, yields more precise centroid
computations because it has fewer outliers than the lidar.
Lidar outliers can be caused by wrong camera-lidar pose
calibration and time synchronization which are essential for
these applications especially when the robot moves fast.
Instead, with RGBD cameras, the depth and the RGB images
are synchronized in time and can be spatially superimposed
almost exactly.

It is important to notice that wrong classification errors
result from erroneous classifications in the pre-trained in-
stance segmentation neural network which can be caused by
illumination, reflections or other environmental conditions.
They are here considered because the image inference is
a module of the proposed pipeline but such errors can be
decreased using more powerful neural networks.

V. CONCLUSION

We presented a framework which uses multi-modal sen-
sors fusion to tackle the semantic mapping problem which
is a rare setup in robotics applications. We fuse the lidar and
RGB-D camera sensor readings to achieve better accuracy
both for near and far objects as opposed to camera-only
systems which lose accuracy for distant objects or lidar-
only which lack high-level texture understanding of the
environment.
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We proposed a UI application to interact with the artifacts
map obtained during the mapping application. This applica-
tion is useful to perform autonomous high-level decision-
making tasks because it exposes the object’s class and
location to the robot and the user.

The experiments showed that our application can correctly
detect, localize and map the 98% of the objects present in
the scene at different distances providing a small number
of detection errors and good localization accuracy. The
comparisons with the single-sensor scenario (only camera
or only lidar) proved that sensor fusion is essential for wide
areas and high-accuracy applications.

There are different future improvements we planned for
this framework: (i) evolve the algorithm to an independent
graph-based SLAM system, (ii) use 3D semantic point clouds
with oriented bounding boxes and dimension information for
better visualization and object understanding, (iii) deal with
dynamics obstacle.
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Dynamic Human-Aware Task Planner for Human-Robot Collaboration
in Industrial Scenario
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Abstract— The collaboration between humans and robots in
industrial scenarios is one of the key challenges for Industry 4.0.
In particular, industrial robots offer accuracy and efficiency,
while humans have experience and the capability to manage
complex situations. Combining these features can enhance the
industrial process by avoiding the user manipulates heavy
weights and allowing him to dedicate his efforts to tasks
where flexibility, quality and experience make the difference in
the final product. However, the collaboration between humans
and robots raises several new problems to be addressed like
safety, tasks scheduling and operator ergonomics. For example,
human presence in the robot workspace introduces various
elements of complexity into robot planning due to its dynamism
and unpredictability. Planning must take into account how to
coordinate the tasks between the robot and the human and
be quick in re-planning to respond reactively to the operator’s
trigger. For this purpose, this work proposes a hierarchical
Human-Aware Task Planner framework capable of generate
a suitable plan to complete the process and manage user
interrupts in order to have a constantly updated plan. The
method is evaluated in a real industrial scenario and in a specific
complex assembly task like the draping of carbon fiber plies.

Index Terms— Human-Aware Task Planner, Human Action
Recognition, Human-Robot Collaboration, Dynamic industrial
scenario

I. INTRODUCTION

Human-Robot Collaboration (HRC) in the industrial sce-
nario is one of the most important technological challenges
of recent years. The synergy between the robot’s abilities,
like precision, accuracy, efficiency and repeatability, along
with human intelligence, flexibility and experience provides
several advantages because it reduces the operator’s effort
and improves ergonomics during the operations, ensures
the production quality and accuracy [1]. To be able to
fully benefit from these advantages, while at the same time
ensuring user safety when working with the robot, intelligent
task coordination between humans and robots is required.
A task planner takes over this intelligent coordination of
activities. Moreover, this implies that it is necessary to use
a planner that takes into account the user.
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Fig. 1: Dynamic Human-Aware Task Planning Framework
for Human-Robot Collaboration.

Since a shared industrial environment between humans
and robots is a highly dynamic scenario, the classical task
planner approaches are infeasible: they assume that the
workspace is deterministic, the state is fully-observable, the
robot is the only agent that can change the workspace, and
actions are instantaneous. Therefore, to be usable in dynamic
environments, task planners must deal with unpredictable and
partially uncontrollable situations, especially due to human
behaviour [2]. Several approaches have been investigated
over the last few years to handle the dynamic scenario:
from Artificial Intelligent Planning like PDDL [3] or Markov
Decision Process [4] through Finite State Machine [5] to
timeline-based approaches [6]. Multi-level programming [7]
and Task Allocation [8] solutions are also very common ap-
proaches. Finally, game-theory and Reinforcement Learning
(RL) models and methodologies are widely applied to multi-
agent task scheduling problems [9], [10].

This paper proposes the Dynamic Human-Aware Task
Planner framework for HRC in an industrial scenario sum-
marized in Fig. 1. In particular, it focuses on the dynamic
scheduling of shared human-robot activities within a man-
ufacturing environment where humans and robots have to
collaborate to complete complex tasks like object sorting,
production line assembly [11] or draping [12].

Draping is one of the most complex operations in carbon
fibre manufacturing. It is carried out by transporting the
carbon ply onto the mould and adapting its shape to the
mould. Nowadays, this process is completely manual and
performed by expert human operators. In addition, the human
operator is in charge of transporting the plies from a table

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

97



to the mould and then draping it. The EU project DrapeBot1

aims at developing an HRC system capable of assisting an
operator working on the draping of carbon fibre parts. In
order to manage that process, a collaborative task planner
must be used.

To address the requirements outlined above, we propose
a hierarchical task planner that exploits the symbolic de-
scription of the process, the definition of Primitives and
Composites actions and human commands to generate a
suitable and continuously updated plan for the assembly
process. In detail, our contribution follows:

• Dynamic Human-Aware Task Planner framework,
which is able to compute human and robot activities
and handle the user commands to update the plan.

• Using primitive actions to create more complex, so-
called composite actions, which contribute to the cre-
ation of the final plan.

• Intelligent Action Recognition to trigger activities or
robot behaviour not foreseen in the plan but which the
expert user wants to perform.

II. RELATED WORKS

In recent years, task planning problems for HRC have
been investigated. Existing works like [13], [14] tried to
explore the knowledge encoded in the CAD model to extract
the product’s assembly sequence. Other works focused on
sub-problems such as scheduling human and robot actions
through Petri Nets [5], [15], or cooperative planning at a
symbolic level [16], [17]. These approaches work better
only in a classical static environment. Indeed, they cannot
handle dynamism, uncertainty and the possibility of the user
triggering unforeseen actions as a Human-Aware dynamic
scenario requires and as proposed in our approach.

Nikolakis et al. [18] proposed a hierarchical method
based on multi-criteria decision-making for an offline task
allocation and a dynamic replanning due to unexpected
events. Related works which used multi-criteria decision-
making framework are [19], [20]. In these works, the authors
considered robots and humans as resources. They developed
task allocation approaches capable of handling unexpected
events but not capable of handling specific commands/actions
desired by the user. An unexpected event can be considered
as a generic trigger where different events could correspond
to a generic reaction. A user’s command, instead, is a specific
trigger, i.e., each command corresponds to a specific reaction.
However, this part is crucial because the operator is an impor-
tant subject inside the process, and his ability is fundamental
to improve the process. Our method proposes solving this
gap using the action recognition module connected to the
task planner.

Graph-based approaches are described in [21], [22]. The
modelling of the process takes place via AND/OR graph
that can handle the parallelism of two actions assigned to
two different resources. However, they cannot handle the
order of precedence constraints typical of assembly tasks

1https://www.drapebot.eu/

and how our approach aims to address and resolve. In other
work, instead of using graph-based approaches, the authors
exploit the advantages of the Behaviour Tree (BT) [23],
[24]. In particular, Lamon et al. [24] have combined the BT
approach with a Mixed-Integer Linear Programming (MILP)
based role allocation method that allows individual and
collaborative roles within the same formulation. However,
human uncertainty is not modelled and considered. But, an
intelligent system has to consider human intentions in its
decision-making rather than force the operator to follow a
strict, predefined assembly plan. In our proposed method,
the operator can directly interact with the system and force
the robot to execute some tasks by the action recognition
module. Human intentions are typically modelled through the
Partially Observed Markov Decision Process (POMDP) [25].
Approaches which shared similarities with Cramer et al. [25]
modelled the collaborative task like hierarchical task network
(HTN) [26], [27], [28]. The latter directly employs first-order
logic to enable the robot to estimate its partner’s goals and
anticipate correctly in the presence of human variability and
non-deterministic sensing. Another work related to the HTN
is [29], where the task planner is able to divide the plan into
multiple streams for multiple agents, humans included.

Most of the approaches described above have an implicit
representation of the time. Actions are supposed to be
instantaneous so that the action effects become true when
the action itself is applied and changes the environment or
the situation. Therefore, states and goals are not supposed
to have a temporal extension such that they hold only for
a limited temporal interval, or that they must be achieved
within known temporal bounds. The planners that follow this
approach are temporal planning, and the main feature is that
they synthesize plans by combining causal reasoning with
time and resource reasoning [30], [6].

In [6], Umbrico et al. proposed a timeline-based planner
called PLATINUm with the ability to deal with temporal
uncertainty at the planning and plan execution levels. The
same authors then improved that tool by proposing an evo-
lution of it, called TENANT [31], capable of setting objec-
tives, defining tasks and establishing operational constraints,
despite the inherent complexity required in planning and
robotics. Although these works are evaluated in industrial
applications, these approaches are not able to be adapted or
rescheduled based on real-time observations by the operator.
Indeed, adapting plans on the fly can be difficult, especially
when the original plan heavily relies on strict time constraints
like in these approaches.

Finally, significant advances in Deep Reinforcement
Learning (DRL) have been witnessed in many outstanding
large-scale sequential decision-making problems [10], [32].
Hu et al. in [33] exploited the combination of timed-place
Petri nets with the deep Q-network with GCN to manage the
dynamic scheduling problem of an industrial manufacturing
scenario. In the same application, Kim et al. in [34] pro-
posed the RL approach where intelligent agents evaluate the
priorities of jobs and distribute them through negotiation.
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Fig. 2: Example of a plan with composite and primitive
actions.

III. SYSTEM ARCHITECTURE

This section presents the Dynamic Human-Aware Task
Planner framework that handles the entire process and
human-robot planning. Fig. 1 depicts an overview of the
system proposed.

The Task Planner module coordinates the human and
robot activities. It is responsible for creating a continuously
updated plan that serves as a guideline for the workflow and
will be composed of the sequence of actions to achieve the
assigned task. Finally, the Task Planner must manage the
human intentions to adapt the computed task plan to meet
the collaboration needs dynamically or to handle unexpected
situations and use recovery actions to return to a safe state.
A simple example of the plan for a draping process is
shown in Fig. 2 where it is composed of composite action
like Transport that represents the activity to transfer the
carbon fibre ply from a picking table to the mould, and
primitives like Draping and Inspection that represent the
actions performed by the human operator that drapes the
ply into the mould and checks that no defects have formed
during the previous activity.

The second important module is Action Recognition,
which recognises the gestures associated with triggering spe-
cific actions. The associated command is sent to the Central
Node, which is the module that monitors the operation of the
system and sends the commands to the other modules that are
in charge of performing the action in the plan. The Central
Node manages the information the sensors provide in the
workcell. Finally, a state-of-art Motion Planner is involved
in order to generate a collision-free trajectory for the robot.

A. Task Planner

The task planner structure is outlined in Fig. 3 and is
developed following a hierarchical approach consisting of 3
different layers:

• A low layer consisting of Primitive Actions.
• A middle layer consisting of Composite Actions.
• A high layer consisting of the Plan of the entire process.

Each layer has its own distinctive characteristics and a
different level of abstraction with respect to the final task.
In the lower layer, we have the Primitive actions which
represents the activities to be performed (e.g. Move, Draping,
Inspection, etc.). The robot and the human alone could
execute this activity, or both agents are required. A series
of preconditions and effects characterise a primitive action.
The preconditions are verified directly by the primitive itself,
while the effects describe the state changes. When one of the
preconditions is not satisfied, the current state is invalid and
the primitive cannot be sent to execution, i.e. the related
activity cannot be performed. Therefore, the primitive itself
notifies the Central Node that the state is invalid. The central

Fig. 3: Hierarchical structure of the Task Planner: the primi-
tive actions are in the lower layer, the composite actions are
in the middle layer and the final plan is in the highest layer.

node triggers the related recovery behaviour in order to return
to a valid state. A recovery behaviour is a specific and simple
action, strictly related to the primitive itself, that is respon-
sible for returning the system to a valid state, thus allowing
the process to continue while limiting external intervention
to a minimum. For example, if a robot’s gripper fails to
grasp an object, recovery could be deactivating the gripper
and retrying the grasping operation, i.e., reverting the state,
performing the object detection again and re-evaluating the
precondition primitives for the grasp action. Another more
complex example could be the Piece-Detection primitive,
which involves localizing the object on the pick-up table
and providing a suitable grasping point. If the algorithm does
not find the desired object, two recovery behaviours can be
activated: the first starts a second scan of the table by moving
the camera in a slightly different position; the second, if the
process allows (i.e. without violating precedence constraints)
searches for the next object to pick-up. The action associated
to recovery behaviour is defined as a primitive, with its
precondition (if needed) and effects. After the intervention
of a recovery behaviour, it is verified whether the current
plan is still valid and whether the preconditions of that
action are now valid. If this happens, the primitive is re-
executed, otherwise a re-planning is required. A set of
specific configuration files defines the primitives and their
structure.

In the middle layer, we have the Composite actions defined
as a logical sequence of primitive actions. The composite
has both preconditions and effects, corresponding to the first
and last primitives, respectively. Similar to the primitives, the
composite has a set of recovery behaviours triggered when
a transition between one primitive and the next fails. The
sequence of the primitives is defined in an external config-
uration by an expert operator who has to collaborate with
the robot in the workcell. The definition of primitives and
composite actions are provided in input to the Task Planner
as shown in Fig. 1. The symbolic language used to model the
primitives is the PDDL [35] because its action is precisely
defined by a set of parameters, preconditions, and effects
required by the Task Planner. Fig. 4 depicts an example of
the Transport composite action which includes the primitives
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Fig. 4: Example of the Transport Composite Action (CA) as
the sequence of Primitive Actions (PA).

Move, Piece-Detection, Activation and Deactivation of the
gripper.

Finally, in the highest layer, we have the Plan for the
entire process. By construction, this is the most abstract layer
and where the definitions of composites and primitives are
used together with information from the assembly process,
environment and human operator to create the process plan.
Assembly applications contain precedence constraints to
manage and define the order in which the main components
should be mounted. For these reasons, it was decided to use
a Direct Acyclic Graph (DAG) approach with weighted arcs
to represent all the possible alternative plans. In particular,
each node of the graph represents an action (primitive or
composite), while each arc represents the dependencies that
must be fulfilled. For example, some objects must be placed
before others in assembly tasks. Therefore, during the build-
ing of the graph, the task planner has to take into account that
aspect. For example, as shown in Fig. 5, the Action 5 must be
performed only after Action 3 and Action 4. In addition, each
arc has an associated cost representing the effort of the robot
and the user respectively in performing the action associated
with the transition between the two nodes. The goal is to
create a plan that minimises the user’s effort and maximises
the robot’s effort by exploiting the possibility of having
the robot perform some actions while the user performs
others in the same collaborative workcell. Therefore, using
the DAG (Alg1 - line 1) it is possible to find a topological
ordering which describes the sequence of actions to complete
the process (Alg1 - line 2). However, a DAG may contain
more than one valid topological ordering. For this reason,
the Depth-first search (DFS) algorithm was used for the
topological search and optimised the cost function. The cost
function used to calculate effort is the same for user and
robot and it is the sum of the weights on the arcs in the
DAG in Fig. 5. The mathematical formulation of the cost
function follows:

C(w) =
∑

u

wi,u +
∑

ru

wi,ru −
∑

u

wi,r (1)

where wi,j represents the weight of ith arc and j repre-
sents to which agent the weight is associated, whether to
the user (u), the robot (r) or both (ru) when that action
is to be performed by the two agents together. In order to
optimize the cost function and obtain the plan that minimizes
the user’s effort, the argminw C(w) is taken (Alg1 - line 3).
In this way, a plan can be found to complete the process and
described by the sequence of actions to be performed by the
robot and user.

B. Human Action Recognition

The Human Action Recognition module monitors human
activities during the collaboration, such as phases of the

Fig. 5: Plan described by the Direct Acyclic Graph (DAG)
where the action is represented by the node and the effort
associated by the arc’s weight.

Algorithm 1 Task Planner
Input: PA Primitive Action set, CA Composite Action set, Pd

Process description, state current state, a action failed, h
human command

Output: P Plan
1: G ← buildDAG(PA,CA,Pd, state, a, h)
2: < T P, C(w) >← findAllTopologicalOrdering(G)
3: P ← argminw C(w) ∈< T P, C(w) >
4: return P

Algorithm 2 Central Node
Input: PA Primitive Action set, CA Composite Action set, Pd

Process description, H human command set
1: P ← TaskP lanner(PA,CA,Pd)
2: for all a ∈ P do
3: valid← evaluatePrecondition(a)
4: if valid then
5: state← Execute(a)
6: else
7: (state, valid)← RecoveryBehaviour(a)
8: if valid then
9: go to 3

10: else
11: P ← TaskP lanner(PA,CA,Pd, state, a, null)
12: end if
13: end if
14: h← HumanActionRecognition(), h ∈H
15: if h then
16: P ← TaskP lanner(PA,CA,Pd, state, null, h)
17: end if
18: end for

process (e.g., draping) or particular gestures to provide
commands to the robot (e.g., request a new ply). Such
information allows the task planner to be constantly updated
on the current activities of the human operator: the task
planner can periodically check whether the human is still
engaged in particular tasks (e.g., draping) or whether through
the use of gestures it is requesting specific actions from the
robot that require the generation of a new task plan.

The human action recognition module is based on a
previous work [36], where a graph convolutional neural
network was proposed to recognize common human actions
and gestures which arise in a collaborative manufacturing
scenario. Such network takes as input a sequence of human
3D poses (i.e., skeletons) and tries to classify human move-
ments according to a set of actions of interest by analyzing
both spatial and temporal information.

In this work, human poses are provided by the state-of-
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Fig. 6: Example of replanning due to user command.

the-art monocular 3D pose estimator MeTRAbs [37]. Such
estimator outputs human poses composed of 19 keypoints
describing the main body joints (e.g., torso, arms, legs).

Differently from [36], where actions were recognized
using an ensemble of various models specialized for different
body parts (e.g., body and hands), in this work we focused
only on the body, as during a real manufacturing application
the hands are thickly occluded and difficult to estimate
accurately.

C. Central Node

The Central Node executes the plan by activating the cor-
rect primitives and supervising their execution. In addition,
this module is always aware of the state of the workcell
through the sensors present in the scene, e.g. a camera
network positioned around the robot workcell, laser scanners,
etc. A second purpose of the central node is to handle invalid
state situations one may find oneself in during the execution
of the process plan. When a primitive precondition is not
satisfied (Alg2 - line 3), it is notified that the state is invalid
and the central node will trigger the corresponding recovery
behaviour in order to return to a valid state (Alg2 - line
7). When this happens, the primitive is asked to re-verify
whether the preconditions are satisfied (Alg2 - line 9) in
order to verify whether the current plan is still valid or if a
re-planning is necessary (Alg2 - line 11). In the last case, the
central node notified the task planner module that the current
plan was unfeasible and a new plan was required. A similar
situation occurs when the user wants to make the robot
perform a task not foreseen in the plan (Alg2 - line 14). In
this case, through the Human Action Recognition system, the
user executes a specific command associated with a specific
action to be done, be it a primitive or a composite. For
example, as depicted in Fig. 6, when the Inspection action
was finished, the user noticed some defects and decided to
take a picture of the area where the defects were present. In
order to perform this action, which was not included in the
original plan, he performed the specific gesture associated
with the composite TakePicture. The central node receives
this information and sends it to the Task Planner module
which is in charge of creating a new plan where the requested
action is the first action to be performed. The requested
action is treated as a precedence constraint to add to the
DAG.

IV. EXPERIMENTS

The Dynamic Human-Aware Task Planner developed in
this work was tested in a specific assembly scenario which
is the draping of fibre carbon plies. First, we described the
draping process and the actions involved, then we evaluated

the performance of the Task Planner analyzing the computa-
tional time spent to create a suitable plan, considering also
the replanning phase, and the performance of the Human
Action Recognition system. Finally, a qualitative analysis in
a real scenario is provided.

A. Case Study

Draping is a complex industrial operation that requires
an advanced skilled user who is not only responsible for
draping onto the mould but also for a series of activities
such as inspecting the part, noting by text and/or photos of
certain areas if they have slight defects, and checking that
the orientation of the fibres is correct. The transport of a
ply could be executed by the operator or robot alone, or it
could be a collaborative transport where human and robot
are involved. Thus, the coordination of the activities, like
the robot’s motion, activation/deactivation of the gripper to
perform the pick and place and the detection of the piece in
the picking table is crucial.

In addition, the operator could use a gesture to trigger
an action which it was not in the original plan (Fig. 6) or
to notify the central node that the current action has been
completed and to move on to the next one. An example
of this situation is when the operator has finished draping
the ply and wants to notify the central node so that it can
perform the next action. This is a simple and intuitive way
for the user to interact with the robots and provide his/her
experience into the system. Therefore, analyzing the process
and the activities to be done, a set of gestures of interest
has been defined based on the possible human interactions
which can arise during the process. In particular, a set of 6
human actions has been considered: Detection, Inspection,
Transport, Draping, Drape Next and Take Picture.

As described in the previous paragraph, a configuration file
is used to represent the precedence constraints and define
the order in which the plies are draped. Also, the sets of
primitives, composite and gesture are defined in order to
perform the entire draping process. Table I provides an
overview of the actions used to evaluate the Task Planner,
while a detailed list of the human actions of interest and their
description is provided in Table II.

Action name Description

Move Primitive that represents the motion of the robot and/or the operator
Gripper Activation Primitive that represents the activation of the gripper to pick up the ply

Gripper Deactivation Primitive that represents the deactivation of the gripper to place the ply
Piece Detection Primitive that represents the detection of the plies on the table

Draping Primitive that represents the draping of the ply onto the mould by the operator
Transport Composite that represents the transport of the ply from the picking table to the mould

TakePicture Composite that represents the saving of an image of a certain mould area
Annotation Composite that represents the saving of information by the user operator
Inspection Composite that represents the inspection of the draping plies onto the mould

TABLE I: Overview of actions used to evaluate the Task
Planner.

B. Task Planner Evaluation

The Task Planner was evaluated through the entire draping
process using the actions shown in Table I and 20 inde-
pendent process trials were performed. For each trial, the
plan considered the draping of 5 plies. As mentioned above,
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Action name Meaning Description

Detection Trigger the Object Detection Clap with stretched arms above head
Inspection Stop current robot operation Raise one hand with a stretched arm
Transport Collaborative transport Move while holding one side of the ply
Draping Manual draping Drape the ply on the mould
Drape Next Require next ply Move the right arm bend 90°
Take Picture Take a photo of the ply status Point at the desired location to be framed

TABLE II: Set of actions of interest considered for evaluating
the human action recognition module in the proposed case
study.

Trial First Plan Time [ms] Replanning Time [ms]

1 3.36 3.16
2 3.58 4.08
3 3.79 5.9
4 3.81 4.1
5 2.95 6.79
6 2.14 5.72
7 2.5 5.95
8 2.4 3.43
9 3.52 3.13
10 3.04 3.5
11 2.42 3.49
12 3.86 5.09
13 3.15 3.81
14 3.62 4.18
15 3.35 5.86
16 2.32 3.67
17 2.42 4.37
18 2.61 6.12
19 3.76 6.52
20 2.70 5.56

Average 3.065 4.7215

Validity 19/20 19/20

TABLE III: Time for the first plan (left) and average time
for replanning (right) in ms.

the computational time is used to evaluate the performance
and the interaction with the user was done by the Human
Action Recognition system. Therefore, when the Central
Node received the gesture it would either perform the next
action in the plan or send a message to the Task Planner
that a re-planning was necessary. Task Planner and Central
Node were running in a Lenovo ThinkPad with 11th Intel
Core i7 processor and 16GB of RAM. The results obtained
are summarized in Table III where the time is expressed in
milliseconds (ms).

As shown in Table III, the planner demonstrated high
efficiency in generating the first plan, with an average
computational time of 3.065 ms. However, when the planner
had to replan in response to a user’s command, it was slightly
slower, with an average computational time of 4.72 ms. The
minimum and maximum computational times observed were
2.14 ms and 3.86 ms for the first plan, and 3.13 ms and 6.79
ms for the replanning phase, respectively. All the values in
the replanning column are the average of all replanning that
happened during the trial. In fact, in this way, it is possible
to consider when the rescheduling has taken place. If you
replan at the beginning of the process, there are a lot of tasks

Fig. 7: Evaluation of the action and gesture recognition
performance on the test set as confusion matrix.

afterwards, so it takes a lot of time; vice versa if you replan
close to the end of the process, it will be faster because there
are fewer tasks left to complete the process. Out of all the
trials conducted, there was only one instance (Trial 13) where
the Task Planner provided an invalid plan both as the first
plan and during the replanning phase. The computational
time was recorded in this case, and the trial was aborted.
These findings highlight the efficiency of the planner in
generating initial plans, with most plans being valid and
feasible. The slight increase in computational time during
the replanning phase suggests that the process of revising
and generating a new plan takes slightly more time than
the initial planning stage. Additionally, the occurrence of an
invalid plan during replanning emphasizes the importance of
thorough testing and verification to ensure the reliability and
safety of the system.

C. Human Action Recognition Evaluation

For evaluating the Human Action Recognition module, a
dataset has been collected for 5 different subjects, each one
performing five times all the human actions considered in
Table II. In order to improve the reliability of the action
classifier, also a general “unknown” class has been consid-
ered in the dataset acquisition to learn better to distinguish
the movements associated with the gesture from movements
related to general movements of the worker within the
workcell not related to the overall process as walking and
standing. We considered 10 sequences for each subject for
evaluating performance on the “unknown” gesture since it
includes a larger variability of possible movements.

The action recognition module is trained on the collected
dataset, using the sequence relative to 4 subjects. The se-
quences related to the fifth subject are reserved as a test
set, on which the action recognition classifier is evaluated in
terms of accuracy. This allows to evaluate the action classifier
on a set of data not used to train the model, assessing
the classifier’s ability to generalize on novel data. The total
number of test sequences is 40: five sequences for each of
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(a) (b) (c)

(d) (e) (f)

Fig. 8: Evaluation during a draping task: the robot detects the required ply (a) and moves to the “pick” position (b); the
operator waits until the robot reaches the final position on the mould (c) and then starts the manual draping phase (d); when
draping is finished, the worker requests a new ply using a Drape Next gesture (e); while the robot starts moving towards a
new ply, the human raise the right arm to trigger a manual “inspection” causing a replanning (f).

the six human actions defined in Table II, and ten sequences
involving common movements annotated as “unknown”.

The action recognition module has been evaluated in
terms of Top1 and Top3 accuracy. The former represents
the percentage of correctly predicted gestures in the test set.
At the same time, the Top3 accuracy is the percentage of
actions whose correct prediction falls in the three highest
softmax scores estimated by the network. The performance
achieved are Top1=90.00% and Top3=97.50%. As shown in
the confusion matrix, Fig. 7, the classifier performs well in
terms of accuracy on the considered test set since most of
the actions of the fifth subject are correctly recognized.

D. Experimental Validation

The proposed framework has been validated in a real
industrial scenario, targeting a collaborative draping task
shown in Figure 8. In particular, the human operator and the
robot work together to drape a series of plies on a mould: the
robot provides the material transport and accurate placement
on the mould (Figure 8c), while the human operator performs
the actions that require high manual dexterity, such as
manually draping the material over the mould (Figure 8d).
At any time, the user can request particular actions from the
robot by means of gestures, such as a request for a new
ply (Figure 8e) or a request to stop the current operation to
allow the operator to manually inspect the draping quality
(Figure 8f). The proposed framework is able to monitor
the worker’s activity and handle sudden requests from the
operator. For example, in the experimental validation shown
in Figure 8, at the end of the manual draping, the operator

makes a Drape Next gesture, thus triggering the task planner
to generate a plan to move the robot towards a new ply;
immediately afterwards, when the robot starts to move, the
user makes a new Inspection gesture forcing the task planner
to delete the previous plan and generate a new one.

V. CONCLUSIONS

In this paper, we proposed a Human-Aware Task Planner
for Human-Robot Collaborative industrial applications. The
advantages of this approach are the ability to create a plan
starting from the description of the process and the actions
in order to share that activities both from humans and
robots. In addition, it is able to handle user interaction
through the dynamic rescheduling of the plan following
user interruptions or to handle unexpected events. The user
commands are handled by an intelligent Human Action
Recognition module based on Deep Learning technique.
Another main contribution is the ability of the planner to
create actions starting from primitives. The framework has
been validated in an industrial collaborative scenario derived
from the DrapeBot European research project. The results
obtained demonstrate the applicability and effectiveness of
the proposed approach. In future works, we plan to integrate
the Task Planner with an ergonomic Motion Planner in order
to evaluate the complete Task and Motion Planner (TAMP)
application in a dynamic industrial scenario where one of
the collaborative activities between robot and human is the
collaborative transport of plies.
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Decentralized Market-Based Task Allocation Algorithm for a Fleet of
Industrial Mobile Robots*

João Tavares1, Alberto Vale2 and Rodrigo Ventura3

Abstract— In this paper, we present an efficient, resilient,
and flexible market-based task allocation algorithm with a
distributed architecture for a dynamic factory environment.
The proposed algorithm provides efficient and intelligent task
allocation mechanisms that reduce the time and total distance
traveled by the agents.

This algorithm is implemented in a simulation environment
that is similar to a real-world environment with various robots
and tasks to allocate to test its efficiency, resilience, and
flexibility. It is compared quantitatively with other baseline
solutions such as auction only with available robots and a queue
system.

The results show that the algorithm is more efficient than
the other methods tested. It is also reliable since it can handle
unpredictable behaviors such as corrupted messages, loss of
connection for an extended period, failures to complete tasks,
and obstacles blocking the robot’s path and forcing them to take
a different trajectory. Finally, it is flexible since it can be used
for several different purposes and is robust to communications
failures. Also, this algorithm possesses the drawback of being
ill-equipped to manage a substantial influx of task requests,
given that solely a single task is auctioned and assigned at any
given time.

I. INTRODUCTION

The problem of coordinating robots efficiently and reliably
to work together has a wide application in robotics and
multi-agent systems. It is one of the main developments
needed to update factories to industry 4.0. Efficiency, in this
case, means taking the shortest time and distance to execute
a task. And reliably means that the system will not stop
working if either one or more robots have technical issues
or there is a problem with the communication infrastructure.
Several task allocation algorithms have been created in recent
decades to solve this problem for different environments,
such as manufacturing, warehouse management, hospital
management, and rescue missions.

This work is part of a research and development project
for Industry 4.0 called AGiLE, jointly with Imeguisa, In-
stituto Superior Tecnico (IST), and Volkswagen Autoeuropa
(AE), and is focused on developing an intelligent system of
autonomous mobile robots (AMRs) for logistics on the AE
factory floor.
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This project is necessary for AE since the last few years
mobile robots called Automated Guided Vehicles (AGVs)
have transported mobile storage containers of items through-
out the factory. These robots use a simple, yet commonly
used guidance system that can only follow a magnetic line
on the floor, like trains on rail tracks. In this system, if
robots find an obstacle in their path, they will not be able
to continue their task until the object is removed, usually by
a human. Meaning that if production stops, robots will pile
up in front of the delivery area with a full rack, causing an
unnecessary traffic jam and possibly blocking other AGVs
from executing their task. Often, the system that controls the
robots has a centralized architecture that is neither efficient
nor resilient because the whole system stops working if
there is a problem with either the central computer or
the communication network. In short, this system is cost-
effective and simple but has inherent disadvantages that
potentially make it less reliable.

The system developed in this R&D project must be able
to assign transportation requests (tasks) provided by the
containers to each robot, compute the optimal trajectory,
detect obstacles, recompute the trajectory of each robot if
necessary without any human intervention, and work in a
non-centralized fashion. The containers used in this project
will be smarter than the previous ones since they have a
computer that monitors how many items are left and informs
the network when it needs to be transported to a different
location in the factory. This system is more complex than
the one currently operating in the factory, but it should
be more efficient and resilient, as explained before, and
flexible. Flexibility means that the system can be easily
adapted to handle different types of allocation methods,
can handle heterogeneous tasks and robots, and a variable
number of active robots, and does not require a powerful
communication infrastructure.

This paper places its main emphasis on the task allocation
mechanism, specifically the utilization of a sequential decen-
tralized market-based approach. The algorithm implemented
is sequential, allowing for the allocation of one task at
a time. Furthermore, it is decentralized in nature, as all
computational resources and decision-making capabilities are
equally distributed amongst the robots within the network.
Lastly, this mechanism employs a market-based approach to
task allocation, thereby facilitating the even distribution of
computational power throughout the network of robots.
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II. RELATED WORK

To the best of the authors knowledge, the first decen-
tralized auction algorithm was developed in [1] and [2]
in 1979 and 1989, respectively. Since then, several decen-
tralized and distributed auction algorithms were developed.
A Market-based Multi-Robot Task Allocation via Strategic
Pricing algorithm is presented in [3] with a decentralized
architecture and the possibility to auction many tasks at
once. Murdoch, presented in [4], has a central auctioneer
and several heterogeneous agents, which means that only
those capable of executing the task in auction will bid on it.
This algorithm can only allocate one task at a time. Also,
the communication infrastructure requirements are reduced
since the number of messages and the size of each message
is almost negligible. Finally, this algorithm monitors the task
progress and auctions the task again if there is a problem.
Consensus-based Auction Algorithm (CBAA), presented in
[5], [6], and [7], has a distributed architecture and uses a
consensus algorithm to ensure only one robot will execute
each auctioned task. Many tasks can be auctioned at once
but only robots not executing any task can participate in the
auction. The alliance task allocation algorithm was developed
in [8] and [9]. It has a behavior-based fully distributed
architecture. It can only allocate one task at a time with
the option of re-allocation when other agents’ motivation,
more specifically their impatience and acquiescence, reach a
certain level. This makes this algorithm resilient. However,
it was only designed for small to medium size fleets. The
Consensus-based Parallel Auction and Execution (CBPAE)
was introduced in [10] and is similar to the CBAA since it
has an auction and a consensus phase and has a distributed
architecture. Also, it has the ability to work with heteroge-
neous agents and tasks, bid and execute tasks in parallel and
prioritize tasks. This algorithm, presented in [11], works in a
distributed fashion with a network of heterogeneous agents.
M+ algorithm presented in [12] has a distributed architecture
suited for cooperative missions where task reallocation is
possible and agents have reasoning, decision, and reactive
capabilities. The Sequential Single-Item Auctions algorithm
was proposed in [13]. This algorithm is a robust solution for
obtaining the shortest total distance traveled by agents.

III. TASK ALLOCATION ALGORITHM

A. Formulation

Formally there is: τ to represent time; a set of
N Autonomous Mobile Robots (AMRs), denoted R =
{r1, ..., rN}; a set of Q containers, denoted P =
{p1, ..., pQ}, where a container is, as explained in Section
I, a movable storage unit with a computer that monitors how
many items are left and informs the network when it needs
to be transported to a different location in the factory; a
set of M tasks, denoted T = {t1, ..., tM}, where each task
ti is defined by 5 attributes (Task ID, Container ID, Start
and Finish coordinates (location), Deadline) and consists
of a request by the containers to be transported to a pre-
determined location; br,t(τ) to represent the bid robot r did

on task t at instant τ ; cr(τ) to represent the time needed for
robot r to finish the current task at instant τ ; nr,t to represent
the time needed for robot r to execute task t.

We consider the following assumptions: 1) robots are
identified by their unique ID; 2) each robot r can only be in
one of three states, sr(τ) = {Available, Occupied, Offline};
3) a robot is: a) available if it is online and not executing
any task; b) occupied if it is online and executing a task;
c) offline if it is not connected to the network or has a
technical problem; 4) only robots available and occupied
participate in auctions; 5) robots have a distributed repository
of information with the current task in auction, every robot’s
current state, bids, and the task being performed; 6) robots
are homogeneous, meaning that every tasks can be executed
by any robot as long as they are not offline; 7) each robot
can only execute one task at a time and can not have any
task allocated while performing another; 8) each task can
only be executed by one robot.

The bid computation formula is contingent upon the
environmental factors under which it is implemented. Hence,
for the purposes of the experiments described in this paper,
the bid for each task shall be determined by considering
the duration required to arrive at the task’s starting location
during the auction, as well as the task currently being
performed. The equation used to calculate is the following:

br,t(τ) =

{
nr,t, if sr(τ) = Available
cr(τ) + nr,t, if sr(τ) = Occupied

(1)

The main objective is to find an optimal allocation of
robots to tasks. The allocation is done sequentially, one task
at a time. An allocation is a set of robot-task pairs (ri, tj).
The optimal robot i for task j is the one that has the smallest
bid:

ri(τ) = argmin
v

(bv,j(τ)) (2)

B. Methodology

The algorithm will use a distributed architecture and
will be inspired by three algorithms, already explained in
Section II, CBAA, Murdoch, and CBPAE. This algorithm
provides efficient and intelligent task allocation mechanisms
that reduce the time and resources needed in environments
with a high number of unpredictable obstacles that might
force the robots to take longer to execute their task. Also, it
is resilient since it does not fail if a robot has an unexpected
problem or there is a communication issue. Finally, this
algorithm is flexible since it can be easily adapted to different
environments. In Figure 1 a flowchart of the task allocation
algorithm is presented.

When a container requests a new task, all robots add the
task to a local priority queue, where the highest priority task
is the one with the closest deadline. Then, if there is not an
auction procedure happening, the robot with the lowest ID
starts the auction procedure for the highest priority task. To
establish a synchronized and orderly auction process, robots
engage in periodic message transmission among themselves.
These messages serve two crucial purposes: firstly, to signal
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Fig. 1. Flowchart of the auction and monitoring algorithms.

the online status of each robot, and secondly, to enforce the
condition that only one agent initiates the auction process at
any given time, thereby ensuring the occurrence of a singular
auction event at a time. By implementing this communication
mechanism, the system effectively prevents simultaneous or
overlapping auctions, promoting a streamlined and coherent
execution of the auction protocol.

After the auction procedure starts, every available and
occupied robot compute their bids using equation (1) and
sends them to all other robots participating in the auction.
After the robots receive all the bids or a specific time interval
has passed, the first consensus phase starts. In this phase,
each robot compares its bid with all the others and chooses
a winner, just like in CBAA [6]. This consensus phase
does the same as equation (2), where the robot with the
smallest bid value gets chosen as the winner. It is important
to note that if the robot with the lowest bid is already
executing a task, the task in auction will not be allocated.
This practice is undertaken for two primary purposes. The
initial rationale is to enforce the restriction that robots cannot
be assigned multiple tasks concurrently. In the event that a
robot, engaged in a particular task, experiences an unforeseen
delay, any subsequent task(s) awaiting execution by this robot
would likewise suffer an unnecessary delay. Secondly, this
practice aims to prevent scenarios wherein a robot, nearing
completion of its ongoing task, abstains from participating in
the auction process. Should this robot abstain, the auctioned
task could potentially be allocated to a different robot that,
theoretically, would require a longer duration to execute said
task.

If the winner already has a task allocated to it, the
second highest priority task is auctioned to avoid having
the algorithm always trying to allocate the same task and
failing consecutively. In the event that the allocation of a
task fails due to the fact that the winning candidate has
already been allocated, the algorithm proceeds to retry the
allocation of the task with the highest priority, and repeats
this process iteratively until the task has been successfully

allocated. Then, to ensure that every agent reaches the same
conclusion and that only one robot will execute the task,
a second consensus phase is performed where robots share
their winner decision with all the others participating in the
auction and compare them. If the consensus is successful,
the task gets assigned, and the auction finishes. However, if
the consensus is unsuccessful, the task in auction does not
get assigned, goes back to the priority queue, and the process
repeats until either this task gets allocated or a higher priority
task is requested, making it the new task in auction, just like
in CBPAE [10]. This second consensus phase might seem
redundant, but it guarantees that only one robot will execute
the task currently in auction and only requires a reduced
amount of computational and communication resources to
execute it.

Upon the successful completion of an auction process, all
robots within the network engage in the monitoring of the
progress made by the robot that has been allocated the task.
Like Murdoch [4], robots periodically try to communicate
with the assigned robot. In cases where the allocated robot
does not respond, the robot is informed that he is no longer
executing this task and the task returns to the priority queue.
The container will request to be transported from its current
location to the final location of the task.

Regarding the communication infrastructure prerequisites,
the auction mechanism necessitates the exchange of in-
formation among robots. This communication is facilitated
through ROS (Robot Operating System) Topics, wherein
robots transmit messages containing essential details such
as bids, decisions made by winners, and task specifications.
These messages primarily consist of integers and a concise
assortment of integers and floats to represent the speci-
fications of each task under auction. Furthermore, during
the monitoring phase, robots engage in periodic message
exchanges akin to ”ping” signals, ensuring continuous con-
nectivity and communication across the entire network of
robots.

IV. SIMULATION SETUP

In order to test the proposed approach, a simulation
environment was developed using ROS Noetic and Python3.
A Gazebo world was built to generate a map with walls
and corridors for robots to circulate. Figure 2 illustrates the
map used in all simulations. Robots are represented with
orange rectangles, and their idle positions, i.e., where robots
go when they do not have any task assigned, being located in
the red squared room. The tasks paths are shown in yellow.
Each task starts at the green circle and finishes in the red
circle. So, when a container requests a task, it means that this
container is located at the start location of that task. After
a task is allocated, the robot travels to the start location of
the task, transports the container to the task destination, and
[30; 60] seconds after the task was successfully executed,
the container requests to be transported back to its initial
position, and the process repeats. Each container requests
a total of 20 tasks per simulation and each simulation is
repeated 10 times with a different order of tasks being
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requested at the start, to ensure consistency in the results.
Blue rectangles with a cross are dynamic obstacles that
are introduced to block corridors, at random moments for
a period between [10; 20] seconds, and force robots to
recompute their trajectories and take a different route. Only
one zone can be blocked at a time to ensure that robots can
always get to their destination.

Fig. 2. Map used in simulations. Robots are represented with orange
rectangles, and initially located at their idle positions, in the red squared
room. Tasks are drawn in yellow. Each task starts at the green circle and
finishes in the red circle. Blue rectangles with a cross are zones that are
temporarily blocked.

The robots used in simulations have similar kinodynamics
to the robots used in real-world applications.

V. EXPERIMENTS PERFORMED AND RESULTS

Since the objective of the Proposed Algorithm (PA) is
to be resilient, efficient, flexible, and decentralized, several
simulations were performed with a different number of
robots and containers. The tests performed will now be
described:

A. Resilience

1) Setup: To assess the resilience of the PA, different sim-
ulations were performed where randomly chosen robots were
temporarily turned off, had their communications obstructed
during the auction period and while executing tasks, or were
forced to fail a task execution to ensure that the algorithm
handles all types of failures. These failures were supposed
to prompt the algorithm to fail in several areas such as bid
computation, sending or receiving a message with the bid
or a winner decision, reaching a consensus on either phase,
having more than one robot execute a task, and failing on
reallocating a task after the assigned robot failed. All of
the failures mentioned were predicted based on the typical
behaviors of networks and computers.

2) Results: The algorithm consistently assigned tasks to
only one robot and never experienced prolonged stalls in
the auction process, even when messages were deliberately
blocked or robots changed online/offline status. This is due
to the built-in mechanisms within the algorithm that prevent
these types of failures. One of the mechanisms used to avoid
allocating more than one robot to a task is the interruption of
the auction procedure if the robots do not reach a consensus
on the winner. Another mechanism for the same purpose is
used by robots during an auction where they are constantly
checking if the current auction is still on. If it is not, they
leave the auction and wait for another task to be auctioned to
ensure that they do not send their bids or results to a different
auction and allocate the wrong robot. Situations like this
will happen when either the bid computation fails or takes
too long or when a robot loses connection for an extended

period. To prevent the algorithm from getting stuck due to
unresponsive robots, in case a robot goes offline or takes an
excessive amount of time to answer during an auction, other
robots will detect the lack of response and disregard it until
the auction concludes. Finally, in situations where robots
have unexpected issues while executing a task, other robots
will notice and the robot with the lowest ID will add the task
back to the priority list. Robots are constantly checking for
the robots online so, they always know which robot has the
lowest ID. In every environment, the time needed to auction
a task was between 1.5 and 15 seconds, depending if there
is a communication problem. Because, after each auction
phase, a robot only goes to the next phase when all the others
reach its phase or, in cases a robot fails, a wait time of 5
seconds has expired to avoid the auction getting stuck or
taking too long unnecessarily. In the simulations performed,
it is observed that the bid computation time takes around 0.1
seconds. The PA is resilient in environments with a variable
number of active robots, bad communication infrastructure,
and failures in the execution of the task.

B. Efficiency

1) Setup: In order to analyze the efficiency of the PA,
several simulations in different environments were performed
and compared with other baseline solutions that compute
their bids in the same way as the proposed model but have
different criteria to choose the winner of an auction namely:

Auction only with available robots (AOA): Only robots
that are not executing any task participate in the auction,
and the robot with the lowest bid wins, meaning that the
auction will always be successful but the most efficient robot
allocation might not happen;

Queue system (QS): All robots participate in the auctions,
and the winner is the robot with the lowest bid. However,
if this winner is occupied, the task gets added to its queue,
which means that the robot will execute it right after finishing
the current task.

These algorithms were simulated in environments with 4
robots and 10 containers with and without dynamic obstacles
and in environments with 6 robots and 10 containers with
and without dynamic obstacles. For every simulation, several
statistics were obtained namely the time needed to execute a
task since it was requested by the container and the time
needed to execute the task since it was allocated. These
statistics will be used as metrics to evaluate the algorithm’s
efficiency and capability to handle unforeseen path changes
due to, for example, obstructed corridors.

2) Results: In Figures 3, 4, 5 and 6 the simulation results
in environments with and without dynamic obstacles and
with different numbers of robots are presented. In each
figure, three distributions are shown for each container in the
horizontal axis—one for each allocation method. The vertical
axis represents the time taken to execute the set of tasks
since they were triggered. For each distribution, the median,
minimum, maximum, and quartiles time are highlighted. As
explained before, each container requests a total of 20 tasks
per simulation, and each simulation is repeated 10 times
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to ensure consistency in the results. This means that each
distribution has a total of 200 values. In all distributions, for
each container, the minimal time taken to execute each task
is very similar. This has to do with how the simulation starts
since the tasks are all triggered simultaneously and auctioned
in random order. The first tasks to be auctioned will always
have a low execution time.

Fig. 3. Results with 4 robots and 10 containers without dynamic obstacles.

Fig. 4. Results with 4 robots and 10 containers with dynamic obstacles.

In an environment with 4 robots and 10 containers and
without dynamic obstacles, Figure 3, the PA takes almost the
same time to execute the set of tasks as the QS and slightly
less time, around 2%, than the AOA method. With dynamic
obstacles, Figure 4, the proposed model is significantly faster
than the QS and the AOA model, around 6% for both.

In an environment with 6 robots and 10 containers and
without dynamic obstacles, Figure 5, the PA takes the same
time to execute the set of tasks as the QS and slightly less
time than the AOA method (1%). With dynamic obstacles,
Figure 6, the proposed model is slightly faster than the QS
and the AOA model, around 3% and 4%, respectively.

3) Results Analysis: The AOA takes more time to execute
the tasks than the proposed model in all tested environments.
Because, in many cases, robots that were closer to the start
of the task but were still finishing another one would not
be able to participate in the auction. A typical example of
this situation is shown in Figure 7. In this case, there are 3
robots executing task 2 (T2), task 3 (T3), and task 4 (T4).
Task 1 (T1) was requested but is not yet allocated and there
is one robot in its idle position. When T1 is auctioned, only
the robot in the idle area (red square) will participate in the

Fig. 5. Results with 6 robots and 10 containers without dynamic obstacles.

Fig. 6. Results with 6 robots and 10 containers with dynamic obstacles.

auction and, therefore, get the task allocated to him. The
other robots did not have the possibility to participate in the
auction, even those that were almost finished executing their
task and that would probably execute the task in auction
faster. The PA solves this problem by always having all
the robots in the network participate in the auction and if
the winner is occupied, the task gets re-auctioned as it was
explained in III-B.

Fig. 7. Example of a state where AOA is inefficient.

The QS presents similar execution time results in envi-
ronments without dynamic obstacles to the proposed model.
However, in environments with dynamic obstacles, the re-
sults are worse than the proposed model. In fact, when the
robot has to change its path due to unforeseen obstacles
blocking the corridors, the execution time of its current
task and, therefore, all the others in its queue will increase
unnecessarily. An example of this situation is shown in
Figures 8 and 9.

In this example, two possible paths exist to execute T3, but
the robots always choose the shortest path. In the first state,
Figure 8, the robot executing T3 has not noticed that there is
an obstacle blocking the corridor. In this state, an auction is
started for T4, where all robots bid. Since the robot executing
T3 thinks it is the closest to being able to execute T4, this
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Fig. 8. Before the robot executing T3 detects the blocked corridor.

Fig. 9. After the robot executing T3 detects the blocked corridor.

task gets added to its queue. After the robot identifies the
obstacle, a new path is calculated, as it is shown in Figure 9.
This means it will take more time than expected to finish T3
and start T4. If the PA had been used, the auction for T4 in
the first state would have failed and restarted as many times
as needed until the auction winner was available. This means
that when the robot executing T3 noticed the obstacle, T4
would have been attributed to the robot in the idle area. So,
in a dynamic environment, where obstructions occur, the PA
is better suited than the QS.

C. Flexibility

The PA is also flexible and can be used in different types
of scenarios and robots models since the bid computation
algorithm and the task allocation restrictions, used in the
efficiency experiments performed are easy to implement with
very few changes needed in the code.

Furthermore, this algorithm is suitable for environments
where robots have different capabilities and can’t perform
all tasks. This is because the messaging system employed by
the containers to request tasks consists of several attributes
that are accessible to all robots, enabling them to determine
their eligibility to participate in an auction and execute a
task. These attributes can also be used to organize the order
in which tasks are auctioned and therefore handle tasks with
different levels of priority.

Finally, since the task allocation algorithm proposed does
not require a powerful communication infrastructure, as
explained before, it can easily be implemented in most
infrastructures.

VI. CONCLUSION

This paper proposes a task allocation algorithm for a
fleet of heterogeneous robots operating in factory floor
environments, where obstacles may affect the path execution
and communication. This algorithm is inspired by state-
of-the-art task allocation algorithms developed in the past
like CBAA, Murdoch, and CBPAE. It has a distributed
architecture, meaning that the computation and decision-
making are distributed between all the agents involved.

The proposed task allocation algorithm is implemented
and tested in simulation environments with a variable number
of robots, containers, and tasks to evaluate its efficiency

and resilience. Different task allocation methods are used as
baselines, such as AOA, and a QS to compare the efficiency
results with the proposed method.

To evaluate the efficiency of the model, two metrics are
taken into account: the time taken to execute each task after it
was triggered, and its ability to handle unforeseen obstacles
that can force the robot to change its current path.

The results show that the proposed algorithm is more
efficient than the other methods tested in environments with
and without dynamic obstacles. Also, in terms of resilience,
the algorithm can handle unpredictable behaviors such as
corrupted messages, loss of connection for an extended
period, failures to complete tasks, and obstacles blocking the
robot’s path and forcing them to take a different trajectory.
Finally, the algorithm is also flexible since it can be used for
several different purposes and is robust to communications
failures.

One limitation of the proposed algorithm is being ill-
equipped to manage a substantial influx of task requests,
given that solely a single task is auctioned and assigned at
any given time.

As future work, efforts will be directed towards the refine-
ment of the algorithm to address its limitations in managing
high rates of task input. Additionally, plans are in place to
deploy the algorithm in an authentic factory setting.
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Distributed 3D-Map Matching and Merging on Resource-Limited
Platforms using Tomographic Features

Halil Utku Unlu1, Anthony Tzes2,3, Prashanth Krishnamurthy1,3, and Farshad Khorrami1,3

Abstract— A fast, robust, resource-efficient, and distributed
3D map matching and merging algorithm utilizing extracted
tomographic features is studied. Instead of depending on 3D
features and descriptors, 2D features are extracted from 2D
projections of horizontal sections of gravity-aligned local maps
and matched with slices from the other map at different
height differences, enabling the estimation of four degrees of
freedom. The proposed algorithm is observed to provide order-
of-magnitude improvements in memory and time efficiency over
state-of-the-art feature extraction and registration pipelines,
rendering it useful for near real-time map merging tasks in
resource-limited platforms (e.g. UAVs).

I. INTRODUCTION

Implementation of collaborative robotics in real sys-
tems [1] suffers from communication limitations, including
network delays, available bandwidth, and intermittent con-
nectivity. Furthermore, mobile robotic devices usually have
limited computational capabilities, restricting the computa-
tional budget of the robotic platform significantly.

Simultaneous localization and mapping (SLAM) is a re-
quirement for robots operating in an unknown environment.
Single robot SLAM for both 2D- and 3D-motion is a mature
field with many advanced platforms and frameworks for a
variety of sensor setups [2]–[4]. Multi-robot collaborative
SLAM (C-SLAM) remains an active research area [5]–[7].
C-SLAM algorithms focus on performing state estimations
for multi-robot teams to improve resiliency and accuracy.
Sharing map data between agents is not of primary concern.

In map matching and merging, agents share and update
their understanding of the collective map upon establishing
a communication link with one another. Multiple approaches
have been proposed for 2D-map matching and merging
scenarios [8], [9], but the solutions do not scale to 3D-
map representations. The lack of a standard that establishes a
common representation for 3D maps exacerbates the problem
further, leaving the problem of multi-robot map knowledge
sharing partially unaddressed.

Map matching is a subset of the point cloud registration
problem in which the relative rotation and translation be-
tween two sets of point clouds with some overlap are sought.
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Many of the existing datasets and algorithms focus on scan
matching [10]–[12]. However, map matching differs from
scan matching due to the higher density of the input point
clouds, providing a bigger computational challenge for ex-
isting feature extraction and matching algorithms, motivating
this paper.

In this work, we address 3D map matching problem by
providing a feature extraction framework that enables the use
of 2D-image features in a pair of gravity-aligned 3D maps.
The proposed framework is akin to the use of tomography-
where a) the algorithm extracts a binary occupancy represen-
tation for horizontal cross-sections of the maps, b) extracts
2D features over these slices, and c) restricts matching space
for the features across maps to its corresponding section only.
The proposed approach is significantly efficient (in both time
and memory) and accurate compared to state-of-the-art point
cloud registration methods.

The contributions of this article include
• a simple and efficient approach to extracting 3D features

via tomographic extraction of horizontal sections,
• study of viable uses of the aforementioned features in

addressing large-scale 3D-map matching and merging
scenarios,

• studies on real data to compare effectiveness against
alternative methods.

The remainder of the paper is structured as follows: Sec-
tion II provides the relevant work. Section III formulates the
studied problem. Section IV defines the tomographic feature
extraction, and Section V details two frameworks that utilize
tomographic features for map matching. Studies to verify the
algorithm’s performance are provided in Section VI followed
by concluding remarks.

II. RELATED WORK

A. Point Feature Extraction & Description

Local 3D feature extraction algorithms require translation
and orientation invariance for effectiveness and can be an-
alyzed in two main categories: hand-crafted and learning-
based. Many hand-crafted feature extractors define a local
reference frame around individual points. Most notably in
Fast Point Feature Histograms (FPFH) [13] the descriptors
are comprised of the histograms of angular variations for
a point of interest in its k-nearest neighborhood. Scale-
persistent and statistically unique features are returned as
features. A comprehensive review of hand-crafted features
in [14] found FPFH to be effective in low-noise scan
matching scenarios.

979-8-3503-0704-7/23/$31.00 ©2023 IEEE
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Learning-based feature extraction and description schemes
utilize deep neural networks (DNNs) to find points of interest
from an unordered set of points. Various DNN architectures
have been proposed but fully-convolutional [15], [16] and
transformer-based [17] DNNs are gaining popularity due to
their efficiency and effectiveness. The main problem with
3D point feature extractors and descriptors is the speed.
Algorithms either require GPUs to operate or take too long
to compute for a near-real-time operation.

B. Point Cloud Registration

3D feature matches across different maps are converted
into a pose transformation through registration algorithms.
For noiseless data and perfect correspondences, an ideal
form of the orthogonal Procrustes problem provides a closed-
form solution. However, 3D correspondences are commonly
observed to have as high as 95% outlier ratios [18], creating
a need for robust solutions.

Learning-based registration frameworks cast the problem
into differentiable sets of modules, treating the initial set of
correspondences as putative and assigning weights to each
correspondence. Deep Global Registration (DGR) [19] min-
imizes a robust energy metric with a convolutional network
for confidence assignment, while PREDATOR [20] model
enables the network to focus only on the overlapping regions
via an attention-based mechanism.

Many other solutions for robust registration without
learning-based methods exist. Sample consensus-based al-
gorithms [21], [22] find the most consistent registration can-
didate by evaluating the solution generated from a minimal
set of correspondences. TEASER [23] relies on semi-definite
relaxation in its optimization, allowing it to handle extreme
(> 95%) outlier ratios with a certificate of optimality.

C. Map Matching & Merging

A review of map matching and merging algorithms for
2D maps can be found in [24]. Other notable algorithms
utilize ‘suppositional boxes’ as features on 2D occupancy
maps for better performance over feature-based methods [25]
and centralized genetic algorithms operating on 2D raster
representations of maps [26].

Some examples of 3D map merging algorithms are pro-
vided in [9]. A probabilistic map matching and merging
scheme for 3D occupancy grids on heterogeneous sensor
modalities is proposed in [27]. An algorithm on 3D maps
with a pose-graph backend is proposed in [28], which allows
for non-rigid deformations of the map structure and yields a
tighter merging, albeit at a computational cost that prohibits
online execution.

D. Collaborative SLAM (C-SLAM)

Many centralized [29], [30] and fully-distributed [5], [6]
solutions have been proposed for the C-SLAM problem.
Unlike map matching and merging, the primary focus for
C-SLAM algorithms has been the pose optimization of
the local trajectories. Even though the map matching and
merging problem can be solved using C-SLAM solutions, a

framework for sharing map data between agents is generally
overlooked. The high bandwidth requirement for dense 3D
map data remains a significant challenge.

III. PROBLEM FORMULATION

This paper is tackling the problem of pairwise merging
of 3D maps that can be canonically represented as a point
cloud im = {. . . , ipj , . . . }, |im| = Ni expressed as a set
of 3D coordinates ipj ∈ R3 and generated by agent i.

The points in map i can be transformed into a common
world frame w, Tw

i ∈ SE(3), via a rigid 3D 4 × 4
homogeneous transformation. The global world frame w can
be arbitrarily defined by anchoring one agent’s frame as the
global origin. Therefore, the goal is to find the 3D rigid
transformation between the global frame of reference and
the agent i’s local frame using the maps im, i ∈ {c, d}. No
prior knowledge of the absolute pose information for any
agent is assumed, and the agents are not required to observe
each other via a rendezvous (indirect map merging).

In this work, we assume that the local maps are gravity-
aligned (i.e., the same z-axis). If the first agent’s (# c)
coordinate is selected as the world frame, the problem
reduces to estimating the transformation Tc

d that is restricted
to four degrees of freedom (DoF): three translations in x,
y, and z and one rotation θ around z-axis. Notice that the
given setup does not restrict the motion of the agents. The
gravity vector can be reliably measured using an inertial
measurement unit (IMU) while the agent is executing any
motion in 6 DoF.

Optimization-based registration algorithms utilize putative
correspondences to calculate the transformation between the
representations of the maps, which can be all the points
(dense), or a smaller subset of points of interest (sparse),
matched across different point clouds via their descriptors.
Part of this paper addresses the problem of efficient feature
extraction using tomographic features.

Let the set of correspondences be defined as C =
{(cpm, dpn) : m,n ∈ N,m ≤ Nc, n ≤ Nd}.The
registration task can be cast as an optimization as

Tc
d = argmin

T∈SE(3)

X

(cpm,dpn)∈C
ρ(cpm,T dpn) (1)

where ρ(a,b) is a non-negative metric to determine the error
for a given correspondence. In the case of point-to-point ICP,
the cost metric assumes the form of Euclidean distance.

Despite the non-convexity of Euclidean distance in the
optimization cost, it is possible to find a closed-form solution,
assuming all of the correspondences are correct. In practice,
the correspondences should be treated as putative due to high
outlier rates, and an inlier set Cin ⊆ C needs to be selected
from correspondences that agree with the unknown, correct
transformation, leading to a modification of (1) as:

Tc
d = argmin

T∈SE(3)

X

(cpm,dpn)∈Cin

ρ(cpm,T dpn) . (2)
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IV. TOMOGRAPHIC FEATURE EXTRACTION

A tomographic section of the map, termed ‘slice’ through-
out the paper, is defined as the 2D binary occupancy
representation of a horizontal cross-section of a map mi,
iŝh = {ipj : h− t < |ipj |z < h+ t} with h as the height
at which the slice is extracted and t as the distance parameter
that determines the thickness of the cross-section.

Points in iŝh are projected onto the xy-plane and dis-
cretized on a 2D grid to obtain a 2D binary occupancy image,
ish. The extrema xy coordinates of points in iŝh and the
grid size g dictate the width and height of the binary image.
Intuitively, each pixel represents a real area of size g × g.

In practice, the 3D point cloud is pre-processed with a
voxel grid filter to reduce the number of points to a given
resolution and to eliminate uneven point density. The leaf
size of the voxel grid filter is a natural choice for the grid
size g during the slicing of the entire map. Furthermore, the
points are separated approximately by the voxel grid leaf size
along the z-dimension. For this reason, we select the heights
h at which the slices are extracted to be at least g apart,
encompassing a height of g (i.e., t = g/2) in order to utilize
all of the available information.

ORB features and descriptors [31] are extracted for the
2D binary images. There are many other potential feature
extraction and description pipelines [32]. However, the pro-
cessed binary images do not possess real photo-like intensity
changes. ORB feature pipeline describes oriented FAST cor-
ners with BRIEF descriptor on orientation-aligned patches,
providing an ideal option in this scenario. Its reliability
and efficiency are validated in the literature against its
alternatives [33] for other use cases.

The reason that these slices are extracted perpendicular to
the z-axis is due to the ease of the observation of the gravity
vector. Many mobile robots utilize an onboard IMU to esti-
mate part of their state (e.g. attitude, velocity, acceleration).
The gravity vector is common among all agents, regardless of
their motion or mobility. As such, the algorithm is agnostic
to agents’ motion capabilities.

V. REGISTRATION WITH TOMOGRAPHIC FEATURES

Extracting features on slices removes a dimension that
prevents exactly identifying the correct match for a repetitive
feature in the 2D projection of a 3D structure. Finding the
closest match for one feature in the source map among all
the features in all slices of a target map will yield erroneous
correspondences. We analyze two different algorithms that
address this issue: Consensus-based and Direct. A visual
summary of the general framework is provided in Figure 1.

A. Consensus-based Registration

In this algorithm, we divide the computation of the 4 DoF
into two distinct components: joint estimation of x, y, and
θ, and the estimation of z.

1) Per-slice Estimation: For now, let us assume that the
relative height (i.e. parameter zcd) is known. We will outline
the exact method to estimate relative height in the next

section. Given zcd, the problem reduces to finding a 2D rigid
transformation, which has the form

�
cos(θ) − sin(θ) xc

d

sin(θ) cos(θ) ycd

� �
xd

yd

�
=

�
xc

yc

�
(3)

for corresponding points p{c,d} =
�
x{c,d} y{c,d}

�⊤
. Solu-

tion to the linear system below yields the parameters θcd, x
c
d,

and ycd: 


...
...

...
...

xd −yd 1 0
yd xd 0 1
...

...
...

...







α
β
xc
d

ycd


 =




...
xc

yc
...




(4)

where α = s cos(θcd) and β = s sin(θcd) with s as the
scale parameter. To recover the angle θcd, we simply use
atan2(β,α). Since the maps are known to have the same
scale, no estimation of s is needed. For simplicity, we
use RANSAC to obtain a robust solution, followed by
Levenberg-Marquardt refinement steps over the inlier set.

In this manner, each individual slice provides a 2D
rigid transformation estimation eT(exc

d, eycd, zcd, eθcd) ≜ eTc
d, at

a known height of zcd. The collection of the 2D rigid
estimations at a particular zcd forms the set eT (zcd).

However, we cannot expect all slices to contain sufficient
occupancy information to provide a meaningful estimate,
resulting in erroneous measurements that need to be elim-
inated. To that end, we find the consensus between different
2D rigid estimations by finding the largest set of hypotheses
with the shortest distance to an anchor hypothesis:

bT (zcd) = argmax���
n
[eTc

d]i : d([
eTc
d]i − [eTc

d]j) ≺ t, [eTc
d]{i,j} ∈ eT (zcd)

o���
(5)

where the vector-valued function d encodes the Euclidean
distance between the estimates of xc

d, y
c
d and the angular

distance between the angles θcd, and t is a threshold to specify
maximum allowed deviations. We then take the parameter-
wise average of the hypotheses in the inlier set bT (zcd) to
compute the resultant pose, T̄c

d.
2) Relative Height Estimation: Up until now, we assumed

that the height zcd is known. However, matching z-axis height
between different agents is a strong assumption that restricts
the applicability of the proposed system significantly.

We estimate zcd based on consensus again. Due to the grid-
based nature of the 3D map, there is a finite number of
relative height differences we can establish between different
maps, all of which are g units apart. We calculate the “cross-
correlation” of the map slices from different maps, estimating
the rigid 2D transformation as outlined above and using
the number of inliers as the correlation value. The height
difference zcd with the largest inlier set cardinality is selected
as the height estimate:

zcd = argmax
ezc
d

���bT (ezcd)
��� (6)
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Fig. 1: Visual summary of the proposed distributed 3D map matching framework. Each agent {c, d} is responsible for
extracting slices {c,d}shi

at a predefined grid size. One of the agents cross-correlates the slices by estimating a 3DoF rigid
transformation, eTc

d, between slices. Consensus of different height hypotheses, zcd, yields the 4th DoF.

Our empirical tests indicate that the number of inlier
correspondences is maximized for all slices when they
are matched with the correct slice from the other map,
for indoor/outdoor environments with distinctive geometric
features. The cross-correlation scheme is expected to fail
for environments that are corridor-like with no distinct 3D
objects that change the uniformity between adjacent slices.
However, such idealized scenarios are not usual to encounter
in practice. As such, we opted for the cross-correlation
scheme for the relative height estimate.

Even though the above algorithm is expensive due to the
slice correlations, each individual step (feature calculation
and 3DoF estimation for a pair of slices) is independent
of each other, enabling parallelization opportunities that
can provide further speed-ups with hardware acceleration.
However, we will demonstrate that it is not fully necessary
for intermittent map matching and merging.

B. Direct Registration
Instead of breaking down the estimation into two separate

steps, we can estimate the full 4 DoF transformation if we
can convert the correspondences to 3D-3D. As discussed
before, we lose some information during the slicing opera-
tion, yielding many incorrect feature matches. However, the
slicing operation is structured and it is not necessary to find
matches for one feature across all maps. For a given height
zcd, we expect the matching features to be contained within
the slice pair from the opposite map that is zcd apart in z-axis.

To that end, the relative height zcd can be used to augment
2D correspondences across different slices into their 3D
counterparts. We aggregate features from different slices to
yield two 3D point clouds with putative matches, which we
register using the TEASER algorithm to obtain the 4 DoF
rigid transformation estimate. We refer to this method as
“Tomographic TEASER++” throughout the paper.

Similar to the consensus-based algorithm, the relative
height zcd is not known. We estimate it by performing regis-
tration at every unique zcd hypothesis that is valid and select
the value that provides the largest inlier set. Again, each

registration problem is independent of each other, providing
opportunities for parallelization.

VI. PERFORMANCE EVALUATION

We evaluated the performance of the proposed algorithms
in real-life datasets, in terms of their translational accuracy,
rotational accuracy, memory footprint, and execution time.
We provide comparisons against robust registration pipelines
using learning-based features (FCGF [15] TEASER++) and
completely learning-based registration frameworks (Deep-
GlobalRegistration [19]). We note that newer state-of-the-
art learning-based registration pipelines have been proposed
(e.g. PREDATOR [20], GeoTransformer [17]). However, due
to the scale of the map matching problem, none of the
pipelines with existing implementation could be made to fit
into the GPU memory of a laptop-grade (or sometimes even
a workstation-grade) GPU.

Unless specified otherwise, the tests are performed on an
Intel Phantom Canyon NUC11PHKi7C (Intel i7-1165G74
CPU, NVIDIA RTX 2060 6GB GPU, 64 GB RAM).

To evaluate the performance on a real-life dataset,
KITTI [34] odometry sequences are used. There are 11 se-
quences for which the GPS ground truth position information
is provided. However, only 5 of the 11 sequences (00, 02, 05,
06, 07) revisit the previously explored locations, providing
a map matching scenario when the sequence is divided into
two. In total, there are 10 different instances of map merging
tasks that are generated with the KITTI dataset, with an
average overlap of 43.90% (minimum 11.17%, maximum
83.53%).

KITTI sequences provide significantly more challenges for
learning-based systems due to the sheer size of the maps.
The original grid size of 0.3 m as used by the original
authors of the works cannot fit into the memory of a desktop-
grade GPU. Therefore for the KITTI study, learning-based
algorithms are run using the KITTI weights as trained by
the original authors on a 0.5 m grid size, but downsizing the
maps to a grid size of 1.5 m, and setting the grid parameters
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Fig. 2: Aggregated errors, execution times, and memory usage of the tested algorithms on select KITTI sequences. Inputs
maps have been pre-filtered with a voxel grid filtering with a grid size of 0.5 m. In Figure 2a, tomographic algorithms use
a grid size of 0.5 m, while learning-based algorithms use a grid size of 1.5 m. All algorithms use 1.5 m grid size in 2b.
Error thresholds (5× grid size for translation, 0.17 rad (≈ 9.7◦) for rotation) are marked in dashed magenta line.

accordingly. Even at 1.5 m, the learning-based algorithms
cannot be run on the NUC Enthusiast. As such, the results
reported for learning-based algorithms on KITTI data are
from execution on a workstation with 12 GB GPU memory.
The proposed algorithms still use the device specified before.

Tomography-based methods can handle as low as 0.5 m
grid sizes without long execution times. Results on KITTI
sequences for a grid size of 0.5 m for tomographic methods,
and 1.5 m for learning-based methods are provided in
Figure 2b. To compare the performance under the same grid
size, Figure 2a provides the results when the grid size is
set to 1.5 m for all algorithms. Note that the learning-based
algorithms are run on a desktop machine. Also, note that no
parameter tuning is performed for the proposed tomographic
algorithms in the KITTI studies, except for the grid size
adjustment.

At the grid size of 0.5 m, the Consensus algorithm
provides the lowest translation and rotation errors with
the shortest execution time and smallest memory footprint,
rivaled only by Tomographic TEASER++. Both learning-
based methods manage to accurately register only one in-
stance out of 10 possible pairings. Even though the ex-
ecution time of DeepGlobalRegistration is comparable to
tomographic methods, memory usage is the largest out of
all tested systems.

Increasing the grid size to 1.5 m degrades the performance
of tomographic methods, but they still perform better than
learning-based methods. Execution times of Consensus and
Tomographic TEASER++ methods are roughly equal at a
grid size of 1.5 m, but Consensus has the lowest memory
footprint of approximately 250 MB.

An example merging on maps generated from the
KITTI 02 sequence using Consensus is provided in Figure 3.
This pair provides the smallest overlap of all sequences in
KITTI. Each individual map spans a height of approximately
50 m, which is color-coded in the figures. Resultant align-
ment correctly estimates the 30 m displacement in the z-axis
required to find the correct alignment.

VII. CONCLUSIONS

We proposed a computationally lightweight approach to
generate effective features for gravity-aligned maps and

(a) Map from the first half of KITTI sequence 02.

(b) Map from the second half of KITTI sequence 02.

(c) Matched & merged map with Consensus.

Fig. 3: A sample matching & merging operation using
Consensus algorithm. Figures 3a and 3b are color coded
based on their z-coordinate.
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demonstrated the performance against possible alternative al-
gorithms. A consensus-based and a more holistic registration
paradigm are demonstrated to be both more accurate and
efficient compared to 3D feature generation and matching
algorithms. State-of-the-art learning-based approaches are
not suitable for the map matching task due to a lack of
standard training data and the memory requirements that
surpass that of scan matching. Furthermore, the proposed
tomographic approach to extracting features is observed to
be resilient to noise and does not require any additional pa-
rameter tuning for maps of different scales. The findings are
corroborated on real datasets that map volumes of different
scales, underscoring the algorithmic efficiency and accuracy.
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A Temporal Perspective n-Point Problem with Model Uncertainties for
Cooperative Pose Estimation in a Heterogeneous Robot Team

Florian Steidle1, Simon Boche2, Wolfgang Stürzl1, and Rudolph Triebel1

Abstract— Many solutions exist for estimating the pose of an
object with respect to a camera, where perfect knowledge of
the object is assumed. In this work we lift the assumption of a
perfectly known model and introduce uncertainties for the 3d
points, which are retrieved from a dynamically created model.
The positions of model points can either be uncorrelated or
correlated. The latter is typically the case for mobile robots
navigating based on results of visual-inertial pose estimation in
unknown and GNSS-denied environments. In our approach, a
selection of poses estimated by one robot is used as a dynamical
3d model and combined with 2d points from tracking the
robot over time with the camera of another robot. In addition,
selection criteria for adding and deleting 3d model points
in an optimal way are proposed. Weighted residuals in the
tangent space are used in a generalized least-squares problem to
calculate the transformation between the tracking camera and
an object. Measurement errors are projected into tangential
planes of the unit sphere.
The proposed method allows to estimate the relative pose of
members of a robotic team with high accuracy. The benefits
of our approach are shown in simulation and also during real-
world experiments using visual odometry measurements from
a multicopter that is tracked by the camera of a rover.

I. INTRODUCTION

Determination of the pose of an object with respect to
a camera is a broad field and many different applications
and approaches exist to solve the problem. If distinct feature
points on the object can be detected by a calibrated camera,
the task is called Perspective n-Point Problem (PnP). It needs
a model of the object and a calibrated camera. Usually,
the model is assumed to be perfectly known. Therefore, no
uncertainty in the location of 3d model points is considered
and also most approaches do not consider uncertainties of 2d
image points. Instead of using 3d points from a model that
is known in advance, e.g. from CAD, also the model can
be created at runtime. One possibility is the integration of
consecutive Visual Odometry (VO) measurements. Thereby,
the model is spanned over time and the transformation cannot
be determined at a single time instant, but needs several
observations over time (Fig. 1). As in usual PnP approaches,
observations are the projections of 3d points into the camera
used for tracking. But instead of using a predefined 3d
model, we create the 3d model at runtime by integrating VO
observations from the tracked object. Hence our approach
combines the classical PnP with a dynamical creation of the
model and addresses the main challenges in this scenario.

1Authors are with DLR German Aerospace Center, Institute of Robotics
and Mechatronics florian.steidle@dlr.de

2Author is with Smart Robotics Lab, Technical University of Munich,
School of Computation, Information and Technology
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cpi,
c Ri

iTi−1

i−1Ti−2

i−2Ti−3
i−n+1Ti−n

Fig. 1: The pose cpi,
c Ri of the multicopter ARDEA

(ARDEA) at time i is estimated with respect to the Light
Weight Rover Unit (LRU). Estimation is based on 2d mea-
surements of ARDEA in the camera of LRU and integra-
tion of a number of past visual odometry measurements
iTi−1, ...,

i−n+1 Ti−n.

An envisioned application of the proposed method, e.g. in
a planetary exploration setting, is the accurate pose estimate
of a scouting drone with respect to another team member in
order to make optimal use of the information provided by the
drone. This, for instance, will allow a rover to directly reach
a point of interest detected by the drone or to evaluate the
terrain for path planning with respect to the rover’s reference
frame based on images sent by the drone and could be a
relevant component in space-analogue demonstrations like
ROBEX [13] or ARCHES [9] and future planetary missions.

There exist many approaches to solve the classical PnP
problem. In [4], the problem is reduced to estimating 4
virtual control points. The result is obtained by a weighted
sum of these points and called Efficient PnP (EPnP). An
other approach is introduced in [1], which takes into account
the uncertainty of 2d image features and therefore lift the as-
sumption that the location of all 2d features is known with the
same accuracy. More recently, in [11] a statistically optimal
solution taking feature point uncertainty into consideration
was introduced. The approach is called Maximum Likelihood
Perspective n-Point Problem (MLPnP). It projects the 3d
model points and the corresponding 2d camera observations
to a tangent plane on the unit sphere. Also uncertainties
associated to 2d camera observations are projected to the
tangent space and a weighted non-linear optimization is
performed to get the result.
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Besides uncertainty of the 2d features, [12] introduced
uncertainty of the sparse feature points of the underlying 3d
model. The approach, which uses point and line features,
is based on EPnP [4] and Direct Least Squares Method
(DLS) [3]. It assumes knowledge of the average scene depth
or needs a rough initial guess of the transformation. With the
average scene depth the 3d point depths are approximated
and based on that an isotropic approximation of the 3d
point covariance is calculated. A rough initial guess of the
transformation is used to approximate the covariances of the
3d points. The second work, that incorporates uncertainty of
3d feature points is Extended Kalman Filter for Camera Pose
Estimation in a Sequence of Images (EKFPnP) [6]. During
the update step of an Extended Kalman Filter (EKF) an a pri-
ori estimate is received based on the camera motion model.
In the correction step, the reprojection error is minimized. In
contrast to [12] and [6], our approach does not use a model
known in advance and allows correlation of model points.

Our main contributions are:
• instead of using a beforehand known 3d model, the

model is spawned dynamically, online and over time
• 3d uncertainties of and correlation between model

points are considered in addition to 2d measurement
uncertainties

• different criteria for selecting new points to be added to
the model are proposed and evaluated

• different criteria for deciding which point to delete are
proposed and evaluated. One criterion is directly based
on propagated uncertainty.

We show the benefit of our approach in simulation and real-
world experiments.

II. SYSTEM MODELING AND POSE ESTIMATION

The overall system consists of two robots, see Fig. 1.
One robot, LRU [9] is equipped with several calibrated
cameras, which can be used for tracking of objects. The
second robot is ARDEA [5], [7], which uses VO to estimate
its egomotion. The primary goal is to calculate the position
cpi and orientation cRi of ARDEA with respect to LRU.

C

2dvi

cpi

ei

3dvi

Fig. 2: The error ei is the difference between 2dvi and
3dvi, which is the projection of cpi onto the tangent plane
defined by 2dvi. 2dvi is the unprojected and normalized 2d
observation in the camera frame and cpi is the corresponding
3d model point after transformation into the camera frame.

At each time i the calibrated camera provides 2d measure-
ments x′

i ∈ R2 with associated covariance matrices Σx′ rep-

resenting measurement uncertainties. For better readability
the subscript i is omitted in the remainder of this document,
whenever possible and if it is clear that the variables refer to
a specific point in time. The unprojection of a point x′ ∈ R2

in the camera frame to a direction vector x ∈ R3 follows the
equation

x = π−1(x′) Σx = Jπ−1Σx′JT
π−1 (1)

with π−1 : R2 → R3 being the unprojection function of
the camera. In the perspective case with focal length f and
principal point (cx, cy), we simply have π−1(x′) = (x′ −
cx, y

′− cy, f)T . Following the ideas of [11], the subsequent
spherical normalization

2dv =
x

∥x∥
2dΣv = J2dvΣxJ

T
2dv

leads to the final observations on the unit sphere and

J2dv =
1

∥x∥
(
I3×3 − 2dv2dv

T
)
.

The superscript ’2d’ indicates that the unit vector v corre-
sponds to a 2d image point. The formulation on the unit
sphere allows to use non-standard cameras, e.g., a fisheye
camera with field of view beyond 180◦. According to [2]
and [11], a homogeneous vector v can be projected to its
reduced equivalent 2dvr ∈ R2 with

2dvr = JT
vr

2dv = 0, (2)

where the column vectors of Jvr
∈ R3×2 are a basis for the

the nullspace of 2dv and can be used to obtain residuals in the
tangent plane defined by 2dv, see Fig. 2. For a vector in the
tangent plane the residual is e = JT

vr
(3dv− 2dv) = JT

vr

3dv.
In addition, by projecting 2dv to its reduced subspace, the
associated covariance matrix Σ2dvr

is no longer singular.
The second source of measurements originates from the

tracked system and consists of a sequence of pose changes

i−j+1Ti−j =

[
i−j+1Ri−j

i−j+1ti−j

01×3 1

]

with the corresponding initial tsi,j and final timestamps
tei,j . Such pose changes could be estimated by a VO or
Visual-Inertial Navigation System (VINS). If no camera
measurement x′ corresponding to the end time tei,j of a
VO measurement is available, several VO measurements are
integrated until a camera observation with matching time-
stamp is available. With n previous readings from the VO
iTi−1,

i−1Ti−2, ...,
i−n+1Ti−n and the current transformation

cTi = (cRi,
cti) between ARDEA and LRU, the previous

positions of ARDEA can be calculated according to the
following scheme

cpi =
cti

cpi−1 = cti +
cRi

iti−1

cpi−2 = cti +
cRi

iti−1 +
cRi

iRi−1
i−1ti−2

...
cpi−n = cti + . . .

(3)
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By introducing the term

ip̄j =

j∑

m=1

(

m−1∏

n=1

(i−m+n+1Ri−m+n)
i−m+1ti−m)

the pose of ARDEA at a former time ti−j can be expressed
with

cpi−j =
cRi

ip̄j +
cti (4)

In case of 3d measurements, the points cpi−j with j ∈
[0, 1, ..., n] have to be projected to the tangential plane
defined by 2dvi−j . By calculating

3dvi−j =
cpi−j

cpT
i−j

2dvi−j
(5)

the observations 2dvi−j and cpi−j are projected onto the
tangential plane defined by 2dvi−j .

Also, the covariance information has to be propagated to
the tangential plane

Σp = BΣuB
T . (6)

Due to the structure of the underlying problem, B ∈
R3(n+1)×6n is a lower triangular matrix with 03×3 blocks
on the diagonal. See the appendix for further details on its
derivation. Σu ∈ R6n×6n is a block-diagonal matrix with
elements Σi−j+1Ti−j

representing the uncertainty of the VO
observations i−j+1Ti−j. The covariance of the points cpi to
the tangential plane defined by 2dv is calculated by

3dΣv = JvΣpJ
T
v

with the block-diagonal matrix Jv ∈ R3(n+1)×6n. As can be
derived from (5), each block Jv,kk ∈ R3×3 is given by

Jv,kk =
1

(pTv)
2

((
pTv

)
I3×3 − vpT

)

with the abbreviations p = cpi and v = 2dv introduced for
readability.

The final covariance matrix

Σv = 3dΣv + 2dΣv

is used in the optimization of the transformation from Eq. (7)
after projecting it to its reduced counterpart Σvr

using Jvr

from Eq. (2).
The main goal of the algorithm is to estimate the pose

of the tracked object/robot with respect to the camera. This
can be formulated as a nonlinear minimization problem.
The transformation cTi consists of a translation cti ∈ R3

and a rotation part cRi. During optimization a minimal
representation of rotation is used and transformed to cRi

using Rodrigues’ Formula [8]. By stacking the reduced
observations from Eq. (2) for different times, a nonlinear
optimization problem in the form

F (u) = Πnull(p,u)
TΣ−1

vr
Πnull(p,u) (7)

can be formulated and solved by e.g. a trust-region mini-
mization. The vector u ∈ R6×1 contains the six parameters
defining cTi and Πnull consists of the stacked residuals

JT
vr

3dv. Each camera measurement x′ from Eq. (1) defines
the projection matrices Jvr and each integrated VO mea-
surement from Eq. (4) defines the reduced observations 3dv.

To start the tracking process, an inital solution has to be
calculated. Therefore, the non-linear system from Eq. (7)
is reformulated as a linear system, following the approach
from [11]. Thereby, the state of the linear system consists
of three elements representing the translation cti and nine
elements representing the rotation matrix cRi.

When the algorithm is executed, new measurements arrive
continuously and it is assumed that the camera and VO
streams are synchronized. Whenever a measurement from
VO arrives, it is looked for a camera observation with
equal timestamp. If no corresponding camera observation
is available, the new VO measurement is appended to the
measurement before. If a corresponding camera measurement
is available, the decision has to be made, if the transformation
cTi should be optimized with the new information or, if the
benefit of executing the optimization is marginal in compari-
son to appending the latest VO measurement to the estimated
transformation cTi in the time step before. If measurements
are added each time the optimization is executed, the buffer
containing all measurements grows unbounded. To keep
processing time constant, each time a new measurement is
added to the buffer another measurement has to be removed.
Therefore, two aspects are remaining. The first one concerns
the decision, when to add a new measurement to buffer
and use it to execute the optimization. The second aspect
relates to the decision, which measurement to remove from
the buffer.

In our approach, the decision which measurement to
replace is based on its influence on pose estimation, which
we determine by means of the tangent plane leverage matrix
H ∈ R2n×2n [10]. It is defined according to

H = Jopt(J
T
optJopt)

−1JT
opt

where the diagonal elements hk,k represent the sensitivity of
a measurement with respect to the result and Jopt ∈ R2n×6

is the Jacobian of the weighted residual Σ
− 1

2
vr Πnull at the

solution. In [10], the largest values hk,k are used to determine
leverage points. These points are assumed to have a high
influence on the result. On the other hand, a value hk,k
close to zero, indicates that the measurement has very little
influence on the result. Therefore, each time the optimization
is run, the diagonal elements hk,k are stored. Whenever a
new measurement should be added to the optimization, the
measurement corresponding to the smallest diagonal element
is deleted and replaced with the new measurement.

The second aspect concerns the addition of a new obser-
vation. We employed three different criteria:

• ARDEA traveled more than a defined distance
(“position-based”)

• the last addition of an observation is too far back in
time (“time-based”)

• the covariance of the accumulated delta poses is above
a threshold (“uncertainty-based”)
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All three criteria specify a rule for the addition of new
measurements.

In the course of this paper, the camera used for tracking
is assumed to be static. But it would be straightforward to
extend the approach to a moving camera, e. g. by attaching
it to a pan-tilt unit. Additionally, both system are assumed
to be temporally aligned. That means, measurements from
both systems refer to a common time basis and therefore,
the correspondence between 3d model points and 2d camera
observations is known. In the special case of uncorrelated
model points, the covariance 3dΣv reduces to a block-
diagonal matrix. Finally, due to the underlying, iterative
structure of the problem, mainly caused by Eq. (3), updates
of most matrices can be done iteratively, which can be
exploited during implementation.

III. SIMULATIONS

Extensive simulations were done to evaluate different
aspects of the approach. For the evaluation of each aspect
100 s segments from 50 different trajectories were simulated
5 times each. Simulation parameters were carefully chosen
to represent the characteristics of true experiments. Two dif-
ferent errors are introduced. On the one hand, the translation
error is defined by

et =
∥ct̂i − cti∥
∥cti∥

with ct̂i being the estimated translation and cti the true
translation. On the other hand the rotation error is defined
by

er = fα

(
cRT

i
cR̂i

)

with cR̂i being the estimated rotation, cRi the true rotation
and the function fα () extracting the angle of a rotation
matrix.

The main points that we evaluate with simulation are:
(i) Influence of different noise levels on results, (ii) compari-
son of different strategies for adding points, (iii) comparison
of different strategies for deleting points and (iv) comparison
of weighted and non-weighted solution.
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Fig. 3: The three figures show errors for different strategies
to add points to the optimization. In all three cases leverage
information is used for the decision, which point to delete
and the error is below 1% for a suitable choice of parameters.

Fig. 3 shows the errors for the three different strategies to
add points to the optimization. For all three strategies and

an appropriate choice of parameters the error is below 1%.
In the remainder of the paper, a combination of position
and time-change-based strategies is used. The threshold for
position change is set to 1.5 m and for the time based
strategy to 0.9 s. In addition, the number of points used for
optimization is limited to n = 15.
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Fig. 4: Influence of using weights on translation and rotation
errors. The + sign indicates the median and the horizontal
bar — indicates the mean of each box. In (a) the translation
error et is depicted and in (b) the rotation error er in degree.

Fig. 4 shows the effect of considering VO uncertainty
information on the error of the estimated trajectory. The
weighted solution uses uncertainties associated with camera
points 2dΣv and with integrated odometry readings 3dΣv,
while in the unweighted case only 2dΣv is used and 3dΣv =
0. For evaluation, 50 segments of trajectories were simulated
10 times. Each segment had a length of 100 s. A new
integrated odometry measurement was added every 1.5 m
distance traveled. The buffer of measurements was limited
to 15 and the oldest measurement was always deleted to
keep the buffer size constant. The intrinsic parameters of the
simulated camera were the same as those of the tele camera
on LRU and the distance of ARDEA was approximately
50 m. Odometry readings were created at a frequency of
10 Hz and zero-mean Gaussian noise was added that would
on average result in a Relative Pose Error (RPE) [14] of
0.03 m

10m for translation and 0.01 rad
10m for rotation. By using

weights the mean translation error could be reduced by 24%
and the mean rotation error by 19%. The standard deviation
is reduced by 37% and 34%, respectively.

In Fig. 5, the mean errors in dependency of noise levels are
displayed. Noise levels from a to d were chosen in a way, that
an integration of odometry readings would on average result
in RPE [14] from 0.05 m

10m for translation and 0.01 rad
10m for

rotation to 0.56 m
10m and 0.15 rad

10m . For all evaluated noise
levels, the errors et and er were reduced by the weighted
approach. Based on the results from Fig. 4 and Fig. 5 a
distinct advantage of using 3d uncertainties is visible. But
the additional workload has an impact on processing times.
Compared to the algorithm proposed by [11], the runtime
is ≈10 times slower. Nevertheless, our algorithm still runs
in real time with measurements from the sensors used on
ARDEA and LRU.
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Fig. 5: Influence of noise level on mean translation and
rotation error. The noise level increases from a to d.
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Fig. 6: Influence of different point deletion criteria on trans-
lation and rotation errors of the estimated transformation. In
(a) the translation error et is depicted and in (b) the rotation
error er in degree.

In Fig. 6, results are shown for the two different strategies
for deleting points from the buffer of measurements used
for estimating the transformation. By switching from simply
deleting the oldest point in the buffer to the leverage criterion,
the translation and rotation errors are reduced by 27% and
21% and standard deviations by 32% and 13%. This shows
the clear benefit of using leverage information when deciding
which point to remove.

Fig. 7: Distribution of delayed measurements being used in
the optimization of the transformation

When using the leverage-based criterion, the buffer of
measurements covers different time spans. The time span
represented in the buffer is influenced by different parame-
ters, e. g. the course of the trajectory followed and the dis-
tribution of the uncertainty of measurements acquired along
the trajectory. In Fig. 7 the probability of a measurement
being part of the buffer over the amount of time passed
since the measurement was taken is shown. When the time
passed since the measurement was taken is around 15s, the
probability has a peak. Afterwards it declines. Most recent
measurements have a higher probability of being removed
from the buffer, which indicates that measurements could be
added less frequently to the buffer. The latest measurement
is not displayed in the figure as it is always used. In
phases of good VO measurement quality, indicated by low
uncertainties, the observations in the buffer cover a bigger
time span than during phases of high VO uncertainty.

IV. EXPERIMENTS

During an indoor experiment ARDEA was flying several
times. Each time for approximately 50s. The main benefit of
the lab environment is the possibility to record ground truth
data along with the robot data.

In Fig. 8 the tracked and the reference trajectory are
depicted as an overlay to the initial image of the tracking
camera on LRU. The estimated poses are shown in Fig. 9.
Determining the positions of ARDEA and their uncertainties
in the image was done manually. Shortly after take off, when
the buffer of measurements is filled, the pose between LRU
and ARDEA can be determined. The times at which the
optimization was carried out are indicated by ∗ symbols.
Between two consecutive optimizations, the transformation
between both systems is updated with integrated VO read-
ings. There are no optimizations carried out for a time span
of 2.5 s beginning after approximately 35 s. This corresponds
to the time, when ARDEA was not visible in the camera
and can also be seen in Fig. 8, where both trajectories leave
the field of view of the camera. In general, the errors of the
transformation are relatively small and highest perpendicular
to the image plane of the tracking camera.

V. CONCLUSIONS

In this work, we estimated the transformation between
a static camera and a moving object by minimizing er-
rors between 3d model points and 2d camera observations
by projecting them onto respective tangent planes on the
unit sphere. Instead of assuming a predefined model of
the object, we spawn the model over time and not only
consider 2d uncertainties of camera measurements, but also
3d uncertainties of the model points. The 3d model points
are calculated based on integration of VO observations.
Therefore, they are highly correlated and potentially change
with each observation. To keep computation times limited,
the number of measurements used for the optimization is
limited. Different criteria for the addition of new points to
the optimization and also for the deletion of points from the
buffer are proposed and evalulated.
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Fig. 8: Reference and tracked trajectories of ARDEA over-
layed on the initial image of the dataset. The reference
trajectory was measured by an external tracking system
and projected into the camera reference frame of LRU. In
addition to ARDEA, a second LRU is visible in the image.
It is not used during the experiment.
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Fig. 9: Reference and estimated trajectories of ardea. The ∗
symbol indicates that the optimization was executed.

The benefits of the proposed approach were shown in sim-
ulation and in experiments conducted in a lab environment.

Investigating the implications of a moving tracking camera
could be an extension to the presented approach.
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APPENDIX

In Eq. (6) the matrix B ∈ R3(n+1)×6n to project uncer-
tainties of single VO measurements to uncertainties of 3d
points is introduced. It can be derived with the error model

cRi =
cR̂i

cδRi

cti =
ct̂i − cδti,

(8)

where cR̂i, ct̂i are estimated quantities, cRi, cti are true
quantities and cδRi, cδti are rotation and translation errors.
Rotation errors δϕ ∈ R3×1 are locally defined and a linear
approximation of cδRi = I+⌊ cδϕi ⌋× is used for covariance
propagation. The operator ⌊ ⌋× for a vector t ∈ R3×1 is
given by

⌊ t ⌋× =




0 −t3 t2
t3 0 −t1
−t2 t1 0




By plugging the error model from Eq. (8) into Eq. (3), the
matrix B can be derived

B = blkdiag
(
cR̂i

) [
b1 b2 . . . b2n

]
(9)

with bh ∈ R3(n+1)×3 and h ∈ [1, 2, ..., 2n] . The function
blkdiag (X) creates a block-diagonal matrix of appropriate
size from X ∈ R3×3. In Eq. (9) the size of blkdiag

(
cR̂i

)

is therefore 3(n+ 1)× 3(n+ 1).
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The first submatrix b1 =
[
03×3 I3×3n

]T
. For the

remaining odd indices h ∈ [3, 5, ..., 2n− 1] the sub matrices
bh are given by

bh = fd




h+1
2∏

k=1

i−k+1R̂i−k







0 3
2 (h+1)×3

I3×3

...
I3×3


 .

︸ ︷︷ ︸
bh,r

(10)

In bh,r from Eq. (10), the identity matrix I3×3 is repeated
n+ 1− h+1

2 times. For even indices h ∈ [2, 4, ..., 2n] the
sub matrices bh are given by

bh = fd




h
2∏

k=1

i−k+1R̂i−k



[
0(3+ 3

2h)×3

Ch

]
.

The matrix Ch ∈ R3(n−h
2 )×3 can be developed iteratively

according to the following scheme

Ch,1 ← ⌊ i−h+1ti−h ⌋×
for k ← h+ 1 to n do

Ch,k+1 ← Ch,k + i−k+2R̂i−k+1⌊ i−k+1ti−k ⌋×
end for

Each block Ch,k refers to a 3× 3 matrix and overall Ch is
created by stacking them according to

Ch =



Ch,k

...
Ch,n




The sub matrix bh from Eq. (9) with odd indices h
refer to the propagation of translation uncertainty of a VO
measurement and for even indices h it refers to propagation
of rotation uncertainty.
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Human-centered Benchmarking for
Socially-compliant Robot Navigation

Iaroslav Okunevich1, Vincent Hilaire1, Stephane Galland1,
Olivier Lamotte1, Liubov Shilova2, Yassine Ruichek1, and Zhi Yan1∗

Abstract—Social compatibility is one of the most important
parameters for service robots. It characterizes the quality of
interaction between a robot and a human. In this paper, a human-
centered benchmarking framework is proposed for socially-
compliant robot navigation. In an end-to-end manner, four
open-source robot navigation methods are benchmarked, two of
which are socially-compliant. All aspects of the benchmarking
are clarified to ensure the reproducibility and replicability of
the experiments. The social compatibility of robot navigation
methods with the Robotic Social Attributes Scale (RoSAS) is
measured. After that, the correspondence between RoSAS and
the robot-centered metrics is validated. Based on experiments,
the extra robot time ratio and the extra distance ratio are the
most suitable to judge social compatibility.

Index Terms—Social navigation, human-robot interaction,
benchmarking

I. INTRODUCTION

The development of computing and sensing technologies
allows us to apply mobile robotic systems in different envi-
ronments. Robot behavior is especially important in an envi-
ronment with human presence, such as in the case of mobile
robots for emerging logistic [1] or disinfection [2] purposes. In
these cases, socially-compliant robot navigation [3] is one of
the main requirements that guarantees a high-quality human-
robot interaction (HRI).

Although robot systems perform relatively well, people still
tend to fear them, which negatively affects mental health and
decreases the productivity of workers [4]. The problem behind
fear is the lack of understanding of robot behavior [5]. Robotic
intelligence is different from that of humans, and human-robot
interaction is limited in ways of communication compared to
human-human interaction. People feel safer in the presence of
other people, thus preferring them to robots as their working
partners. The feeling of safety comes from the belief that
people’s behavior is more predictable. Similarly, one generally
feels uneasy when communicating with a drunk person, as
alcohol makes their behavior unpredictable.

To make the behavior of the robot more understandable,
one could apply different engineering solutions. In addition to
the sensors necessary to perceive the world, the robot can be
equipped with mechanical elements to show its behavior or

This work was supported by the Bourgogne-Franche-Comté regional
research project LOST-CoRoNa.
1UTBM, CIAD UMR 7533, F-90010 Belfort, France.
firstname.lastname@utbm.fr
2Center for Bioinformatics, Saarland Informatics Campus, Saarbrücken,
Germany. lish00001@stud.uni-saarland.de
∗Corresponding Author.

Fig. 1. The experiment to examine the social compatibility of robot naviga-
tion. The person works in a room, while the mobile robot moves nearby. The
logistic operations at a warehouse are an example of a real scenario, where
human workers and autonomous mobile robots need to collaborate with each
other and navigate in a shared space.

intention, such as the light [6] and sound [7] signaling system
or an additional screen [8]. Another way to reduce robot fear is
to improve the quality of navigation algorithms. This implies
that the robot tries to follow the unspoken social rules that
people have in their regular life. For instance, the left- and
right-hand rules to avoid collisions [9], social zones around
people [10], and navigation through pedestrian flow [11].

However, evaluating the social effectiveness of socially-
compliant navigation methods can be challenging. Many stud-
ies [9], [10] apply robot-centered metrics (RCM) to assess the
quality of the social part of navigation methods. These metrics
are numerical and usually measure robot functionality as a
reference. For example, the speed of the robot or the length
of the traveled path. As fear is not a numerical parameter,
scientists also need to use psychological metrics to assess
the acceptance of the robot by people. The latter can be
regarded as compatibility from a robot perspective. We suggest
therefore to use “social compatibility” (SC), rather than “social
acceptance” used in the literature, which characterizes the

979-8-3503-0704-7/23/$31.00 ©2023 European Union
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social effectiveness of robotic navigation methods. The high
SC value of a navigation method implies that, in a social
environment, a robot moves in an efficient, safe and socially
acceptable manner [3].

One of the most popular approaches to measure SC is to
invite people to participate in an experiment (such as that
shown in Fig. 1) and then conduct a questionnaire for the
participants. As questions are used as metrics to evaluate hu-
man feelings, they are called human-centered metrics (HCM).
However, in different articles various metrics and experimental
settings are applied to assess the interaction between robots
and humans. Consequently, reproducing these experiments
is often not straightforward, making comparisons between
different methods tricky.

The contributions of this paper are twofold.
• We propose an end-to-end human-centered benchmarking

framework. To confirm our idea, we benchmark four
open-source robot navigation methods under the proposed
framework. Two of these methods have been developed
to be socially-compliant. All experimental settings and
parameters are clearly stated to ensure the reproducibil-
ity and repeatability of the experiments. The software-
hardware integration scheme is publicly available to the
community1.

• We evaluate different methods using both HCM and RCM
and report the experimental results. We gain insight that
some RCMs are suitable for assessing SC while others
are not, if considered for HCM. This provides a basis for
clarifying the connection between RCM and HCM.

II. RELATED WORK

Much work has been done on socially aware robot naviga-
tion, as well as interaction between humans and autonomous
mobile robots. However, the applied experiment conditions
(e.g. hardware, software, environment, etc.) and metrics to
measure method performance vary from paper to paper sig-
nificantly.

[9] focused on a multi-agent collision avoidance algorithm
that exhibits socially-compliant behavior. The authors trained
their algorithm in a reinforcement learning framework and
compared it with two algorithms in simulation. They chose
three performance metrics: 1) average extra time to reach the
goal; 2) minimum separation distance to other agents; 3) rela-
tive preference between left-handedness and right-handedness.
Although the experiment in real life proved that the method
developed was safe, the work did not show the opinion of
the people about the behavior of the robot. [12] compared
standard and social navigation strategies for efficient robot
behavior. For a person and a robot moving in the corridor,
the following metrics were recorded: 1) the speed of the robot
and the person during the experiment. Higher speed indicates
a more efficient HRI. It was shown to be a useful metric
to measure the difference in HRI representing the changing
human behavior; 2) the signaling distance between the person

1https://github.com/Nedzhaken/human aware navigation

and the robot. For the human, it was measured when the person
started to change their trajectory to react to the robot. For the
robot, it was measured when the robot started to avoid the
person. This metric was shown to be suitable for a perception
system but not for HRI.

Another way to evaluate socially aware robot navigation
is to use simulations. This has the advantage of repeatability
of the experimental conditions for each evaluated naviga-
tion method. In addition, simulated experiments often do
not require real participants, which decreases the cost of
the study. [13] presented a grounded simulation framework
to evaluate social navigation. This simulator included pre-
recorded pedestrian trajectory datasets in different scenarios.
Despite the effectiveness of the proposed framework, the
simulator included only RCM and could not provide any
information on HCM.

[14] developed a 29-question HRI measurement question-
naire to assess how humans feel about robots. Questions were
asked in five groups: anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety. The answers are
ranked from 1 to 5, with 1 being the worst and 5 being the best
opinion mark. This questionnaire has been used as a baseline
for numerous questionnaires in HRI research [15]. How-
ever, [16] criticized the Godspeed questionnaire [14]. Through
the exploratory factor analysis (EFA), it was shown that the
Godspeed questionnaire has been loaded onto three unique
factors, while originally this questionnaire was designed for
the five factors/groups. Therefore, based on the Godspeed
questionnaire, Carpinella et al. developed RoSAS. It consisted
of 18 questions, which were chosen from the psychological
literature on social cognition. Despite these questionnaires
being one of the ways to represent HRI, their application leads
to limited autonomy, since a robot itself cannot assess it.

[15] presented the design of the user study for the ex-
perimental evaluation of mobile robot navigation strategies
in human environments. The authors applied different RCM
to define the most suitable navigation strategies for HRI,
such as average acceleration and energy, minimum distance
between robots and humans, irregularity of the path, efficiency
of the path, time spent per unit of length of the path, and
topological complexity. After the experiment, the participants
evaluated HRI during the experiment through a questionnaire.
The combination of the results of two different types of metrics
allowed HRI measurement by RCM and confirmed the results
by comparing the responses to the questionnaire (i.e. HCM).
The work provides immensely valuable input regarding the
evaluation of mobile robot navigation strategies in a controlled
lab environment. However, it could also be noted that the
questionnaire used was later criticized by [16]. [17] studied
how different robot navigation strategies are perceived by
users in terms of comfort, safety, and awareness. Their results
demonstrated some correlation between safety and comfort
and the distance between the robot and the pedestrian when
the robot passed the intersection.

From the survey, it became clear that there is still much to
be done about the benchmarking methods and standardizable
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metrics for socially-compliant navigation. The existing evalu-
ation mainly uses RCM. However, it is not completely clear
how these metrics reflect the SC. Furthermore, the lack of
necessary experimental information makes benchmarking of
the community difficult. The status quo drives us to develop
reproducible experiments based on standardizable processes
to accelerate the development and comparison of relevant
methods in our community. In the current work, our aim is
to develop such an experiment and explore the correlation
between RCM and HCM for the SC parameter.

III. BENCHMARKING FRAMEWORK

HRI benchmarking is often very challenging. This is due
to, on the one hand, the increasing complexity of the robotic
system (both hardware and software) and, on the other hand,
the unforeseeable and unpredictable behavior of different
participants with different understandings of the experimental
procedures, which makes benchmarks difficult to reproduce.
To this end, we propose an end-to-end benchmarking frame-
work (similar to black-box testing in software engineering),
focusing on human-centricity that allows rapid and efficient
evaluation and comparison of the performance of different
socially-compliant navigation methods, by clearly defining
experimental scenarios and evaluation metrics. Applying HCM
ensures that human opinion is one of the criteria of evaluation,
which makes our framework human-centered. Moreover, we
propose to divide the experiment into explicit and as small
steps as possible, ideally consisting of simple motion or action
primitives, which make it easier to reproduce and avoid any
ambiguity. For example, the instruction to a person could be
“go straight forward for three meters at normal speed to point
B” rather than “go to point B”. Based on this principle, we
propose the following experimental design.

A. Experiment Design

Unlike the non-object experiments commonly seen in the
literature [9], [17]–[22], our experiment required humans to
move cartons. This task was inspired by the industrial example
in which workers carry boxes in factories, warehouses, or
supermarkets. We tried to reproduce the situation in which
a person should complete a working task in the presence of
the robot. This setting helps us to avoid bias in HCM results.
According to research in the field of sociology, people are
less likely to pay attention to robots when they concentrate
on their tasks [23]. Therefore, experiments can provide an
objective and impartial assessment of SC performance, which
is beneficial for comparing different methods. Specifically, in
a 2.5×4 m room, trial participants were asked to carry three
cartons from one side of the room to the other (see Fig. 2).
During this period, the robot moved in the shared space. The
robot’s acceleration and maximum velocity of the robot were
set to 0.3 m/s2 and 0.3 m/s, respectively. Humans were told
to move at normal speed. The evaluation of the socially-
compliant navigation methods included two parts: the robot
path being coinciding or perpendicular to the pedestrian. We
wanted to test navigation methods in three general ways of

Fig. 2. Our reproducible experiment design. Shown on the left is the case
where the robot’s trajectory is coinciding with the human’s. The coordinates
of positions H2-R1 and H1-R2 are equal to ensure the crossing of the robot’s
and human’s trajectories. Shown on the right is the case where the robot
moves perpendicular to the pedestrian.

social interaction of a mobile robot with a human: passing,
crossing, and overtaking [9]. The robot movement along the
human path was used to simulate the passing and overtaking
scenario, and the perpendicular robot movement was used for
the crossing scenario. The passing and crossing movements
can be performed by both the robot and the human. The
overtaking movement was performed only by a human, as the
robot’s speed was chosen to be low to decrease the influence
of the velocity on SC. To make our experiments reproducible
and to facilitate the comparison of results between different
methods, we next describe the full implementation details.

The initial position of the person was at the entrance of
the room, denoted as HS. The person was asked first to reach
H1 and then H2, walking in a straight line. When reaching
H2, people were asked to pick up a box and take it to H1 to
drop it off. This process was repeated until all cartons were
transported to H1 and the experiment ended. On the other
hand, the starting position of the robot was in the opposite
corner of the entrance to the room, marked RS. Similarly, the
robot first moved to R1 and then went back and forth between
R1 and R2 four times to ensure that the person completed the
task within its moving time. As shown in Fig. 2, the robot
moved between R1 and R2 following the same trajectory as
H1-H2 or perpendicular to H1-H2. When the robot finally
reached R1, we collected the experimental RCM.

The moderately sized workspace ensures actual HRI and
reliable robot navigation and allows experiments to be easily
reproduced at other places. The distances between human
positions were chosen to ensure the naturalness of human
behavior. In the first case, the robot and human waypoints
were in the same location (R1-H2 and H1-R2) to ensure that
a participant interacted with the robot and did not ignore
it. During the perpendicular movements of the robot, the

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

126



human could solve the task without interaction with the robot.
The close positioning of R1-R2 in this case increased the
probability of the intersection of trajectories.

B. Human-centered Metrics

In principle, RCM alone cannot fully describe SC, as
they do not reflect people’s subjective feelings about the
robot’s behavior. To assess human opinions, we adopted the
aforementioned RoSAS questionnaire. It includes 18 ques-
tions2, each of which is answered on a scale of 1 to 9. The
questions are divided into three underlying factors: warmth,
competence, and discomfort. The questionnaire provides a
psychometrically validated and standardized measure of HRI.
The RoSAS was applied to measure social perceptions of
human, robot and blended human-robot faces [16] or human-
to-robot handovers [24]. We innovatively applied the RoSAS
to measure the SC of the robot navigation methods. Moreover,
we wanted to demonstrate that the scale was applicable in
mobile robotics to assess SC as a form of HRI.

C. Robot-centered Metrics

Five RCM metrics commonly used from the literature are
selected, as well as one additional metric.

1) The robot extra time ratio evaluates how efficiently a
robot can complete a task in an environment shared with
humans [9], [25], [26], and is defined as:

Rr
extra = T r/T r

h , (1)

where T r and T r
h are the time it takes the robot to

complete the task without and in the presence of humans,
respectively.

2) The human extra time ratio is a human analog of
the previous one. It is first proposed in this paper to
assess changes in human performance when working
with robots. It could improve our understanding of the
connection between human performance and SC. It is
defined as:

Rh
extra = T h/T h

r , (2)

where T h and T h
r are the time it takes a human to

complete the task without and in the presence of robots,
respectively.

3) The extra distance ratio evaluates system performance
in terms of the distance a robot would have to travel
additionally when a human is present [15], [27], and is
defined as:

Rdist = Dr/Dr
h, (3)

where Dr and Dr
h represent the distance that the robot

travels to complete a task without and in the presence
of a human, respectively.

4) The success ratio assesses the ability of a robot to
complete a task without colliding with a human [9], [25],
[26], and is defined as:

Rsucc = Nsucc/N, (4)

2https://github.com/Nedzhaken/human aware navigation

where Nsucc represents the number of successful trials
during which the robot does not hit a human and N
indicates the total number of trials.

5) The hazard ratio assesses the time that a robot gets too
close to a human [26], which is defined as:

Rhaza =
1
n
·

n

∑
i=1

T hazard
i

T social
i

, (5)

where n is the number of people, T hazard
i is the duration

of time when the distance between the robot and the i-th
person is less than the safe distance (denoted as Dsa f e),
and T social

i is the duration of time when the distance
between the robot and the i-th person is less than the
social distance (denoted as Dsocial). In our experiments,
Dsa f e = 0.2 m and Dsocial = 0.4 m.

6) The deceleration ratio evaluates a robot’s ability to slow
down when approaching a human [12], which is defined
as:

Rdec =
1
n
·

n

∑
i=1

Vi

V max , (6)

where n represents the number of speed measurements
when the robot is less than Dsocial from the human. Vi
represents the instantaneous speed of the robot at i-th
measurement, and V max is the maximum speed of the
robot (0.3 m/s). The maximal velocity was kept the
same for all methods. Although the different methods
can work with different maximal velocities, variations in
this parameter would complicate the analysis. It would
be difficult to understand whether the maximal velocity
or the algorithm itself affects the SC.

IV. EXPERIMENTS

Our experiments aimed to benchmark four open-source
robot navigation methods. Two of them were developed as
socially-compliant. This, on the one hand, showed the effec-
tiveness of the proposed benchmarking framework and, on the
other hand, revealed the connection between RCM and HCM.

A. Experimental Platform

For the experiment, we used a mobile robotic platform.
The robot chassis is a Clearpath Jackal UGV. The perception
system includes four RGB-D cameras and a 3D lidar. The
RGB-D cameras are placed toward all sides of the robot
for a panoramic view. The 3D lidar allows people detection
and tracking under different lighting conditions. The robot
is equipped with a 2D lidar that has higher measurement
frequency, accuracy, and resolution compared to the 3D li-
dar. It is beneficial for robot localization and collision-free
navigation. The software system has been fully implemented
in ROS [28] with high modularity and is publicly available to
the community.
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B. Evaluated Methods

We deployed several open-source methods and reported
results on four of them. The choice was based on two factors:
1) the method must be deployable on real robots, and 2)
the effectiveness of the method must have been confirmed in
its corresponding paper. Two of these methods are socially-
compliant robot navigation methods and two are traditional
navigation approaches that include only collision avoidance
mechanisms.
• Social Navigation Layers (SNL)3 [29]: This method im-

plements a Gaussian mixture model around the detected
person on the navigation cost map. The extra cost area
around the person makes the robot consider avoiding it
when planning its path. This allows the robot to demon-
strate better social attributes during navigation. Also, if
the person moves, the social area grows in the direction
of the movement (i.e., from a circle to an ellipse). In
our experiments, according to the characteristics of the
working environment, the social radius was set to be
0.4 m centered on the person.

• Time Dependent Planning (TDP)4 [30]: This method is
similar to SNL, except that the social area is no longer
limited to a person’s current location, but also includes
their predicted location several time steps in the future,
based on a constant velocity model.

• Collision Avoidance with Deep Reinforcement Learning
(CADRL)5: This method is the underlying implemen-
tation of the well-known SA-CADRL (socially aware
CADRL) [25], while the latter has not been ROSified.
However, it is still considered a baseline, as collision
avoidance is one of the most fundamental elements in
the social properties of robot navigation.

• move base (MB)6: This is a basic component provided
by the ROS navigation stack and does not contain any
socially-compliant modules.

Additionally, we added the human-human interaction to
understand the difference between a robot and a human
interaction in the terms of HCM.
• Human-human interaction (HH): In this case, the robot

is replaced by a human who performs the task assigned
to the robot, that is, moving from one point to another.

The results of the RCM were recorded during the execution
of the above methods by the robot, and the participants were
asked to complete the questionnaire after each method to
assess the HCM.

C. Participants

The recruitment was carried out within the University
of Technology of Belfort-Montbéliard (UTBM) in France.
Twenty volunteers (14 men, 6 women), aged 18 to 39 years [M
= 27.10, SD = 5.30] participated in the experiment. Participants

3https://github.com/DLu/navigation layers
4https://github.com/marinaKollmitz/human aware navigation
5https://github.com/mit-acl/cadrl ros
6https://github.com/ros-planning/navigation

were not rewarded in this research. To avoid carry-over effects,
the methods of the experiment were counterbalanced among
participants by applying a Latin square design [24].

D. Experimental Results

As RoSAS had not been used before to measure SC of a
mobile robot, we performed an internal consistency (IC) test,
which allows us to confirm the results of the EFA performed
in the original investigation [16]. Specifically, the IC measures
how closely the RoSAS questions match three factors (warmth,
competence, and discomfort) by applying the data from our
experiment. For the test, Cronbach’s alpha should be more
than 0.90 to represent high IC [31]. Cronbach’s alphas of
warmth (αCronbach = 0.94), competence (αCronbach = 0.94), and
discomfort (αCronbach = 0.92) satisfied this condition. Thus, the
factors have relatively high IC with their respective questions.
For the analysis of RoSAS, six questions were averaged
that comprise the dimensions of warmth, competence, and
discomfort. The warmth factor includes the items: happy,
feeling, social, organic, compassionate, and emotional. The
competence factor includes the following elements: capable,
responsive, interactive, reliable, competent, and knowledge-
able. The discomfort factor includes items: scary, strange,
awkward, dangerous, awful, and aggressive. The one-way
ANOVA results (see Table I) show that there is a statistically
significant difference between the methods evaluated for each
HCM and applied RCM (p< 0.05) except for Rh

extra.

TABLE I
ANOVA RESULTS OF APPLIED HCM AND RCM

Metric Sum Sq F value p

Warmth 250.134 28.203 <0.001
Competence 173.484 20.495 <0.001
Discomfort 110.194 10.317 <0.001
Rr

extra 0.957 21.608 <0.001
Rh

extra 0.045 1.501 0.22
Rdist 0.041 3.025 0.035
Rsucc 0.459 3.435 0.021
Rhaza 0.104 4.052 0.010
Rdec 2.626 166.332 <0.001

Fig. 3 summarizes the normalized HCM results. The blue,
orange, and green bars represent respectively the average rates
of the warmth, competence, and discomfort factor of RoSAS.
It can be seen that TDP performs best in experiments involving
the robot. This is reasonable, as this method is the only one
with pedestrian prediction capability, which also confirms the
importance of robot foresight in socially-compliant navigation.
The reason for the worst CADRL performance is the freezing
movement of the robot during the experiment. The reason for
that is the implementation of the open-source version of the al-
gorithm. Therefore, it leads to aggressive motion and freezing
of the robot, therefore to low rates of warmth and competence
and a high rate of discomfort. Instead, HH scores for warmth
and competence are much higher and for discomfort much
lower than in other robot-involved methods. This reflects the
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Fig. 3. Experimental results of RoSAS. The bars represent the average values
of 3 questionnaire factors (warmth, competence, discomfort), normalized to
[0,1] with standard error (N = 20).

general understanding that people still find other people more
socially acceptable than robots. The difference between SNL
and MB is only the implementation of social zones in SNL.
The close values of the warmth and competence factors of
MB and SNL demonstrate that these social zones influence
exclusively the discomfort factor.

The results of the experiment are presented in Table II.
The gray row shows that Rh

extra provides values that do not
vary significantly among the methods. Red and green cells
are respectively the worst and best results of a metric in
terms of SC. In terms of HCM, the CADRL with its freezing
movements can be seen as the worst and the TDP with
pedestrian prediction capability as the best method. RCM
partially follows this trend. On the one hand, three out of
five RCMs were indeed the worst for CADRL. On the other
hand, Rr

extra and Rsucc demonstrated the method to be the best.
This means that, while the robot did not pose a real danger
to people and did not spend extra time with them, it was still
perceived as the most uncomfortable to work with. For TDP,
only Rdist reached the best value. In line with the HCM results,
this metric has the highest value in TDP and the lowest value
in CADRL.

Rr
extra shows the inverse relation to HCM, which allows the

application of the inverse value of Rr
extra to measure SC. The

TABLE II
EXPERIMENTAL RESULTS OF RCM AND HCM

Metric SNL TDP CADRL MB

Warmth 0.44 0.45 0.30 0.44
Competence 0.60 0.65 0.40 0.59
Discomfort 0.39 0.35 0.60 0.43
Rhaza 0.59 0.57 0.65 0.56
Rh

extra 0.9 0.88 0.94 0.87
Rdist 0.96 1.00 0.95 0.97
Rdec 0.56 0.58 0.17 0.61
Rr

extra 0.77 0.74 1.00 0.83
Rsucc 0.92 0.85 1.00 0.8

TABLE III
CORRELATION COEFFICIENTS OF RCM TO HCM

Metric Rhaza Rh
extra Rdist Rdec Rr

extra Rsucc

Warmth -0.700 0.148 0.152 -0.402 0.114 0.086
Compet. -0.620 0.304 0.156 -0.195 0.029 0.085
Discom. 0.454 -0.456 -0.197 0.059 -0.079 0.022

reason for the lowest value Rr
extra of TDP is the pause during

movements. The mobile robot with the pedestrian prediction
capability prefers to wait while the person liberates the path
of the robot than trying to avoid them. In this case, the
robot spends more time finishing the task but crosses fewer
distances and seems to be better accepted by people. As Rr

extra
and Rdist have low correlation coefficients (see Table III), the
relationship between these RCM and HCM is likely non-linear.

The Rhaza, Rdec, and Rsucc do not seem to match the HCM
trends when comparing the methods, although the correlation
coefficients for some of them are considerable. The values
of Rhaza are similar for SNL, TDP and MB. This matches
the warmth factor of HCM. As expected, the more often the
robot is located near the human, the lower is the warmth
and competence factors, and the greater is the discomfort.
Rdec has a trend similar to Rhaza. The larger decrease in
speed in close proximity to the person corresponds to a worse
HCM. However, as with Rhaza, the highest speed of the robot
near the participants does not correspond to the best HCM.
Interestingly, Rsucc does not reflect HCM. The reason might
be the low speed of the robot in the experiment, which made
collisions negligible to the participants.

Therefore, the following conclusions can be made:
• TDP has the best HCM among the robot navigation

methods, because of its pedestrian prediction capability.
• HH interaction has higher values of HCM and therefore

higher SC.
• When people worked with the robot, they needed more

time to complete the tasks (i.e. Rh
extra < 1.00 for each

method).
• While Rr

extra and Rdist reflect the HCM and can be used
to judge SC, other RCM do not give a clear picture of
SC. Therefore, in the experiments with mobile robots,
especially when assessing human opinion is not possible,
it is highly advisable to record Rr

extra and Rdist to judge
the SC of the navigation method.

V. CONCLUSIONS

In this paper, we proposed a human-centered benchmark-
ing framework for socially-compliant robot navigation with
RoSAS and benchmarked four open-source approaches. The
benchmarking framework is end-to-end and explicitly provides
all parameters required for the reproduction of experimental
results. This benchmark aims to evaluate the social part of
a navigation method. Only the full survey of participants,
preferably conducted with a standard questionnaire such as
RoSAS, can provide the full picture of SC. However, in
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situations where it is not possible, one could record RCM like
Rr

extra and Rdist that reflect the SC of navigation. We suggest
to apply these two metrics for the comparison of state-of-the-
art and new socially-complaint robot navigation methods in
simulators.

Our future work will explore new approaches for socially-
compliant navigation and continue to evaluate them under the
proposed benchmarking framework. Furthermore, our objec-
tive is to develop dependence functions for socially-compliant
navigation methods from the most relevant RCM. This task
can be done using neural networks, but more training data
needs to be collected.
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Improved path planning algorithms for non-holonomic autonomous
vehicles in industrial environments with narrow corridors: Roadmap

Hybrid A* and Waypoints Hybrid A*

Alessandro Bonetti1, Simone Guidetti2 and Lorenzo Sabattini1

Abstract— This paper proposes two novel path planning
algorithms, Roadmap Hybrid A* and Waypoints Hybrid A*, for
car-like autonomous vehicles in logistics and industrial contexts
with obstacles (e.g., pallets or containers) and narrow corridors.
Roadmap Hybrid A* combines Hybrid A* with a graph search
algorithm applied to a static roadmap. The former enables
obstacle avoidance and flexibility, whereas the latter provides
greater robustness, repeatability, and computational speed.
Waypoint Hybrid A*, on the other hand, generates waypoints
using a topological map of the environment to guide Hybrid
A* to the target pose, reducing complexity and search time.
Both algorithms enable predetermined control over the shape of
desired parts of the path, for example, to obtain precise docking
maneuvers to service machines and to eliminate unnecessary
steering changes produced by Hybrid A* in corridors, thanks to
the roadmap and/or the waypoints. To evaluate the performance
of these algorithms, we conducted a simulation study in an
industrial plant where a robot must navigate narrow corridors
to serve machines in different areas. In terms of computational
time, total length, reverse length path, and other metrics, both
algorithms outperformed the standard Hybrid A*.

I. INTRODUCTION

Mobile robotics and Autonomous Mobile Robots (AMRs)
have been increasingly used in recent years, with applications
ranging from industrial automation to personal assistance and
transportation. In particular, wheeled non-holonomic AMRs
are becoming crucial for improving productivity and safety
in industrial and logistics environments, such as autonomous
forklifts or picking robots that operate independently in
warehouses and factories. Path planning [18] is one of
the main challenges of autonomous non-holonomic vehicle
navigation, as it involves finding a path from a starting
point to a goal, avoiding obstacles, and respecting kinematic
constraints. There are numerous algorithms that can be used
to solve this problem, such as Theta*-RRT [13] and Spline-
based Rapidly-exploring Random Tree (SRRT) [20] as they
combine the principle of RRT [10] in the sampling space
with efficient spline parameterization to meet the kinematic
and dynamic limitations of the robot and avoid obstacles.
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One of the most recent studies of this type that uses RRT to
solve the path planning problem for non-holonomic vehicles
is [3], where an RRT* [7] is combined with B-spline curves
to obtain quasi-optimal smooth paths.

The Hybrid A* [12] algorithm is also a popular path
planning method for car-like robots. It combines the clas-
sical A* algorithm [4] in discrete space with the vehicle’s
kinematic model and an analytic expansion using Reed-
Sheep curves to obtain a non-holonomic and feasible path
in continuous space. Several studies have been conducted
to improve Hybrid A* performance in a variety of mobile
robotics application fields. For example, in [16] a waypoint
generation method for Hybrid A* using visibility graph is
proposed for car parking applications in order to speed up
the computation time and increase the quality of the path.
Another research [17] addresses the theme of parking valet,
where a multistage Hybrid A* is used to reduce the runtime
required to obtain the path. The authors of [11] used a topo-
logical roadmap to implement a variable curvature approach
applied to Hybrid A* in order to improve the path quality and
success rate of an AMR operating in narrow known industrial
environments. This study [19] addresses a common problem
with Hybrid A* that produces an output that is too close to
obstacles and is characterized by unnecessary steering action
and oscillations. They solve the problem by applying an
artificial potential field to obstacles and using it to optimize
and smooth the Hybrid A* path.

Finally, [2] focused on improving the analytical expansion
part of the algorithm by generating multiple Reeds-Shepp
curves with different curvatures and choosing the best one
that makes it safer to pass near obstacles and reduces the
number of turning points.

In this paper, we present two new path planners for indus-
trial autonomous car-like vehicles called RoadMap Hybrid
A* and Waypoint Hybrid A*. RoadMap Hybrid A* combines
the traditional Hybrid A* with a route finding component
on fixed segments. The former provides flexibility in areas
populated by obstacles, while the latter ensures robust paths
in narrow corridors and for maneuvering in and out of
machines. Waypoint Hybrid A*, on the other hand, employs
fixed segments only for maneuvers and uses waypoints
to guide Hybrid A* within corridors. In this way, both
algorithms can improve the performance of Hybrid A*,
achieve accurate docking maneuvers, and solve the problem
of undesirable oscillations and unnecessary steering actions
in corridors, where this defect occurs very frequently. The
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paper is structured as follows: Section II introduces the
operating environment of the mobile robot and the challenges
of Hybrid A* that led to this study. Section III describes the
Roadmap Hybrid A* and Waypoint Hybrid A* algorithms
and explains the steps taken to implement them. Section IV
outlines the method used for developing the simulations and
describes the metrics used to compare Hybrid A*, Waypoint
Hybrid A*, and Roadmap Hybrid A*. Hence, the results of
the simulation are presented and analyzed. Finally, section
V presents the conclusions and introduces some ideas for
future developments.

II. STATEMENT OF THE PROBLEM

The purpose of this study is to develop an effective path
planning solution for an autonomous car-like mobile robot
operating within an industrial plant environment.

We consider a plant consisting of four areas where 11
machines are located, which require servicing by the AMR
for loading and unloading payload operations. These zones
may have pallets or goods inside waiting to be sorted, making
it essential to employ a path planning algorithm that can
avoid obstacles and efficiently navigate the plant. In addition,
the vehicle must move between these areas through narrow
corridors with a width of 3 meters that are kept clear for the
robot’s passage. The plant is inspired by a real case study
but has been modified from the original so as to highlight
the main challenges addressed in this study and simplify the
stages of research development. The plant environment is
represented using a grid map with a size of 50 x 50 meters
and a resolution of 0.5 meters, as illustrated in Fig.1. The
working space of the robot is depicted by white cells on
the map, while black cells represent walls and obstacles that
cannot be crossed.

The AMR used in the simulation of this research is
characterized by a rectangular footprint of 2 meters long by 1
meter wide, a distance between the centers of the wheel axes
of one meter, and a maximum steering angle of 45 degrees.
To solve the path planning problem, we chose the Hybrid
A* algorithm from the PythonRobotics [15] library.

A. Hybrid A*

Hybrid A* [12] is a path planning algorithm used in
autonomous vehicle navigation. It is known as one of the
most efficient path planners for non-holonomic autonomous
vehicles. The goal of the algorithm is to produce an effective
and collision-free path that the vehicle can follow from the
start to the destination using two different phases: forward
search and analytic expansion. In the forward search phase,
the algorithm iteratively uses the kinematic model of the
robot to generate forward motions in continuous space that
depend on vehicle parameters like speed, direction, and
steering angle. These continuous motions are then converted
approximately to discrete coordinate nodes, i.e., the cells
of the grid map, and the cost associated with each node
is calculated as the maximum value from two different
heuristics. The first one is the shortest distance to the goal
among obstacles provided by the classic 2D A*, while the

Fig. 1. Grid map of the industrial plant. The blue dots are the poses that
the vehicle must reach to serve the machines. The purple path is the output
of Hybrid A* that connects the start pose 21 with the end pose 16.

second is the length of the shortest path to the goal, ignoring
obstacles but taking into account the non-holonomic nature
of the vehicle. The latter includes the cost parameters related
to changing direction, reversing, steering, and changing di-
rection actions.

The node with the lowest objective value is then chosen
to start the next iteration of the forward search, and this
mechanism continues until the algorithm reaches the goal.
However, getting to the exact continuous coordinate goal
node is difficult due to the grid map’s resolution and the
smallest motion that the robot can take.

To overcome this issue, the analytic expansion phase of
Hybrid A* is used, as it guarantees that the algorithm reaches
the exact continuous coordinate of the goal state. This phase
consists of generating multiple Reeds-Shepp [14] curves that
respect the non-holonomic constraints of the vehicle in both
forward and reverse directions. Then, the lowest cost curves
based on a heuristic estimate of the remaining distance to
the goal are selected in order to connect the actual node
calculated by the Hybrid A* forward search phase with the
target node. Analytic expansion leads to significant benefits
in terms of accuracy and search speed and ensures that the
algorithm reaches the exact continuous coordinate of the
target state.

B. Hybrid A* issues

After we set the vehicle parameters in Hybrid A* and
carefully fine-tuned the various algorithm parameters, several
issues emerged. As shown in Fig. 1, the algorithm is produc-
ing an undesired oscillating path effect within the corridors,
despite a high steer change cost being set. This behavior
not only causes the vehicle to approach dangerously close
to the walls, but is also inefficient due to increased wheel
wear, energy consumption, and travel time resulting from
unnecessary turns. This path effect of Hybrid A* is caused by
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the costs assigned to the expanded nodes: the two algorithm
heuristics with a relatively low resolution of the map, make
the path fluctuate around the optimum cost cells.

In order to avoid this problem, it is important to have
a well-designed objective function that accurately reflects
the goals of the navigation system, but it is really difficult
to find one that works efficiently both in large areas and
in narrow passages. It is also preferable to have a high
enough resolution to accurately represent the environment
and produce a smooth and efficient path, but this leads
to higher computational complexity. Because the AMR has
limited hardware resources, a resolution of less than 0.5
meters is not possible in this case. Smaller cells result in
a higher number of iterations of Hybrid A* required to plan
a path, which is not feasible for the onboard computational
capabilities. In fact, industrial vehicles often operate in dirty
and dusty environments, requiring onboard PCs that can
passively dissipate heat and are very robust, such as those
used in the ceramic industry.

Another issue with Hybrid A* in this environment is the
excessive length of the reverse portion of the path generated
by the analytic expansion phase of the algorithm. Due to the
nature of the Reeds-Shepp curves, the generated portion of
the path can sometimes be characterized by a long reverse
section. It is usually preferable for industrial vehicles to
navigate in reverse as little as possible because this condition
is considered less safe. The cause is due to the presence
of loads and tools, which make the perception of sensors
more complex and computationally demanding. Because of
the limited processing power of the vehicle’s computer,
this situation must be minimized. For these reasons and
because of the high cost of the sensors, attempts are made
to concentrate the driving mostly in the forward direction.

Lastly, Hybrid A* does not provide a path that includes
highly precise and repeatable maneuvers for machine entry
and exit and battery charger docking. Due to the optimization
process, the algorithm will produce different path shapes
in the initial and final parts depending on the position of
obstacles within the environment. In the industrial field,
there are often non-functional requirements and demands
from customers regarding the docking of mobile vehicles. To
meet these requirements, it is necessary to define, control,
and modify the path in advance. Hence, it is important to
introduce the ability to manage the geometric shape of the
initial and final parts of the path.

In the following chapter, the Roadmap Hybrid A* and
Waypoints Hybrid A* algorithms will be proposed as solu-
tions to improve performance and solve the aforementioned
problems.

III. PROPOSED SOLUTIONS

In order to overcome the issues that have arisen from the
standard version of Hybrid A* in the industrial environment
described in Section II, two new global path planners are
presented: Roadmap Hybrid A* and Waypoint Hybrid A*.
For the development of both algorithms, some preliminary
steps were required. To begin, the map was divided manually

Fig. 2. The image shows the topological map of the plant, highlighting
areas with green borders containing machines and narrow corridors marked
in pink. The map features Bezier curve segments, with the red curves driven
forward by the vehicle and the blue ones in reverse. Furthermore, the legend
identifies the different types of segments used in corridors and entry and
exit maneuvers.

into rectangular zones. This division aimed to provide a
topological representation of the environment, composed of
machine servicing areas and corridors. The former are repre-
sented by green rectangles, while the corridors are depicted
by pink rectangles, as shown in Fig. 2. A topological graph of
the plant was then set up using the NetworkX [6] library by
imposing the connections between these rectangular zones.

To complete the preliminary steps required for imple-
menting the algorithms, we manually designed the corridor
segments and the machine entrance and exit segments for
the AMR using Bezier curves. The corridor curves were
drawn in the center to maximize the distance between the
AMR and the walls, while machinery entry and exit curves
were designed in order to minimize the vehicle footprint
while maneuvering and ensuring safety. To accomplish this,
we carefully selected the control points of each Bezier
curve so as to obtain a collision-free and feasible path. The
former condition is achieved by applying a collision checking
algorithm that compares the bounding box of the vehicle
with the grid map cells on the traversed poses. The latter
condition is achieved by checking the maximum curvature of
each curve segment and ensuring that consecutive segments
have matching tangents to guarantee smoothness. In Fig. 2,
the red segments represent the forward fixed sections of the
path traveled by the AMR, while the blue segments represent
the reverse ones. The blue segments are only used for the
entrance to the machines, as the uploading and downloading
tool is located at the back of the vehicle.

Then we collected the connectivity relationships between
all the curves into a graph, on which a graph search algorithm
is applied to extract the fixed path parts needed to form
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Fig. 3. Roadmap Hybrid A* path planned from node 13 to 19.The legend
identifies the exit path, Hybrid A* path, corridor path and entry path parts.

the final path of the proposed algorithms. In conclusion, the
topological map graph and the Bezier curve segment graph
are obtained in order to implement the Roadmap Hybrid
A* and Waypoint Hybrid A* algorithms, as detailed in the
following subsections.

A. Roadmap Hybrid A*

In this subsection, we propose Roadmap Hybrid A*,
a novel path planning technique for autonomous mobile
vehicles subject to non-holonomic constraints. The technique
combines two different methods: a graph search algorithm
applied to fixed segments and the Hybrid A* algorithm. The
former is used in obstacle-free zones and for maneuvering
in and out of machines to guarantee a robust and predictable
path. The latter provides flexibility and the ability to navigate
around obstacles in more dynamic areas.

Roadmap Hybrid A* uses the start and goal nodes of the
vehicle, the Bezier segment graph, the topological graph, and
the grid map as input to initiate the planning process. The
first step is to identify the entry and exit paths as well as the
corresponding attachment and detachment nodes. The exit
path is the fixed segment curve that allows the vehicle to
safely exit the starting machine and whose end points are
the start and detachment nodes, as shown in 3. Following
the same principle, the entry path is the fixed curve that the
AMR must travel to enter the target station and whose end
points are the goal and detachment nodes. The attachment
and detachment nodes serve as transition points between the
free motion of the vehicle provided by Hybrid A* and the
fixed path during the exit and entry processes.

The next step involves determining the start and goal areas
using the Even-Odd rule [5], applying it to the rectangular
areas, and using the positions of the start and goal ma-
chine nodes. If the initial area matches the target area, the

detachment pose is directly connected with the attachment
pose using Hybrid A*. If, on the other hand, the start and
goal areas are different, Roadmap Hybrid A* uses Dijkstra’s
algorithm to determine the sequence of areas that the vehicle
must traverse. The sequence of corridors, the Bezier curve
paths within them, and the corresponding ordered end point
list that the vehicle must traverse are also found at this stage.
Subsequently, the fixed-path segment endpoints, as well as
the attachment and detachment nodes, are connected using
standard Hybrid A*: the detachment pose is linked to the
first endpoint, the even-indexed endpoints are linked to the
odd-indexed ones, and the last endpoint is connected to the
attachment node.

Finally, the exit path, corridor path, Hybrid A* paths, and
entry path are concatenated to produce the final output of the
algorithm. An example of RoadMap Hybrid A* is shown
in Fig. 3. Further information and the pseudocode of the
algorithm can be found in [1].

B. Waypoint Hybrid A*

In this subsection, the Waypoint Hybrid A* path planner
is presented. The implementation of this algorithm aimed
to evaluate the cost-effectiveness of using waypoints in
narrow corridors compared to the static roadmap employed
in Roadmap Hybrid A*.

Waypoint Hybrid A* takes inspiration from the planner de-
scribed in [16], where waypoints were generated by applying
a visibility graph and then connected by means of Hybrid A*.
In [16], it has been found that using waypoints to guide the
Hybrid A* to its destination results in a 40% faster run-time.
In this research, we propose to adapt the waypoints principle
in a slightly different way in order to speed up computational
time while also trying to avoid oscillating paths produced by
Hybrid A*, as described in Section II.

Waypoint Hybrid A* uses the start and goal nodes of
the vehicle, the Bezier segment graph, the topology graph,
and the grid map of the environment as input. To begin the
planning process, as explained with Roadmap Hybrid A*
in Subsection III-A, the algorithm finds the entry and exit
paths as well as the attachment and detachment nodes. After
that, the initial and target areas are determined by applying
the Even-Odd rule to the rectangular shape zones and the
start and goal node positions. If the starting and target areas
are different, the algorithm employs Dijkstra’s algorithm to
determine the sequence of areas through which the vehicle
must pass. The ordered sequence of waypoints is then defined
as the sequence of midpoints of the free space connection
width between consecutive zones.

Subsequently, the waypoints, the attachment node, and the
detachment node are connected using standard Hybrid A*.
The detachment pose is connected to the first waypoint, and
then each waypoint is connected with its successor except
for the last one, which is connected with the attachment
node. If, on the other hand, the initial area matches the
target area, the detachment pose is directly connected with
the attachment pose using Hybrid A*. It is worth noting that,
if this condition is verified, the output of Roadmap Hybrid
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Fig. 4. Waypoint Hybrid A star path planned from node 13 to 19. The
legend identifies the exit path, Hybrid A* path and entry path parts.

A* and Waypoint Hybrid A* is exactly the same. Finally, the
exit path, Hybrid A* paths, and entry path are concatenated
to produce the final path of the algorithm, as shown in Fig. 4.
Further information and the pseudocode of the algorithm can
be found in [1].

IV. SIMULATION AND RESULTS

This section describes the simulation approach, compar-
ison metrics, and result analysis of Hybrid A*, Roadmap
Hybrid A* and Waypoint Hybrid A*, whose operating prin-
ciples have been described in the previous chapter. The
simulation was implemented using Python 3.10 and was run
on a laptop with the following hardware specifications: an
Intel I7 12700H processor and 16 GB of RAM.

To evaluate all potential routes a vehicle could take on this
map, all two-element permutations of machine nodes were
simulated as source and goal node pairs (qstar, qgoal). With
11 machine stations, the two-element permutations result
in 110 pairs, and for each pair, the three path planning
algorithms were executed, obtaining 330 total different paths.

A. Metrics

This subsection describes the metrics calculated to eval-
uate the simulation results and compare the three path
planners. First, the execution time of the algorithm is crucial
since the AMR has limited computational resources on
board and must perform multiple tasks in addition to route
planning. Therefore, it is desirable to keep this value as
low as possible. Total path length is an important metric
that should be minimized, as shorter paths generally lead to
greater energy efficiency for the robot and reduced mission
time. In addition, this metric gives us information about
the presence of oscillations as they produce longer paths
than necessary. Reverse length was also taken into account

because the loads and tools placed at the back of AMR make
the perception of sensors more complex and computationally
demanding. It needed to be as short as possible in order to
increase safety and ensure low costs.

To obtain the last two metrics studied in this research, the
Model Predictive Controller (MPC) [8], [9] path tracking
algorithm was used. In particular, we choose the model
predictive speed and steering control version from the
PythonRobotics [15] library, which is based on a linearized
vehicle model. The MPC parameters were set to ensure
that the vehicle followed the planned routes as closely as
possible during the simulation. To achieve this behavior,
small values were set for the difference cost and input cost
matrices to avoid limiting the system’s inputs and make it
more responsive in following the trajectory. In addition, the
final state cost was also made very small to prevent the
vehicle from cutting corners and make trajectory tracking
more accurate.

From the MPC controller, the travel time and the maxi-
mum acceleration acting on the vehicle during the simulation
are obtained. The latter is obtained by summing, for each
instant, the tangential acceleration (at) provided by the MPC
and the centripetal acceleration (an) calculated from the
curvature (C) of the path, according to the following formula:

a = at + an = at + v2C. (1)

It is desirable to minimize both of these metrics in order to
increase productivity and decrease the forces acting on the
vehicle and load during travel.

B. Results Analysis

After conducting the simulation, the result data was col-
lected, and the average values of the metrics were calculated,
which are shown in Table I. The results showed that, on
average, RoadMap Hybrid A* has a lower computational
time compared to that of standard Hybrid A* by 80 %. The
reason is that the use of fixed segments in narrow passages
allows for finding a robust path in a shorter amount of time,
while the original algorithm must expand the search through
many nodes before correctly finding the passage and building
a path that respects the non-holonomic constraints of the
AMR. The Waypoint Hybrid A* has an intermediate average
value that is still very good for this kind of application.
The use of waypoints tends to direct the algorithm towards
the optimal path, resulting in a reduction in the number of
searched nodes.

The total length of all three path planners is similar,
with RoadMap Hybrid A* and WayPoint Hybrid A* having
slightly shorter routes. This is because the two modified
versions of Hybrid A* eliminate oscillations in narrow
corridors, resulting in shorter paths. Both the use of fixed
curves in RoadMap Hybrid A* and the use of waypoints in
WayPoint Hybrid A* prove to be excellent ways to improve
the performance of standard Hybrid A*, which produces
longer indirect paths in tight spaces, as shown in Fig. 5.

It can also be observed in Table I that the standard
Hybrid A* is characterized by a longer reverse path for
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TABLE I
AVERAGE VALUE OF METRICS CALCULATED ON THE PATHS GENERATED

BY HYBRID A*, WAYPOINT HYBRID A*, ROADMAP HYBRID A* FROM

START AND GOAL POSE PAIRS OBTAINED FROM THE PERMUTATION OF

MACHINE NODES IN THE PLANT CONSIDERED IN SECTION II.

HA* Waypoint HA* Roadmap HA*
Computation Time [s] 0.26 0.11 0.05

Total length [m] 61.86 61.69 61.17
Reverse length [m] 13.93 6.93 6.93

Path time [s] 47.67 47.31 46.99
Max accel. [m/s2] 1.81 1.80 1.79

Fig. 5. Comparison between Hybrid A*, Roadmap Hybrid A* and
Waypoint Hybrid A* paths.

machine entry. This is evident in the table, where the average
value of reverse length for Hybrid A* is slightly more than
double that of the other two solutions. As explained earlier
in Subsection IV-A, this makes Roadmap Hybrid A* and
Waypoint Hybrid A* the preferred solutions. The reverse
path for both Roadmap Hybrid A* and Waypoint Hybrid
A* is given by the fixed segments, and for this reason, it has
the same length value.

The path time obtained by using the MPC follows the
same considerations as for total length, with a shorter time
obtained from RoadMap Hybrid A*. Finally, the maximum
acceleration experienced by the vehicle is very similar in
all cases. Although the differences are small, excessive load
acceleration can be a safety concern if objects are not
properly secured or if fragile materials are being transported.

To test the performance of the algorithms proposed in this
study more objectively, a new, larger industrial environment
was constructed. This allows for studying how performance
scales with increasing map complexity. The new environment
is characterized by dimensions of 100 meters in width and
50 meters in height, represented by a grid with a resolution
of 0.5 meters. The structure of areas with serving machines
and corridors remains the same as in the original facility, as

TABLE II
AVERAGE VALUE OF METRICS CALCULATED ON THE PATHS GENERATED

BY HYBRID A*, WAYPOINT HYBRID A*, ROADMAP HYBRID A* FROM

START AND GOAL POSE PAIRS OBTAINED FROM THE PERMUTATION OF

MACHINE NODES IN THE LARGER INDUSTRIAL ENVIRONMENT.

HA* Waypoint HA* Roadmap HA*
Computation Time [s] 0.37 0.29 0.13

Total length [m] 85.98 82.96 82.61
Reverse length [m] 20.25 6.52 6.52

Path time [s] 65.1 62.64 62.45
Max accel. [m/s2] 1.82 1.81 1.81

Fig. 6. Comparison between Hybrid A*, Roadmap Hybrid A* and
Waypoint Hybrid A* paths in the larger scenario.

shown in Fig. 6.
In particular, there are 14 serving stations that translate

into 182 pairs (qstar, qgoal), produced by two-element per-
mutations of the station nodes. For each of these pairs, the
three algorithms were simulated, and data related to a total of
546 different paths was collected. From the collected data,
the averages related to the computation time, total length,
reverse length, path time, and max acceleration metrics were
calculated. The values are reported in Table II.

Regarding computation time, it can be observed that the
results resemble those of the original environment. Roadmap
Hybrid A* confirms itself as the best of the three, while Way-
points Hybrid A* is positioned in an intermediate position.
However, the differences with respect to the previous results
have become smaller, with Roadmap Hybrid A* registering
a 65% reduction and Waypoint Hybrid A* a 22% reduction
compared to the result of the original version of Hybrid A*.

Regarding total length and reverse length, Roadmap Hy-
brid A* and Waypoint Hybrid A* are characterized by
much lower values than Hybrid A*. The roadmap and the
waypoints guided the node search, generating a path without
unnecessary steering actions and guiding the reverse phase
for the vehicle’s entry into the machine. Even in this case, the
reverse length value for Roadmap Hybrid A* and Waypoint
Hybrid A* is the same because the fixed reverse segments
for both algorithms are the same.

In this scenario, the path time also reflects the results ob-
tained with the original facility, with Roadmap and Waypoint
Hybrid A* showing lower values than those of the standard
Hybrid A*. Finally, all three algorithms record practically
identical values regarding the maximum acceleration.
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In conclusion, the simulations conducted suggest that the
Roadmap Hybrid A* and Waypoint Hybrid A* algorithms
are more efficient and effective path planners compared to the
standard Hybrid A* algorithm in terms of computation time,
total path length, reverse length, and path time. By utilizing
knowledge of the map and plant topology to reduce route
complexity, Roadmap and Waypoint Hybrid A* algorithms
can generate better routes in less time while maintaining
flexibility and obstacle avoidance capability where needed.
Furthermore, both algorithms address the critical aspects of
eliminating Hybrid A* oscillations within the corridors and
controlling machine entry and exit trajectories.

However, one disadvantage of Roadmap Hybrid A* and
Waypoint Hybrid A* is that they require prior knowledge of
the robot’s operating environment. Additionally, the opera-
tion of these algorithms requires the design of a topological
map and fixed Bezier curves, which can be time-consuming
for large workspaces, particularly for Roadmap Hybrid A*.
Therefore, if the AMR does not have strict constraints on
the execution time of the path planning algorithm, the use of
Waypoint Hybrid A* can be more convenient as it eliminates
the need to draw the segments in the corridors by taking
advantage of the automatically generated waypoints from
the topological map. However, if drawing segments in the
corridors is not a problem, as it is a one-time operation that
needs to be performed, Roadmap Hybrid A* demonstrated
the best performance in the simulation of the two scenarios
studied in this research.

V. CONCLUSIONS

Two new global path planning algorithms for autonomous
mobile robots have been developed in this study. They are
both derived from the standard version of Hybrid A* and thus
are made to account for the nonholonomic constraints of the
robot. Both algorithms enabled the elimination of Hybrid A*
oscillations within the corridors by producing smooth paths,
as well as the control of machine entry and exit trajectories,
which are critical requirements in industrial settings.

In terms of computational time, total path length, re-
verse length, travel time, and vehicle acceleration, simulation
results in two industrial environments showed that both
Waypoint Hybrid A* and Roadmap Hybrid A* outperformed
the standard version of Hybrid A*. These results indicate
that knowledge of the topology of the environment and the
definition of fixed-segment curves can significantly reduce
the complexity and number of nodes sought to reach the
goal while improving the quality of the path and maintaining
flexibility and obstacle avoidance capability.

Future research will aim to validate the results found in
this research by testing Waypoint Hybrid A* and Roadmap
Hybrid A* in different environments. These algorithms have
the potential to enhance the performance of industrial AMR
and contribute to the development of more efficient and
reliable path planning methods.
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Assisted Localization of MAVs for Navigation in Indoor Environments
Using Fiducial Markers

André Kirsch1, Malte Riechmann1 and Matthias Koenig2

Abstract— Micro aerial vehicles (MAVs) are often limited
due to weight or cost constraints. This results in low sensor
variety and sometimes even in low sensor quality. For example,
many MAVs only offer a single RGB camera to capture the
environment, apart from simple distance sensors. On the other
side, maps of complex environments are typically captured
using depth sensors like Lidar, which are not found on such
drones. For MAVs to still benefit from and use these maps,
it is necessary to implement a connection layer that enables
the localization of the MAV in these maps. In this paper, we
propose to use fiducial markers that can be recorded by an
assisting device, e.g., a mobile phone or tablet, responsible for
map creation. These fiducial markers have a known pose in the
map and can be detected by a drone’s RGB camera to localize
itself. We show that the markers are localized in the map
creation process with high precision and that the drone is able
to determine its pose based on detected markers. Furthermore,
we present a ROS 2 based drone controller for a Ryze Tello
EDU MAV that uses an occupancy voxel map for navigation.

I. INTRODUCTION

When multiple robots or devices work together and ex-
change positional information, they need to operate in the
same coordinate frame. For example, vacuum cleaning robots
and mowing robots build their own maps. They are equipped
with the necessary sensors to construct such maps of the
working area in their initialization phase. When they are op-
erating, the same sensors are then used to localize themselves
in the previously created map. This is possible because the
initial and previous pose of the robot in the map is known.
But sharing the positional knowledge with other robots or
devices is not possible until their pose in the coordinate frame
of the map is also known. This problem is known as the
global localization problem. A popular method for solving
the problem is the particle filter, also known as Monte Carlo
localization [1], where sets of pose estimates are placed into
the map and evaluated in a Predict-Update-Resample loop.

But not all robots and devices share the same types of
sensors. For example, occupancy maps are typically gener-
ated using range sensors like Lidar, which are not present
in all devices. Micro aerial vehicles (MAVs) are often only
equipped with a single RGB camera due to weight constraints
that makes it unfeasible to create complex 3D occupancy
maps. Still, they might need such maps for path planning
and navigation. This is especially true in GPS-denied areas

1Campus Minden, Bielefeld University of Applied Sciences and Arts,
32427 Minden, Germany firstname.lastname@hsbi.de

2University of Southern Denmark, 6400 Sønderborg, Denmark
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Fig. 1. Comparison of the real environment on the left and the generated
3D occupancy map including the localized fiducial markers and the localized
MAV on the right. The left image shows the markers printed on paper and
hung up on the walls as well as the MAV. In the right image, the markers
can be seen as the darker colored voxels in the occupancy map. The MAV is
shown as the coordinate frame in the center of the right image. The yellow
rays show the relation between the map origin and frame positions.

like indoor environments. A solution to this is to assist in the
map creation process by utilizing a second device with better
capabilities. The second device is able to create a much more
precise map with richer information that allows for global
localization of the MAV for navigation and path planning by
incorporating marker locations into the map data.

In this paper, we propose to use a tablet equipped with
a Lidar sensor to create a 3D occupancy map and localize
fiducial markers using the same sensor data as for the map
creation. A 3D occupancy map containing localized markers
in comparison to the real environment is shown in Figure 1.
The fiducial markers allow the MAV to estimate its position
by detecting and localizing the pose of the markers in its
own coordinate frame. Since the pose of a fiducial marker
is known for both coordinate frames, the MAV’s local frame
and the occupancy map frame, the pose of the MAV in the
occupancy map frame can be determined. The pose enables
the MAV to use the occupancy map for path planning and
navigation. In summary, the main contributions of this paper
are

1) a pipeline for localizing fiducial markers while creating
a 3D occupancy map using an assisting device and

2) a ROS 2 [2] package for autonomous navigation of
a Ryze Tello EDU MAV using fiducial markers for
localization and a voxel map for navigation planning.

The remaining of the paper is split into related work
(Section II) followed by Section III in which the process of
map creation and fiducial marker localization is described.
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Section IV is about the MAV controller package for ROS 2. It
describes how it uses the information, generated as described
in the previous section, for localization and path planning. In
Section V, the proposed work is evaluated, and a conclusion
is given in Section VI.

II. RELATED WORK

In the following, we describe related work regarding robot
localization and fiducial markers.

A. Robot Localization

One major problem in robotics is localization, which is
often coupled with mapping to form the SLAM problem. But
in many cases, a map has already been captured and a robot
only needs to be localized in that map. A popular option is to
use visual natural or artificial features. For example, FAPM-
L [3] uses a feature-annotated polygon map to localize UAVs
in an indoor environment. The map was designed to allow
for localization. They extract keypoints from 2D images
and find matching 3D landmarks in the polygon map that
have been extracted from the map a priori. Similarly, Yu
et al. [4] obtain coarse 2D-3D line correspondences between
2D images and Lidar maps based on visual-inertial odometry,
which are refined in a second step. Wang et al. [5] employ
visual features known as ORB [6] to relocalize a mobile
robot to avoid drift in a 2D case. All three approaches use the
information that is available in the environment, but might
be susceptible to a low number of natural features.

A possible solution to this is to add artificial features
like fiducial markers to the environment, like in [7] and
[8]. Javierre et al. [7] use fiducial markers to assist in 2D
localization combined with omnidirectional vision. Houben
et al. [8] localize sparsely distributed fiducial markers while
building a map using a laser scanner mounted on an MAV.
The MAV is first localized through the laser scanner and can
later be localized through marker detection with the advan-
tage of much higher frequency compared to the laser scanner.
Our approach differs in that we require an assisting device
that is used for the map creation and marker localization
process. The MAV only relies on the fiducial markers for
localization in our case. Also, we go one step further and
create a voxel-based occupancy map for navigation.

B. Fiducial markers

Because of the possible lack of natural features in the
environment, fiducial markers are a popular method to
add artificial features into the environment. Some of their
biggest advantages compared to natural features is their
uniqueness and the ease of detectability. Many fiducial
marker implementations like ARTag [9], AprilTag [10], and
ArUco [11] have a square border, in which a unique ID
number is encoded. This ID number enables the distinct
identification of the marker. The individual implementations
typically differ in false detection rate, number of unique
IDs and their inter-marker distance, handling of occlusion,
and localization accuracy as well as their visual design.
While the inner image of a marker encodes the ID number,

a square border of a fiducial marker is used for 6 DOF
localization. A marker commonly used in robotics is the
ArUco marker [11]. It is a highly configurable marker with
different code lengths, allowing either high marker count
or high inter-marker distance. Furthermore, it includes error
detection and correction. The pose is estimated using a
Perspective-n-Point algorithm.

In contrast to square markers, there also exist circular
markers like RUNE-Tag [12]. RUNE-Tag encodes its ID
numbers using smaller circles inside rings of a larger circle.
Circular fiducial markers have the downside, that they require
multiple markers to be detected for localization. The RUNE-
Tag marker has the disadvantage, that it can only be detected
at lower distances. On the other hand, ist has a more accurate
detection as well as better robustness against occlusion
because it does not rely on few geometrical features like
the corners of a square marker. STag [13] is a marker that
combines the advantages of the square and circular approach
by incorporating a circular encoding and a larger circular
border as well as a square border into the marker design.
Despite the advantages of STag, we use the ArUco marker
in our approach, as this is the more commonly used marker.

III. ASSISTING DEVICE

Due to the lack of required sensors, an MAV might be
unable to capture all the necessary information about the
environment. To provide such data, an assisting device can
be used to capture additional map data and make it available
to the MAV through a localization layer. We chose an
Apple iPad 2020 Pro as the assisting device, which features
a Lidar sensor. It runs an application that captures depth
images as well as corresponding RGB images and pose
information. This data is made available to a ROS 2 node
that is responsible for creating the 3D occupancy map and
localizing fiducial markers.

A. Map creation

The map that is created is a 3D probability-based occu-
pancy map. The map creation process is GPU-accelerated
and requires a depth image with a corresponding RGB image,
the intrinsic camera parameters, and the tablet’s pose infor-
mation. Based on the intrinsic camera parameters, the depth
image is transformed to a point cloud with attached color
information. The point cloud is inserted into a voxel grid
with regard to the tablet’s pose by updating the occupancy
probability of each voxel. To use the voxel map with ROS 2
and the MAV controller, it is converted into an octomap [14].

B. Fiducial marker localization

The main goal of the fiducial marker localization is to
make their global poses available to the MAV. The fiducial
marker localization is done using a three-step procedure:

1) First, the fiducial markers are detected on the RGB
images captured by the tablet. The detection is a
standard method that returns the image coordinates of
the four corner points of the ArUco marker and its ID.
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2) Using the camera’s intrinsic parameters and the image
coordinates of the corner points, a Perspective-n-Point
(PnP) pose computation is applied to get the 3D pose
Ttablet−→fiducial X of the detected marker relative to
the camera.

3) Since the tablet’s global pose Tmap−→tablet in the map
is known, the global pose of the detected markers can
be calculated using the formula

Tmap−→fiducial X = Tmap−→tablet×Ttablet−→fiducial X .
(1)

While generating the 3D occupancy map, a second map
containing all detected markers is created as well. Both maps
share the same origin. For each marker, the pose and an ob-
ject (localization) error is known. When the fiducial marker
localization detects a new marker, it is directly inserted into
the map. If the map already contains that marker, its pose is
updated when the object error of the new detection is less
than the current object error. The object error eo is based
on the reprojection error er, which is calculated using the
formula

er =
1

4

4∑

i=1

d(oi, ri) (2)

where 4 refers to the number of outer corner points of the
fiducial marker, and with d(oi, ri) being the distance between
the original corner point oi and the reprojected corner point
ri based on the pose. The object error can be calculated using

eo =
er
d
× ∥t∥

L
, (3)

where d is the distance between two diagonal corners of
the fiducial marker, t is the translational part of Trel marker

and L is the length of the marker. The poses and IDs of the
fiducial markers are made available to the MAV controller.

IV. MAV CONTROLLER

The MAV controller is a ROS 2 node that can control a
Ryze Tello EDU MAV. The Ryze Tello EDU is a small drone,
weighing only 80 grams and allowing up to 13 minutes of
continuous flight. It comes with a 5 MP front camera and
can be controlled through Wi-Fi. An official SDK that can
be accessed through UDP is provided by the manufacturer,
which supports sending text-based commands and receiving
status information and a video stream. The Ryze Tello EDU
supports the version 2.0 of the SDK by default, but can be
updated to support commands from the current version 3.0.
The library that the developed ROS 2 node uses internally is
CTello [15]. CTello is a small library written in C++, which
allows direct access to the SDK commands.

The ROS 2 node is split into three parts, where one is
responsible for publishing state information made available
by the drone. The drone publishes its state in 10 Hz intervals.
The state information contains IMU sensor data, battery
percentage, and height among others. This information is
made accessible through standard ROS topics, which im-
plement the publish–subscribe pattern. The second part, the

camera publisher, handles the video stream of the MAV. It
updates the drone’s camera settings like resolution and fps
and starts the camera stream. A UDP socket is created to
listen for incoming video data and publish it through ROS 2.
Furthermore, the intrinsic camera parameters are published,
which have been determined prior using camera calibration.

The third part of the ROS 2 node is the movement
controller. It provides ROS topics to directly send SDK
commands like takeoff, land, or emergency to the drone.
Two additional features of the movement controller are
auto cooling to prevent automatic drone shutdown and auto
landing interrupt to prevent the drone from landing auto-
matically when it does not receive a new command within
ten seconds. Furthermore, it supports sending remote control
commands through a /cmd vel topic for joystick control. An
additional ROS 2 node allows for converting button presses
into the other necessary commands that were mentioned
prior. Another ROS topic /move to accepts global position
commands and makes the drone move to that location based
on its localized position. The third option for moving the
drone is to use the move action. The move action is capable
of handling more complex movement commands by using
path planning.

A. MAV localization

To localize the drone in the map, we use odometry data
provided by the drone and the fiducial markers detected in the
map creation process. The odometry data allows for smooth,
continuous pose determination which is described as the
relation between the odom and base link frames, while the
fiducial markers ensure that the drone is correctly positioned
globally. This is shown by the relation between the map
and odom frames. The relation between map and base link
therefore is the pose of the drone relative to the map.

a) odom −→ base link: The SDK of the Ryze Tello
EDU makes available only an acceleration vector, a velocity
vector and the height with an update rate of 10 Hz. The
acceleration vector contains the unprocessed data of the
accelerometer. The velocity vector and height are measured
in dm/s and cm, with both having a resolution of ten
centimeters. The height value is relative to the height at
takeoff. We decided to use the velocity vector and the height
value for determining the translation from odom to base link
because they are more accurate over a longer time period
than the acceleration data. With pt being the drone’s position
at time t and vt being the velocity at that time, the position
at time t+ 1 is calculated by pt+1 = pt + vt.

Since an absolute value for the height of the drone
is known, the calculated height value is replaced by the
measurement. As the roll, pitch, and yaw values are provided
by the gyroscope of the drone, they are published as the
rotational part of the transformation.

b) map −→ odom: The map −→ odom transformation
determines the global pose of the drone in the map and cor-
rects the odom −→ base link transformation if necessary. For
calculating the transformation, fiducial markers are detected

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

140



Fig. 2. The MAV captures RGB images, on which fiducial markers are localized. Since the global poses of the markers are known, the pose of the MAV
can be inferred. The center image shows a section of the map, in which the MAV is positioned. Fiducial markers can be seen on the walls. The yellow rays
in the image show the relation between individual markers and the map origin. On the right, an overview of the occupancy map with a size of 10 × 8 m
is shown, which is also used for evaluation.

and localized like described in Section III-B except that only
the relative pose to the drone’s camera is determined.

Because the global pose of the fiducial marker as well
as its pose relative to the drone camera is known, a loop
is formed. Within the loop, the transformation between map
and odom can be calculated using

Tmap−→odom = Tmap−→fiducial X

× T−1
odom−→fiducial X ,

(4)

where Todom−→fiducial X is calculated by

Todom−→fiducial X = Todom−→base link

× Tbase link−→camera

× Tcamera−→fiducial X .

(5)

Every T is a transformation matrix describing the trans-
formation between the frames mentioned in the subscript.

We differentiate between two different methods to deter-
mine the final pose of the MAV, which will both be evaluated.
If only a single marker is detected in the image, both methods
lead to the same result. When multiple markers are detected,
the first method uses the fiducial marker with the lowest
object error for localization. The second method calculates
a weighted average pose for all fiducial markers based on
their object error. With both transformations map−→odom
and odom−→base link given, the global pose of the drone
is known. This enables the use of the occupancy map for
path planning.

B. Path planning and navigation

The navigation part of the MAV controller allows a user
to define a goal position, to which the drone is able to fly
autonomously. To this end, three steps need to be executed.
The first step is to generate a costmap based on the occu-
pancy map provided by the assisting device. In the second
step, a path is planned based on the generated costmap. The
third step is to move the drone based on the planned path.

a) Costmap generation: The costmap is required for
global path planning for the drone. Its difference to the
occupancy map is that it has a lower resolution and occupied
areas are inflated. We decided to use a resolution of 0.2 m

compared to 0.025 m of the occupancy map as this is the
minimum distance the Ryze Tello EDU drone requires to
execute the go command of the SDK. Also, it reduces the
time required for path planning and generated the costmap.
The inflation is done by calculating the distance of each
voxel that is not occupied to the nearest occupied voxel. If
the distance is less than 0.3 m, the current voxel is marked
as occupied in the costmap. Inflating ensures that the drone
does not move too close to obstacles and makes room for
localization errors. If a voxel is already marked as occupied
in the occupancy map, it is directly set as occupied in the
costmap as well. Voxels with a larger distance to the nearest
occupied voxel are marked as free. We do not differentiate
between free and unknown voxels, as we assume that the
occupancy map has been fully created and the goal position
is placed in known space.

b) Path planning: For path planning, we use the A*
algorithm, where the nodes are represented by the voxels of
the costmap. The standard A* algorithm is improved in the
following three ways:

1) When the drone is localized inside an occupied voxel,
a tunnel is created to find the nearest free voxel for
path planning. This is necessary for a drone that is
landed because the ground is inflated as well.

2) The generated path contains many positions with a
small distance between each other. To make the drone
movement more fluent, only the last position of a
straight line of unoccupied voxels are kept.

3) Since there is the possibility that no path can be found,
the path planning uses a timeout. If the path planning
takes too long, the current best path is returned even
if it is not finished.

c) Navigation: The navigation is done by using the
provided move to topic that accepts a single goal position. It
is required that the drone has already taken off. A flight state
is published by the MAV controller that contains information
about the flying and hovering state of the drone. After the
first movement command is sent, the navigation part waits
until the drone has entered the hovering state again. Then, it
sends the next movement command using the next position
of the path until the drone has reached its final destination.
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V. EVALUATION

In this section, the accuracy of the fiducial marker localiza-
tion and the accuracy of the drone localization are evaluated.
For both parts, the method is described first. Then, the results
are presented and discussed.

A. Fiducial marker localization

For accurate drone localization, the fiducial markers need
to be positioned accurately in the map. Therefore, we first
validate the correct localization of the fiducial markers by
the assisting device. The goal of this experiment is to show
that the localization results in later experiments are valid for
both the occupancy map and the fiducial markers.

a) Method: We compare the poses of the fiducial mak-
ers based on the localization using RGB images as described
in Section III-B and their poses in the occupancy map. The
pose in the occupancy map is used as ground-truth. Because
the occupancy map we use is colored, the fiducial markers
are visible in the occupancy map and their center and rotation
can be determined. The resolution of the occupancy map is
0.025 m and the length of the markers is 0.135 m. Due to
the voxel-based structure of the occupancy map, we restrict
the placement of fiducial markers to only 90 degree angles in
the real world. When capturing an occupancy map, we make
sure that the assisting device is oriented correctly so that a
fiducial marker has a flat surface in the occupancy map.

For evaluation, we generate 10 maps, with each containing
76 markers. For every map, we randomly select 10 out of
the 76 markers for evaluation, resulting in a total of 100
evaluated markers. If the occupancy map visualization of a
marker is not sufficient for ground truth pose estimation, we
randomly select a new marker. For each marker, the trans-
lational and rotational error is determined. The translational
error is calculated using the Euclidean distance between the
marker position based on RGB image localization and the
position of the center of the marker in the occupancy map.
The rotational error is calculated using

d(q1, q2) = 1− ⟨q1, q2⟩2, (6)

where q1 and q2 are the orientations of the fiducial marker
as quaternions.

b) Results: The mean translational error is 0.083 m
with a standard deviation of 0.077 m. For the rotational error,
the mean is 0.22° with a standard deviation of 0.62°. The
median values are 0.064 m and 0.09°, respectively. These
results show that it is possible to localize the fiducial markers
with high accuracy. This enables the use of the occupancy
map for navigation, while for localization only the markers
are required.

B. Drone localization

For the final evaluation, we test the accuracy of the
proposed drone localization. We compare both methods of
drone localization using a single marker selected based on the
object error and using the weighted average of all detected
markers in an image.

a) Method: To evaluate the localization accuracy, we
simulate a drone flight by manually positioning a drone 200
times in the map and determining its pose based on the
fiducial marker localization using both methods and based
on the localization of the assisting device, which we use
as ground-truth data. We first create a map and localize the
fiducial markers using the assisting device. Then, we position
both the drone and the assisting device at the same random
locations in the environment and determine their pose. We
use a static offset for the pose of the assisting device, so
that we can position both the device and the drone at the
same time. We evaluate the localization of the drone by
determining a translational and rotational error using the
same formula as in the first experiment. Since we want to
manually position the drone as realistically as possible, we
first conduct an actual drone flight in the test environment
to determine the distribution of the marker counts in the
drone images. We then collect drone images that resemble
the distribution as close as possible.

Fig. 3. Distribution of marker counts of the statically collected test data
compared to an actual drone flight. Zero markers were detected in 24.2 %
of all captured images of the drone flight.

b) Results and discussion: Test data has been captured
with a similar marker count distribution as shown in 3. The
mean distance between the drone and the markers is 2.18 m.

The results of the drone localization show that both meth-
ods have a similar overall accuracy for translation and rota-
tion. The mean translational errors are 0.26 m±0.40 m and
0.28 m±0.42 m for single marker localization and weighted
average localization, respectively. The rotational errors are
2.0°±3.8° and 2.4°±5.2°, respectively. The median error is
lower for both methods, with 0.13 m and 1.1° for single
marker localization and 0.12 m and 1.1° for weighted average
localization. Figure 4 contains more detailed information
about the results. Our results are slightly better compared to
Houben et al. [8] who localized the markers while creating
the map using a drone instead of an assisting device. They
measured an accuracy of 0.50 m±0.85 m (median: 0.19 m)
and 10°±15° (median: 4°) for images with a single marker
taken at distances between 0.61 m and 4.99 m in their test
environment.

We noticed that the accuracy in translation heavily depends
on the distance between the drone and the detected markers.
This is not the case with the rotation. Since a larger distance
to the markers is required to capture multiple markers, the
accuracy for images with multiple markers decreases for both
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Fig. 4. Translational and rotational error of the drone localization for a
single, two, and four markers. The figure shows the results for single marker
localization (Single) and weighted average localization (Avg.). The results
for one marker in an image is only shown once, since both methods share
the same results.

methods. Additionally, we noticed that the marker detection
algorithm started not detecting markers at a distance larger
than 5 m. Since the markers are mostly placed on the walls
of the room, this makes it impossible to localize the MAV
when it is looking towards the center of the test environment.

When comparing the two methods, we observed that
weighted average localization is more stable for subsequent
images, as shown in Figure 5. Both share the same accuracy
for lower distances towards markers, as this typically means
that only one marker is visible. But on further distances, the
single marker localization leads to unstable pose estimation.
On the other hand, both methods can lead to jumps in
position estimation when different markers are visible in
subsequent images. Therefore, instability can also occur in
weighted average localization.

Fig. 5. Single marker localization (blue) and weighted average localization
(orange) of an image sequence of the drone flying with constant speed
towards (from y = 5 m to y = 0 m) a 3×3 marker matrix on a wall, with
the markers placed 1 m apart horizontally and 1 m (upper two rows) and
0.6 m (lower two rows) vertically. The x- and y-axis show the estimated
positions of the drone. The gray line is the ground truth.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a pipeline for assisted localiza-
tion for MAVs by pregenerating a 3D occupancy map and
detecting fiducial markers using a second device equipped

with the necessary sensors. The occupancy map can be
used by the MAV for navigation and path planning, while
the fiducial markers enable the drone to localize itself in
the map. When the drone detects a known marker, it can
infer its pose based on the marker’s pose. We demonstrated
that the fiducial markers can be correctly localized by the
assisting device while it builds the occupancy map. Also,
we showed that a drone can then detect these markers
and localize itself in the environment. But we noticed that
the drone localization fails at larger distances between the
drone and the markers. Further, we presented a ROS 2
based MAV controller for localization, path planning and
navigation among other things.

Future work will focus on improvements in localizing
drones using fiducial markers, with the goal to reduce the
large variance in pose estimation using a Kalman filter and
enable localization at larger distances. A second research
path will concentrate on localizing a drone without the use
of artificial features like markers.
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Stable Yaw Estimation of Boats from the Viewpoint of UAVs and USVs

Benjamin Kiefer1, Timon Höfer1 and Andreas Zell1

Abstract— Yaw estimation of boats from the viewpoint of un-
manned aerial vehicles (UAVs) and unmanned surface vehicles
(USVs) or boats is a crucial task in various applications such
as 3D scene rendering, trajectory prediction, and navigation.
However, the lack of literature on yaw estimation of objects
from the viewpoint of UAVs has motivated us to address
this domain. In this paper, we propose a method based on
HyperPosePDF for predicting the orientation of boats in the 6D
space. For that, we use existing datasets, such as PASCAL3D+
and our own datasets, SeaDronesSee-3D and BOArienT, which
we annotated manually. We extend HyperPosePDF to work
in video-based scenarios, such that it yields robust orientation
predictions across time. Naively applying HyperPosePDF on
video data yields single-point predictions, resulting in far-off
predictions and often incorrect symmetric orientations due
to unseen or visually different data. To alleviate this issue,
we propose aggregating the probability distributions of pose
predictions, resulting in significantly improved performance, as
shown in our experimental evaluation. Our proposed method
could significantly benefit downstream tasks in marine robotics.

I. INTRODUCTION

Yaw estimation of objects from the viewpoint of un-
manned aerial vehicles (UAVs) and unmanned surface ve-
hicles (USVs) or boats is an essential task in various appli-
cations such as 3D scene rendering, trajectory prediction, and
navigation. Accurate pose estimation is crucial for safe and
efficient operations in the marine environment, where the
ability to locate and track objects such as boats and ships
is essential for collision avoidance, search and rescue, and
marine surveillance. Furthermore, it is vital to have robust
yaw predictions in augmented reality applications, to better
aid a human operator.

AIS (automatic identification system) data only helps for
boats that emit these signals. Smaller boats do not send AIS
data. Furthermore, radar is expensive and only provides a
very coarse position of boats. It requires a correct set-up of
the radar and is harder to interpret for non-experts. Computer
vision-based orientation prediction on the other hand offers
a cheap and direct method.

Furthermore, there is a lack of literature on heading
estimation of objects from the viewpoint of UAVs and
USVs. In particular, predicting the orientation of objects
far away from the camera is a challenging task due to the
inherent uncertainty in the visual data. Methods based on 3D
bounding box detection rely on precise box labels and are
inherently error-prone for distant objects [1].

In this paper, we propose a method based on Hyper-
PosePDF [2] for predicting the orientation of boats in the

1All authors are with the Faculty of Computer Science, University of
Tuebingen, Germany. prename.surname@uni-tuebingen.de
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

Fig. 1. Ignoring the temporal domain results in false, near-symmetric
orientation prediction of a boat from frame 70 (top) to frame 71 (middle).
Tracking the probability distributions alleviates this problem (bottom).

6D space. HyperPosePDF is a recent method that models
the uncertainty of predictions and has shown promising
results in the field of 6D pose estimation. We train this
method on existing datasets, such as PASCAL3D+, and on
our own datasets, called SeaDronesSee-3D and BOArienT,
which we manually annotate with bounding boxes and pose
information for evaluation purposes.

To speed up the bounding box annotation, we develop an
annotation tool based on the recently published ”Segment
Anything” method [3]. We make this tool together with the
data publicly available.

We extend HyperPosePDF to work in video-based sce-
narios, where the prediction of the orientation of objects
across time is essential. Naively applying HyperPosePDF on
video data yields single-point predictions, often resulting in
far-off predictions and incorrect symmetric orientations due
to unseen or visually different data. Therefore, we propose
aggregating the probability distributions of pose predictions
over time, resulting in significantly improved performance,
as shown in our experimental evaluation.

Furthermore, naively predicting the yaw of boats based
on analyzing their trajectory in 3D space does not work
for standing or slowly moving boats. Moreover, formulating
yaw prediction in this way is error-prone due to an ill-posed
2D ←→ 3D projection, which is not reliable in heading
estimation as we will see in subsequent sections.

Lastly, we demonstrate a full pipeline with detection and
tracking of objects and subsequent orientation prediction for
a downstream synthetic rendering of a scene. Our proposed
method could significantly benefit downstream tasks in ma-
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rine robotics.
In summary, our contributions are as follows:

• We pose the novel problem of predicting the heading
of boats via purely vision-based methods.

• We propose a novel method to aggregate pose pre-
dictions by tracking the probability distributions to
capture uncertainties due to symmetries and ambiguous
appearances.

• We create a new dataset BOArienT, a benchmark
featuring 30 FPS manually annotated video, featuring
precise object detection and pose labels. Furthermore,
we annotate parts of SeaDronesSee-MOT with pose
data, which we call SeaDronesSee-3D.

• We show in multiple experiments on diverse bench-
marks the utility of our method. Lastly, we demonstrate
the utility of our method on a full pipeline with detec-
tion and tracking to synthetically render a scene.

• We make code, data, and adapted labeling tools publicly
available on www.macvi.org.

II. RELATED WORK

Pose estimation of common or close industrial objects
has been explored in several methods [4]–[6]. Analyzing the
static images, they split the task into two stages - object
detection and subsequent 6D pose estimation of the predicted
bounding boxes. However, their focus is on close objects that
are dominant in the image plane. On the other hand, we focus
on yaw estimation of boats that are distant and occasionally
hardly visible. This makes an accurate yaw estimation hard as
many plausible predictions exist. Several works explored how
to model the uncertainty of pose predictions [2], [7]. They
output probability distributions over many different poses,
effectively capturing the symmetries inherent in the poorly
visible objects. While they only experiment with common
objects in static scenes, we aim to build on top of their
methods to predict stable yaw predictions across time.

The last years have shown a great influx in works in
maritime computer vision [8]–[11]. Most works focus on the
detection or tracking of objects from the viewpoint of UAVs,
USVs or boats. There is a great corpus of works working
on simulation and trajectory prediction [12], [13]. However,
these methods only operate on map data as opposed to
image/video data.

Likewise, the general UAV-/USV-based research focuses
on object detection and tracking, and anomaly detection [9],
[14]–[18], but neglects the yaw estimation aspect.

III. 3D GEOMETRY PREREQUISITES

There are three principal axes in any boat, called longitudi-
nal, transverse and vertical axes. Figure 2 shows the rotations
around these. These are absolute orientations, i.e. while our
method outputs an orientation estimation, it is relative to
our camera view. Therefore, we may obtain the absolute
orientation using an onboard magnetometer or dual GNSS
solutions.

We note that we focus on the case of zero roll and pitch
angle, i.e. only the orientation is predicted.

Fig. 2. Rotation around the longitudinal, transverse and vertical axes, i.e.
roll, pitch, and yaw [19].

Fig. 3. Orientation relative to the camera. At 0◦, the boat’s nose is facing
directly us. Note that we did not include the roll and pitch angles.

For downstream tasks, such as trajectory prediction for
collision avoidance but also for rendering synthetic scenes
visually smooth and stable, we need to map our predictions
to 3D space. For that, we compute 3D object coordinates
relative to the UAV, and then use these to obtain actual world
coordinates via passive geolocation.

For the relative object coordinates, we consider a math-
ematical perspective projection camera model since this
resembles the common use case for cameras on UAVs and
USVs. We assume our camera to look down at a certain
angle, which may be a variable gimbal or static camera. A
gimbal balances a potential UAV roll angle so that we assume
there to be a zero camera roll angle. If there is no gimbal
in the USV case, we apply a CV-based roll correction by
levelling the horizon line using the IMU roll angle.

Using the relative coordinates of an object (x- and y-
ground distances to UAV), we compute its GPS coordinates
based on the UAV’s GPS coordinates as follows. Given the
camera heading angle θ, we compute the rotation matrix and
rotate the relative coordinates of an object to obtain
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Finally, we map the relative coordinates to GPS coordi-
nates via
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Fig. 4. Left: Example orientation of a boat taken from 50m of altitude and looking down with a pitch angle of 40◦. The highlighted boat has a yaw
angle of 280◦ relative to our viewpoint. Since the UAV’s heading is 170◦ (close to true south), we know that the boat has an absolute heading of 260◦
(close to true west). Right: Cad overlays on a frame of one the videos we took. Note the very small objects in the left part of the frame.

Fig. 5. Example view of pose labeling tool. First, we align the view coarsly
in steps of 5◦, then we put the visible anchor points (see Figure 3) in the
image plane. These are used to obtain a better pose label. We optimize the
orientation to match these anchors (see [7]).

We refer the reader to [20] for a more comprehensive
derivation of the 2D ←→ 3D projection. Concretely, we
would like to note that the projection may especially be
critical for a distant object in the USV scenario as here, we
encounter a very acute viewing angle. Small errors in pixel
space result in large distance errors in world space. It is an
open problem of how to correctly project distant objects in
world space. For our consideration, we are mostly concerned
with obtaining correct heading estimations for either close
detections that may ultimately pose an immediate threat.
For distant objects, we mostly care about stable heading
predictions over time.

IV. DATA COLLECTION AND LABELING

Because of the lack of available datasets for yaw estima-
tion, we capture and annotate our own. For the UAV scenario,
we leverage the already existing SeaDronesSee-MOT [8]
dataset, which comes with bounding boxes and instance ids

for boats. Furthermore, we annotate the 6D pose of boats
from various sample scenes by adapting the annotation tool
provided in [21]. Figure 5 shows an example scene where
a boat is labelled from a viewpoint of a UAV. We leverage
the provided metadata from the UAV to automatically infer
coarse pitch and roll angles relative to the camera. Herein, we
assume the world pitch and roll angle of boats to be zero,
such that we only need to annotate the heading direction.
For that, we manually provide a coarse heading and, upon
selecting anchor points from the CAD in the corresponding
real objects, we optimize for the precise 6D pose using their
optimization procedure [21]. For annotation efficiency, we
only annotate every 10th frame and interpolate the pose in
between.

For the USV scenario, we capture our own data from the
viewpoint of a fixed camera installed on a small motorboat.
We use the ZED2 camera1 with integrated IMU to infer
the orientation at which we look at the scene. As before,
we may also infer a coarse estimation of the roll and pitch
angle for subsequent finer annotating via pose optimization.
Before that, we annotate the scenes with bounding boxes
using our tool, which we built on top of SAM (Segment
Anything Model [3], see Fig. 6). We leveraged their largest
ViT-H (636M parameters) model and built a user interface
and labeling logic around it, such that objects can be
assigned their bounding boxes by just clicking on them.
Analogous to before, we annotate every 10th frame and
interpolate in between. Table I shows a timing comparison
between conventional labeling tools and our method. Every
method was required to yield precise bounding boxes as
rated by human experts. We repeated this experiment with
five experts knowledgeable in the field of object detection.
Each experiment lasted for half an hour. Our method clearly
outperforms the others by 8.7 FPM. We hypothesize that
fatigue symptoms occur later because annotating with a
single click already covers the entire object. In contrast, when
setting bounding boxes, precise outlining of the object is
required, which becomes more exhausting over time. While
this effort can be reduced by tracking, there are often errors

1https://www.stereolabs.com/zed-2/
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TABLE I
ANNOTATION SPEED GIVEN IN FRAMES PER MINUTE USING OUR

ANNOTATION TOOL BASED ON SAM AND VIT-H.

Annotation method Labeling Speed (FPM)

DarkLabel [22] 3.8
DarkLabel + Interpolation 19.6
DarkLabel + Tracking 20.2
SAM-based 5.5
SAM-based + Interpolation 28.9

Fig. 6. Faster bounding box annotations by means of ”Segment anything”
[3]. We leverage this method to accelerate 2D bounding box labeling. A
user just needs to click on the object, the corresponding bounding box will
be set and saved automatically.

in tracking objects that are far away, requiring the annotator
to stay alert and relabel bounding boxes.

We want to note that this method can fail in scenarios
of low contrast or very distant objects. In this case, one
has to resort to standard bounding box detection. More-
over, it requires a GPU to process ViT-H (in our case an
RTX 2080Ti). Furthermore, a more exhaustive study on the
benefits of segmentation-based labeling needs to be done
to obtain a more comprehensive overview. In particular, a
more comprehensive experiment considering object number,
size, shape and movement needs to be done. We release both
(adapted) annotation tools for further studies.

V. METHOD: AGGREGATING PROBABILITY
DISTRIBUTIONS OVER TIME

Our approach is based on HyperPosePDF [7]. For an input
image x ∈ X , it aims to obtain a conditional probability dis-
tribution p(·|x) : SO(3) 7→ R+, representing the distribution
of the inherited pose of an object in the image x. For that, we
train a vision backbone network, e.g. ResNet to predict the
networks of a second network. While the vision network acts
as a hypernetwork, the architecture of the second network is
inspired by an implicit neural representation. The implicit
neural representation acts on the rotation manifold and
outputs for each pose, the corresponding probability of it
being the underlying rotation of the object present in the
image. Hence, it acts as an approximation of the probability
distribution p(R|x) by marginalizing over SO(3). During
training, we maximize p(R|x) by providing pairs of inputs
x and corresponding ground truth R. To make a single pose
prediction, we solve argmaxR∈SO(3) f(x,R) with gradient
ascent, projecting the values back into the manifold after each
step. To predict a full probability distribution, we evaluate
p(Ri|x) over the SO(3) equivolumetric partition Ri. This

model can estimate complex distributions on the manifold
without prior knowledge of each object’s symmetries, and
appropriate patterns expressing symmetries and uncertainty
emerge naturally in the model’s outputs. This is indeed, the
most general way to conduct pose estimation. Specifically,
in our scenario where we want to predict the pose to predict
the trajectory it is possible to include uncertainty information
of the pose to improve the performance.

The posterior distribution

P (Rk+1|Zk), (4)

based on the observations Zk for time steps {1, . . . , k} can
be approximated by

P (Rk+1|Zk) ≈ P (Rk|Zk) + ∆pose, (5)

where ∆pose is defined as a weighted running average

∆pose =
1

k

k−1∑

l=0

ωl

(
P (Rl+1|Zl+1)− P (Rl|Zl)

)
. (6)

For l < k + 1 the probabilities P (Rl|Zl) are known and
approximated by the HyperPosePDF network. Therefore, the
calculation of the pose at a future time point is deterministic.
The weights ωl fulfill

∑
l ωl = 1. To reduce the effect of

earlier pose transitions, which have a lesser effect on the
current pose movement it is plausible to simply set the initial
weights as 0 and average the remaining over a smaller time
interval chosen such that 0 < t < k

ωl =

{
0 for l < t,
1

k−t for l ≥ t. (7)

This especially comes in helpful, when we try to predict
the movement of a boat that is in the middle of a turn
manoeuvre and the respective trajectory resembles a curve.
Furthermore, this allows us to detect false pose predictions
in the case that the pose prediction in the next time step
differs to much from the previous path. E.g., in the case of
nearly symmetric boats, we experienced the appearance of
180◦ miss-predictions, which now can be easily excluded.

VI. EXPERIMENTS

First, we conduct experiments on the single-image Pas-
cal3D+ set to illustrate the performance and expressiveness
of HyperPosePDF. Similar to [2], we choose a pretrained
ResNet-101 backbone for our vision module. Then, we train
the model to predict the weights of a one-layer network with
a width of 256. Using the Adam optimizer, we evaluate
our model after 150k iterations using a batch size of 16.
A learning rate of 10−5 is used for the first 1000 iterations,
and then a cosine decay is applied. We choose a time horizon
window of k = 3 for our experiments.

We report the performance of the category boat using
the two commonly used metrics accuracy at 30◦ (Acc) and
median error in degrees (ME). Table II shows that this
method is on par with SOTA methods (ImplicitPDF [7]).

Naively applying HyperPosePDF on video data yields
single-point predictions (i.e. orientations) at each time step.
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Fig. 7. Sample boat heading probability distribution predictions (given in radian). Ground truth values are 4.8, 0.4, 6.0, 4.0. Almost all the captured
distributions are uni-modal and the best single-point estimator would yield a fairly close prediction of the orientation. The first image already provides a
glance at the benefits of capturing the uncertainty. It is not clear whether the sailboat is sailing at an angle of 270◦ or slightly less.

TABLE II
YAW ESTIMATION RESULTS ON PASCAL3D+, SEADRONESSEE3D AND

BOARIENT. NOTE THAT PASCAL3D+ ONLY FEATURES STILL IMAGES.

Method Dataset Acc↑ ME↓
ImplicitPDF PASCAL3D+ 56.0 23.4
HyperPosePDF PASCAL3D+ 56.2 22.8

HyperPosePDF SeaDronesSee3D 65.6 20.1
+Run. Mean SeaDronesSee3D 71.9 16.7

HyperPosePDF BOArienT 42.5 41.8
+Run. Mean BOArienT 50.2 18.3

However, uncertainty due to unseen data yields far-off pre-
dictions, often resulting in wrong symmetric orientations. For
example, compare to Figure 1.

We evaluate on SeaDronesSee3D and BOArienT, where
we manually annotated the orientations. Table II shows that
our method yields higher accuracy at a maximum of 30◦

error tolerance as well as lower median angle error. Figure 1
shows an example sequence of SeaDronesSee3D where the
single-image predictor miss-predicts the orientation by 180◦

due to the slight symmetric shape of the boat.
To test our approach in a complete pipeline, we employ

a state-of-the-art multi-object tracker and apply the yaw
estimator on the predicted bounding boxes. For the UAV
scenario, we train on SeaDronesSee-MOT, and for the boat
scenario, we take a pre-trained tracker on COCO. We report
the performance of the trackers on SeaDronesSee3D and
BOArienT in Table III.

Now, we apply the yaw estimator on top of the predicted
bounding boxes with associated ids. Whenever a new track-
let is starting, we initialize a new probability distribution
running mean. We only measure the orientation estimation
performance on objects that have successfully been detected.

Table IV shows that our method still outperforms the
single-image approach since the multi-object tracker is quite

TABLE III
MULTI-OBJECT TRACKING ACCURACY ON SEADRONESSEE3D

(SDS3D) AND BOARIENT (BT). FOR SDS3D, WE USED THE METHODS

FROM THE WORKSHOP COMPETITION [11]. ADDITIONALLY, WE BUILT

ON TOP DEEPSORT A MEMORY MAP (MM) [20] TO BECOME MORE

ROBUST TOWARDS ID SWITCHES AND FRAGMENTATIONS. FOR BT, WE

USED OFF-THE-SHELF TRACKTOR & DEEPSORT.

Model HOTA↑ MOTA↑ IDs↓ Frag↓

SD
S3

D ByteTracker 79.9 89.8 23 678
DeepSORT 80.8 91.0 20 642
+MM 82.6 91.9 19 635

B
T Tracktor 65.6 67.0 69 876

DeepSORT 66.2 80.0 51 801

robust already (only a few ID switches degrade our method
to effectively become a single-image method at these time
points). Remarkably, we can even improve the point pre-
diction over the naive mode running mean method, which
simply applies a running mean on the modes of the distribu-
tions. We note, that this is on top of the higher expressiveness
coming from our probability distributions: we may incorpo-
rate the uncertainty of heading estimations in downstream
tasks, such as trajectory prediction, collision avoidance or
for visualization purposes in augmented reality applications.

Finally, we compare our heading estimation approach with
a naive trajectory-based approach. For every detection in
every frame, we map its center box location to 3D via a
perspective projection camera model [20] and capture the
trajectory in world coordinates. We predict the next trajectory
point by a constant velocity model coming from the previous
three time steps. We take the resulting heading to be the final
prediction of this baseline. If an object is lost, we need to re-
initialize the heading which is a critical shortcoming of this
approach. Furthermore, Table IV shows that the trajectory-
based method fails on both scenarios due to stationary boats
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TABLE IV
YAW ESTIMATION RESULTS ON SEADRONESSEE3D AND BOARIENT.

Method+Tracking Acc↑ ME↓

SD
S3

D Trajectory-based 23.1 123.3
HyperPosePDF 63.2 22.1
+Mode Running Mean 64.3 21.6
+Distribution Running Mean 70.3 17.3

B
O

A
ri

en
T Trajectory-based 20.2 72.6

HyperPosePDF 39.6 43.9
+Mode Running Mean 40.1 42.0
+Distribution Running Mean 49.8 19.5

Fig. 8. Sample synthetic rendering of the scene from Figure 4. Detected
boats and their heading are put into Google Earth. The big yacht on the
right was already contained in the Google Earth image. We add a slight
offset to the predicted locations (which are the same for the two methods)
for visualization purposes.

and a challenging and noisy 2D → 3D projection.
Figure 8 shows the predicted positions and headings in

BOArienT coming from our method and from this baseline
via 2D→ 3D projection. Because some boats are stationary,
the heading information for the baseline is incorrect. Further-
more, the heading information from slowly driving boats is
very noisy as the underlying 2D←→ 3D projection is error-
prone. Single-image predictions are better, but the smallness
of the objects makes these predictions also very noisy.

VII. CONCLUSION AND DISCUSSION

In this paper, we addressed the novel problem of predicting
the yaw of boats from the viewpoint of unmanned aerial
vehicles (UAVs) and unmanned surface vehicles (USVs)
or boats. We proposed a method based on HyperPosePDF,
which models the uncertainty of predictions and yields robust
orientation predictions across time in video-based scenarios.
To demonstrate the utility of our method, we created two
new datasets, SeaDronesSee-3D and BOArienT, manually
annotated with bounding boxes and pose information, and
made them publicly available. Our experimental evaluation
showed that our method significantly improves performance
compared to naive single-point predictions. Our proposed
method has potential applications in marine robotics, includ-
ing 3D scene rendering, trajectory prediction, and navigation.
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Graph-based Simultaneous Localization and Mapping with
incorporated dynamic object motion

Peter Aerts1∗, Peter Slaets2 and Eric Demeester1

Abstract— Over the last years, Simultaneous Localization and
Mapping (SLAM) in dynamic environments has received more
attention. This paper presents a SLAM algorithm in which
dynamic object information is included within the graph-based
optimization approach. By exploiting knowledge about the
object’s motion within the scene, the constructed map is a more
accurate representation of the environment. Using data from
simulation, we show that the robot’s trajectory and the dynamic
object’s trajectory better aligns with respect to the ground
truth. Real-world experiments, which includes human motion
within the optimization, show that the robot’s trajectory and
thus the environment map is improved. This is verified based on
the comparison between the constructed maps with and without
the incorporation of the human motion. The validity of the map
is obtained by evaluating three metrics from literature and a
comparison to the building plans of the environment.

I. INTRODUCTION

Simultaneous localization and Mapping, also known as
SLAM, refers to a robot determining its location and sur-
roundings within an unknown environment based on in-
formation gained from proprioceptive (i.e. wheel encoders,
IMU, etc.) and exteroceptive sensors (i.e. LiDAR, camera,
etc.).
In recent years, techniques have arisen attempting to inte-
grate the information of dynamic objects within the SLAM
optimization problem to simultaneously track and update the
map of the environment.
In 2019, Simas et al. [1] presented a SLAMMOT (Si-
multaneous localization and Mapping and Mobile Object
Tracking) approach based on an Extended Kalman Filter
(EKF) in uncertain dynamic environments. They incorporate
the EKF together with Multiple Hypothesis Tracking (MHT)
to identify the motion model of each object. Zhang et
al. [2] propose MOTSLAM. It uses sequential monocular
frames and extracts objects using 2D3D object detection
and semantic segmentation. The observations are split into
foreground and background features, determining the trans-
formation of objects based on fixed map points and using
bundle adjustment to find the camera poses as well as the
static and dynamic poses. Huang et al. [3] present a stereo
visual odometry to simultaneously cluster and estimate the
motion of the camera and surrounding objects. The ego
motion and dynamic object poses are estimated through
a sliding-window optimization. Zhang et al. [4] exploits

1Peter Aerts and Eric Demeester are with Faculty of Mechanical Engi-
neering research group ACRO, University of Leuven, Belgium.

∗Peter Aerts is affiliated to Flanders Make@KU Leuven
2Peter Slaets is with Faculty of Mechanical Engineering research group

IMP, University of Leuven, Belgium.
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

semantic information to estimate the motion and tracking
of dynamic objects while building the map. They implement
bundle adjustment to estimate the motion of the dynamic
object within the map giving good results, but this is com-
putationally complex to run in real time. In 2021, Bescos
et al. [5] present DynaSLAMII. Here, bundle adjustment is
used together with the assumption of constant motion model
of the camera and dynamic objects to improve the ego motion
estimation together with those of the dynamic objects. We
previously published [6], which describes a graph-based
optimization technique to incorporate dynamic objects within
the graph structure assuming a constant velocity model of
the object. The estimation of the motion model parameters
was executed using an Unscented Kalman Filter. It was
shown that robot poses can be optimized using graph-based
optimization without using static objects in the graph and
solely using the pose measurement information of dynamic
objects when a constant motion model of the object is
estimated. However, the implementation of static features
within the experiments was considered future work. Within
this paper, we incorporate static features as well and simplify
the determination of the parameters of the dynamic object.
The paper is structured as follows: Section II describes the
construction of the graph for the optimization as well as the
determination of static landmarks and human poses. Section
III shows the experiments and results from simulation and
real world experiments. Section IV concludes this paper with
a short summary.

II. GRAPH CONSTRUCTION

The proposed 2D graph-based method builds upon the
pose-landmark-graph optimization algorithm. The basis of
this approach is well described by Grisetti et al. in [7].
Figure 1 shows a visual representation of the construction of
the graph to be optimized. The gray triangles represent the
robot while the white stars represent the static landmarks. In

Fig. 1: Visualisation of general graph-based SLAM approach.
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this figure, the robot states are given by xt = [x, y, θ]T where
x and y describe the robot’s position and θ its orientation.
These states are referenced to a fixed reference frame,
generally the first robot state x0 = [0, 0, 0]. These poses
are consecutively linked via constraints. The constraints are
derived from the odometry of the robot ut. All landmark
positions are represented by li = [x, y]T . The visible land-
marks are constrained to one or more robot poses derived
from the observation zt. The robot poses and landmark
positions of which the optimal state is to be determined
are called vertices or nodes. All constraints derived from
odometry and observations are referenced as edges. The goal
of graph-based SLAM is to find the optimal configuration
of nodes which represent the robot poses and landmark
locations. This can be obtained by minimizing equation (1).
Here eij represents the error function regarding the expected
measurement and actual measurement. Ωij is the information
matrix and accounts for the uncertainty. We seek to find
the optimal state for all nodes X∗ which is obtained by
minimizing J(X) as described in (2).

J(X) =
∑

eTijΩijeij (1)

X∗ = argmin
X

J(X) (2)

Equation (3) represents equation (1) where each summation
is the constraint pertaining to a certain type of node (robot
pose or landmark). These constraints are also depicted in
figure 1. Here R−1 and Q−1 are the information matrices of
their respective terms. The term xT0 Ω0x0 ensures that the first
pose of the robot is fixed. This creates an anchor position
for the optimization and is considered the starting point of
the path and subsequently the map.

J(X) =xT0 Ω0x0 +
∑

t

ex(t)
TR−1ex(t)+

∑

t

el,x(t)
TQ−1el,x(t)

(3)

The error function between consecutive poses is given by
equation (4) where the motion model g(·) describes the
robot’s next pose xt given the previous pose xt−1 and some
form of odometry measurement ut:

ex(t) = xt − g(ut, xt−1) (4)

For the measurements of static objects, the error function
is given by equation (5) where k(·) represents the expected
measurement given the robot pose xt and landmark position
lt with zt being the actual sensor measurement:

el,x(t) = zt − k(lt, xt) (5)

Minimizing equation (3) provides the optimal configuration
of nodes X∗. This is the standard graph-based SLAM
approach using robot poses and landmarks.

We extend on this 2D pose-landmark-graph optimization
with the implementation of dynamic objects within the
graph-based approach. Figure 2 shows the connected

graph where static objects as well as dynamic objects are
registered. For the implementation of dynamic objects, the
following statements are assumed:

• The association of dynamic objects is known in consec-
utive data points;

• The motion models of the dynamic objects within the
scene resemble a constant velocity model.

Fig. 2: Visualisation of the dynamic SLAM approach. Here, dy-
namic objects as well as static objects are included in the optimiza-
tion algorithm. From every robot pose a constraint is made either to
the dynamic objects and/or the static features within the scene. An
additional constraint is created between consecutive object poses
based on their velocity model estimation.

Dynamic objects are represented as mt = [x, y, θ, v, w]T .
For pedestrian motion, a constant velocity model is
considered. Schöller et al. [8] show that a constant velocity
model for pedestrian motion prediction yields good results
compared to more complex models. For such models, v and
w represent the linear and angular velocity of the object
and these two parameters are considered constant for each
instance of mt.

Extending on equation (3), equation (6) describes equation
(1) with the addition of the constraints pertaining to the
dynamic object poses. These constraints are also depicted in
figure 2. Here R−1, Q−1, O−1 and S−1 are the information
matrices of their respective terms.

J(X) = xT0 Ω0x0 +
∑

t

ex(t)
TR−1ex(t)+

∑

t

el,x(t)
TQ−1el,x(t) +

∑

t

em,x(t)
TO−1em,x(t)+

∑

t

em(t)TS−1em(t) (6)

The proposed technique includes two additional terms; those
of the measurements of the dynamic objects and the constant
velocity model of the dynamic objects linking their consec-
utive poses.
The error functions between consecutive robot poses and
measurements to static objects remain unchanged as repre-
sented in equation (4) and (5) respectively.
Equation (7) represents the error function of the measurement
to the dynamic object. Here w represents the measurement
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function given the poses of the robot and dynamic object
mt and xt respectively with zt being the measurement of
the dynamic object:

em,x(t) = zt − w(mt, xt) (7)

The last term consists of the error function between the
estimated pose of the dynamic object mt and the pose of
the constant velocity model f(vt,mt−1) shown in equation
(8):

em(t) = mt − f(νt,mt−1) (8)

Here νt represents the constant velocity parameters vt and
wt of the dynamic object. Parameters vt and wt describe the
constant linear and angular velocity respectively. Function
f(·) describes a straightforward constant velocity model
based on the object pose given by m = [mx,my,mθ].
To solve equation (6) the error (eij) terms are derived. This
is shown in equation (9) where X represents the set of nodes
within the graph. The indices i and j represent the relation
between the observations. The obtained Jacobian is a sparse
matrix as shown in equation (10).

∂eij(X)

∂(X)
= (0, ...,

∂eij(Xi)

∂(Xi)
, ...,

∂eij(Xj)

∂(Xj)
, ..., 0) (9)

J = (0, ..., Aij , ..., Bij , ..., 0) (10)

Using the sparse Jacobian matrix, the coefficient vector b and
matrix H can be calculated as shown in equations (11) and
(12).

bT =
∑

bTij =
∑

eTijΩijJij (11)

H =
∑

Hij =
∑

JT
ijΩijJij (12)

Once the vector b and the sparse matrix H are calculated,
equation (13) can be solved.

H∆X = −b (13)

Here, ∆X is the correction vector which is added to the
set of all nodes X . This process is executed iteratively
until the change in outcome of the minimization function
is below a predefined threshold as shown in algorithm 1.
In this algorithm the construction of H and b is formed
in the pseudo function buildLinearSystem(X) with X
being the set of nodes. After this, the solveSparse function
finds ∆X which is added to the node vector X . Lastly,
the function computeGlobalError sums up all the errors
from the aforementioned error functions using the newly
corrected set X . The outcome of this error is compared to the
previous error. If the difference is below a certain threshold,
the optimization is complete.

A. Static features

In our proposed approach, we assume that a LiDAR
provides a perception of the environment. Using a Split-
and-Merge (SaM) approach, which originated from computer
vision [9] and used in works such as [10] and [11], the inter-
section points of two line segments within the environment

Algorithm 1 Graph-based optimization
1: optimize(X):
2: while !converged do
3: (H, b) = buildLinearSystem(X)
4: ∆X = solveSparse(H∆X = −b)
5: X′ = X + ∆x
6: FX = computeGlobalError(X)
7: FX′ = computeGlobalError(X′)
8: if abs(FX − FX′ ) <= threshold then
9: converged = True

10: end if
11: end while
12: return X

are captured from the data as illustrated in algorithm 2. These
corners are considered to be the static features within the
graph, with the measurements being the constraints between
robot poses and these features. The algorithm splits the laser
scan data into sections based on a certain threshold.

Once the data are split into the smaller sections L =

Algorithm 2 Split-and-Merge corner detection
1: set s0 = {P}, L = {s0}, C = ∅, L′ = ∅, R = ∅
2: while True do
3: L′ = ∅
4: R = ∅
5: for si in L do
6: ls = line(P0, Pk) ▷ Pk last point in cluster si
7: add ls to R
8: dp, Pp = max distance(ls, si)
9: if dp >= threshold then

10: sj = {P0, ..., Pp}
11: sk = {Pp, ..., Pk}
12: add sj and sk to L′

13: else if dp < threshold then
14: add si to L′

15: end if
16: end for
17: if size(L) == size(L′) then
18: break from loop
19: end if
20: end while
21: for si in L do
22: c = corner(si, si−1)
23: add corner c to list C
24: end for
25: return L,C

{s0, . . . , si}, and the line parameters of each section
are saved in R, the algorithm determines the corners in
corner(si, si−1). The line parameters of si and si−1 are
obtained from R and the intersection is calculated (14, 15).
Once the corner is known, it is added to a list of static corner
features (16).

xcorner =
bi − bi−1

mi−1 −mi
(14)

ycorner = mi.xcorner + bi (15)

C = [[xcorner,0, ycorner,0]
T , ..., [xcorner,i, ycorner,i]

T ] (16)

This process relates to line 13 of the algorithm 2. These
intersections are considered to be the static landmarks within
the scene and are incorporated as such.

B. Dynamic object

Dynamic objects can range from large rigid objects such
as cars or trucks, to people or other robots. Our focus lies
in detecting the pose of a person and incorporating this
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information into the graph-based optimization. A 3D camera
can provide a color and depth image of the environment.
Using Blazepose body tracking [12], we are able to detect
certain feature points of a person within the image. Assuming
that the torso of a person is oriented towards the movement
of the person, we can determine the pose of a person.
First, we consider all points within the plane described by
the two shoulder points and two hip points, obtained from
the body tracking algorithm, to be the torso. From this set of
points Ptorso, the centroid cp is calculated. This represents
the position of the person:

cp =
1

n

n∑

i=1

pi with pi ∈ Ptorso (17)

Here n is the number of points present within Ptorso.
To determine the orientation of the person we first fit a plane
through all points Ptorso using singular value decomposition
(SVD). From the SVD, the normal vector is determined
which is considered the orientation of the person. Given the
set of 3D points Ptorso and the position of the plane is given
by the centroid cp, matrix A is introduced:

A = [Ptorso]− cp = [p0 − cp, ..., pk − cp] (18)

A = USV T (19)

Computing the singular value decomposition of A pro-
vides the normal n obtained from the third column of matrix
U :

n = U [:, 3] (20)

The normal n together with the centroid cp gives us the
pose of the detected person.
Figure 3 shows this pose extraction from the depth camera.
For our implementation, this 3D pose is reduced to a 2D
pose within the xy-plane for the implementation into the
graph-structure.

Fig. 3: Detection of pose of a person. The left: the body tracking
algorithm and area defined as the torso. On the right, the pose of
the person is given by the red arrow with origin at the centroid of
the torso of the person.

C. Determining the motion parameters

In order to implement the constraints between consec-
utive poses of the dynamic objects, the necessary motion
parameters need to be estimated which, under the constant
velocity model assumption, are v and w. These linear and
angular velocity parameters are necessary for equation (8)
and represent νt = [v, w]T .

For this estimation a limited set of poses of a dynamic ob-
ject M = [m0

0, ...,m
0
t ], registered together with at least one

landmark L = [l00, ..., l
0
t ] and associated over the consecutive

time frames, is used. From these poses in M , v and w are
calculated using a mean average as illustrated in equations
(21, 22).

v =

t∑
i=0

d(mi,mi−1)

t
(21)

w =

t∑
i=0

(mθ,i −mθ,i−1)

t
(22)

Function d in equation (21) calculates the Euclidean
distance between the two given poses.
These calculations are executed and, the parameters are
updated every iteration of the algorithm until equation 6
is minimized. In our experiments, it is shown that this
calculation yields a significant benefit to estimate the pose.

III. EXPERIMENTS & RESULTS

The experiments are split into two sections. First, we eval-
uate the graph-optimization approach described in II through
simulation. A comparison is made between the standard
approach without dynamic objects and with dynamic objects.
Second, data from sensors are gathered and processed. From
the optimized robot poses, a 2D map is generated. These
maps (with and without incorporating dynamic objects) are
compared using metrics described by Filatov et al. [13].
Besides these metrics, the generated maps are evaluated
against the building plans.

A. Validation through simulation

Within the simulation, several landmarks are sparsely
distributed and a dynamic object moves at a constant speed.
Gaussian noise is added to all measurements within the
simulation. Table I shows the comparison between the
standard approach with and without dynamic objects. The
mean error of robot positions w.r.t. the actual positions are
given as well as those of the dynamic object. For the case
where the dynamic object is not incorporated within the
optimization, the object poses are only derived from the
direct measurements and not influenced by a motion model.

Figure 4 visualizes the output of the simulation. The
trajectory of the robot is visualized in dark blue while the
trajectory from odometry is given in red. The trajectory
is given by yellow dots. The path of the dynamic object
is represented by the purple dots. Figure 4a shows the
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TABLE I: Mean error (m) of robot and object positions w.r.t. the
actual positions. The error is calculated for the standard graph-
based optimization without dynamic objects and for the presented
approach.

Robot path error (m) run 1 run 2 run 3 run 4 run 5
SLAM without dynamic object 0.1156 0.7007 0.1275 0.2715 0.3088

SLAM with dynamic object 0.0780 0.2937 0.1020 0.0745 0.0624
Object path error (m) run 1 run 2 run 3 run 4 run 5

SLAM without dynamic object 0.2262 0.7886 0.3378 0.2861 0.3135
SLAM with dynamic object 0.1122 0.2531 0.2573 0.1397 0.1318

(a)

(b)

Fig. 4: Figure a) shows the optimized path without incorporating
dynamic object. Figure b) shows the optimized path with the
dynamic object incorporated.

optimization without the inclusion of the dynamic object. It
can be seen that the estimation does approximate the actual
path, but a deviation is still present. Figure 4b shows the
results with the dynamic object included. The estimated path
is almost identical to the actual robot poses, which shows that
the incorporation of dynamic objects has its merits.

B. Validation through real-world experiments

In our experiments, data was obtained using a differential
drive robot containing a Hokuyo UTM-30LX 2D LiDAR
and an L515 RealSense depth camera. The platform is
equipped with magnetic wheel encoders providing odometry
information. The information of these measurements was
then implemented in our approach. Using the optimized
poses together with the LiDAR information, the 2D grid
maps are generated. For our experiments we focused on a
long hallway. This situation is prone to drift and leads to
corridors being represented by curved walls which is not
an accurate representation. During the collection of data, a
person is walking in front of the robot through the hallway.
The built maps are generated from a single pass through the
environment. This experiment is executed multiple times
Figure 8 shows the difference between the standard graph-
based SLAM approach and incorporating dynamic objects

within the graph optimization. The figures visually show
that by detecting, tracking and incorporating dynamic ob-
jects within the scene, the environment is represented more
truthfully. This was the case in all our experiments.

Besides the visual confirmation that including dynamic
objects is beneficial in map building, three metrics described
by Filatov et al. in [13] are calculated to compare the
generated maps. These metrics are:

• Proportion of occupancy;
• Number of corners present within the map;
• Number of enclosed areas present within the map.

Proportion of occupancy refers to the ratio between cells
of the 2D grid map considered to be occupied with high
probability and those with low probability. For the same
environment, a better representation is considered to have
a lower proportion value. In an ideal map, occupied space
is represented as a single grid cell with high probability
of being occupied rather than a cluster of cells with var-
ious probabilities of occupation. Figure 5 shows what the

Fig. 5: The proportion metric calculates the amount of blur within
the map. The less blur effect the better the map [13].

proportion metric determines. The results of this metric are
given in table II. In order to calculate the proportion, the
Otsu threshold of the occupied cells is calculated. Using this
threshold, the amount of occupied cells above this value is
divided by the amount of occupied cells below this value.
Next to this, the standard deviation is also given.
Number of corners present within the map is a metric which
indicates the smoothness of the map. The less corners a map
has, the better the representation of the environment. For
our experiments, a Harris corner detection algorithm [14]
is implemented for calculating the corners within the map.
This does not represent physical corners, but every pixel
considered a corner by the algorithm. Figure 6 shows an
example of a partial map and its calculated corners.

(a) More corners detected (b) Less corners detected

Fig. 6: The red dots represent the corners found by the Harris corner
detection.

Table II also shows the results for this metric between the

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

154



maps generated with the standard approach and the proposed
approach.
Number of enclosed areas present within the map espe-
cially indicates misalignment. If fewer enclosed areas are
present within the map, the better the representation of the
environment. Misalignment of laser scan data will create
additional areas within the map. These contours are found by
implementing [15], which describes Suzuki’s contour tracing
algorithm. As these contours describe the enclosed areas
found within the map, the number of contours retrieved by
the algorithm is a measure of accuracy of the map. Figure 7
is an example of all contours found in a map. The result of
this metric is shown in the last column of table II.

Fig. 7: Example of finding all contours within a map. The green
lines form all enclosed areas.

(a)

(b)

Fig. 8: Figure a) is constructed with the standard graph-based
SLAM approach. The straight hall is represented as a curvature
within the map. Figure b) is constructed using the dynamic SLAM
approach. In both images, the robot path is given from its starting
point (red) to the end destination (green). All poses in between are
represented in blue.

Looking at table II, the proportion between occupied and
unoccupied space is similar for the maps created with and
without the incorporation of a walking person within the
scene. The difference between the values is rather small
and sometimes being a positive or negative difference. We
conclude that this metric does not provide a clear indication
which map is a more truthful representation of the envi-
ronment. The amount of Harris corners detected within the
maps clearly indicates that the proposed approach ensures
a smoother representation of the environment. In every run

a significant decrease in number of corners is visible. The
number of enclosed areas also indicates that the described
approach has its merits. A decrease in the number of enclosed
areas is present within the evaluation of every run. This
indicates that there is less misalignment of the LiDAR data
during mapping, thus representing the environment more
accurately. Together with a visual inspection of the maps, it
is clear that incorporating dynamic objects within the graph-
based optimization provides an improved estimation of the
robot’s trajectory.

Fig. 9: Alignment of the constructed map with the building plans
based on the work of [16].

When matching the images against the building plans, it is
obvious that the generated map does represent the environ-
ment truthfully. This is visible in figure 11 especially when it
is compared to figure 10, which is the graph based optimiza-
tion without the incorporation of dynamic objects within the
optimization. In order to properly compare the constructed

Fig. 10: Comparing building plans to the generated map with the
standard graph-based optimization approach. The building plans,
visible in green, are overlaid on the map.

Fig. 11: Overlaying the building plan with the generated map of
the proposed approach shows that the constructed map represents
the environment more accurately.

map with the building plans, the plans are converted to an
occupancy grid image. After an initial manual alignment of
the generated maps, the affine transformation to match the
map to the building plans is found based on the work of
Shahbandi et al. [16] and is shown in figure 9. Once the map
is aligned with the image of the building plans, as shown in
figure 9, a binarization of the constructed map is executed.
From the binarized map, the pixel distance to its nearest
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TABLE II: Table showing the results of the metrics; proportion, corner count and number of enclosed areas.

✗= without incorporation of dynamic object ✓= with incorporation of dynamic object
runs Otsu STD Proportion Harris corners enclosed areas

✗ 1 70 0.9818 0.3849 5043 2725
✓ 1 78 0.9958 0.4372 4349 2683
✗ 2 68 0.8130 0.4372 6358 1726
✓ 2 63 0.7230 0.4663 4111 1601
✗ 3 69 0.8400 0.4260 5077 1229
✓ 3 66 0.7990 0.4414 4073 1143
✗ 4 63 0.7320 0.4630 5718 1641
✓ 4 58 0.4920 0.4924 4317 1559
✗ 5 76 0.9474 0.3930 4614 2915
✓ 5 77 0.9340 0.3950 4506 2723

neighbour on the image of the building plan is calculated as
a metric representing the similarity to the real environment.
Table III shows the results of this metric. The mean distance
error over several mapping runs is limited to around 2 pixels.
The standard deviation is also limited to around 3.5 pixels.
Considering that each pixel of the map and building plans is
equivalent to an area of 0.05 x 0.05 meters, and the hallway
describing a distance of 65 meters, we can conclude that the
maps represent the environment fairly accurate.

TABLE III: Table showing the comparison of the binarized map
w.r.t. the building plan expressed in pixel amount. Every pixel
represents an area of 0.05 x 0.05 meters.

run 1 2 3 4 5
mean error 2.11 px 1.98 px 1.76 px 1.57 px 2.32 px

standard dev. 4.38 px 3.85 px 3.20 px 2.54 px 3.60 px

IV. CONCLUSION

This paper describes a procedure to include dynamic
objects within graph-based SLAM. A method is defined
to register a human pose together with a determination of
the constant velocity model parameters. Our experiments
show that the incorporation of dynamic objects can improve
the robots trajectory as shown in simulation I and that the
representation of the environment is can be more accurate as
shown in the real world experiments and based on several
metrics from literature II. Lastly, the constructed maps are
compared to the building plans of the hallway. An alignment
is performed between the maps and the building plan and
the mean distance error is calculated. These results shown in
table III confirm that the newly constructed maps represent
the environment with a high accuracy.
Future work can focus on eliminating the assumptions made
in this paper. An important aspect to further development
is the implementation of a detection and tracking algorithm
to register several dynamic objects. We would also like to
address the constant velocity model assumption and investi-
gate other motion models of the dynamic features. To this
end several examples in literature exist [17]- [19].
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Visual-LiDAR Odometry and Mapping with Monocular Scale
Correction and Visual Bootstrapping

Hanyu Cai1, Ni Ou1 and Junzheng Wang1,∗

Abstract— This paper presents a novel visual-LiDAR odom-
etry and mapping method with low-drift characteristics. The
proposed method is based on two popular approaches, ORB-
SLAM and A-LOAM, with monocular scale correction and
visual-bootstrapped LiDAR poses initialization modifications.
The scale corrector calculates the proportion between the depth
of image keypoints recovered by triangulation and that provided
by LiDAR, using an outlier rejection process for accuracy
improvement. Concerning LiDAR poses initialization, the visual
odometry approach gives the initial guesses of LiDAR motions
for better performance. This methodology is not only applicable
to high-resolution LiDAR but can also adapt to low-resolution
LiDAR. To evaluate the proposed SLAM system’s robustness
and accuracy, we conducted experiments on the KITTI Odom-
etry and S3E datasets. Experimental results illustrate that
our method significantly outperforms standalone ORB-SLAM2
and A-LOAM. Furthermore, regarding the accuracy of visual
odometry with scale correction, our method performs similarly
to the stereo-mode ORB-SLAM2.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an
irreplaceable technique for mobile robots and autonomous
vehicles, providing reliable surrounding environment infor-
mation and real-time positions. According to the use of
sensors, this technique can be divided into two categories:
visual-based and LiDAR-based. Over the past two decades,
visual SLAM has made significant strides, resulting in
commercially available frameworks. Modern visual SLAM
algorithms develop into two branches: feature-based and
direct methods. Feature-based methods [1], [2] reduce the
reprojection error of matched feature points (keypoints)
through bundle adjustment (BA) [3]. On the other hand,
direct methods normally optimize the photometric error of
sparse keypoints without corresponding matchings [4], [5].
The advantage of visual SLAM is rich semantic information,
low cost and small size, which is an indispensable part of
the field of automatic driving and AR.

In most cases, LiDAR SLAM usually outperforms visual
SLAM. Most recent pure LiDAR SLAM methods are de-
veloped based on LOAM [6], a milestone LiDAR SLAM
framework combined with SCAN-to-SCAN and SCAN-to-
MAP registration modes. These LOAM-based techniques
yield superior performance compared to the baseline LOAM,
with improvements in efficiency [7], robust registration [8],
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and Decision of Complex Systems

1Hanyu Cai, Ni Ou, and Junzheng Wang are with School of
Automation, Beijing Institute of Technology, Beijing, China. Hanyu:
caihanyu4258@163.com, Ni: 3120205431@bit.edu.cn
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motion compensation [9] and local optimization [10]. In ad-
dition, LiDAR-based loop closure detection techniques [11],
[12] have been widely employed for place recognition and
graph optimization to reduce the accumulated error of Li-
DAR SLAM further.

Nonetheless, standalone visual or LiDAR SLAM either
has intractable drawbacks. Visual SLAM systems are prone
to localization failure [1] in fast motions. On the other hand,
for LiDAR SLAM, motion distortion [6], [9] is still a tricky
problem for spinning LiDAR, and its loop closure detection
is more complicated and challenging due to lack of stable
features [12]. It has been a noticeable trend to fuse visual
and LiDAR SLAM to enhance the overall performance.

According to the fusion techniques, LiDAR-camera fused
SLAM can be divided into three categories: LiDAR-assisted
visual SLAM, vision-assisted LiDAR SLAM, and vision-
LiDAR coupled SLAM. The first two means rely mainly on
LiDAR or camera, and the other sensor takes the assistance
role. Moreover, the last type generally utilizes both visual
and LiDAR odometry in the system.

The first category tends to focus on image depth enhance-
ment [13] or combines with direct methods without estimat-
ing the depth of feature points [14]. The second category
has few related studies, and it often uses visual information
to help LiDAR SLAM perform loop closure detection or
render map texture [15]–[17]. Since this category is not the
research content of this paper, we will not describe it in
detail. The third category is the hot field of current research,
which can be subdivided into loosely coupling and tightly
coupling. Loosely coupling is to cascade the two or filter the
results of the two [18], [19]. Tightly coupling [20] focuses on
constructing a joint optimization problem, including vision
and LiDAR factors for state estimation.

Our work is deeply related to depth enhancement. Whereas
the error of depth enhancement is significant when the point
cloud is sparse, and the feature points with enhanced depth
may not be successfully tracked. Directly tracking projected
points with high gradients is a solution, but such points
cannot be tracked accurately and stably. In this study, we
combine the powerful tracking ability of the feature-based
method with optical flow and propose a novel scale correc-
tion method to address the monocular scale drift problem.
Moreover, considering the LOAM algorithm depends on the
constant velocity model, it is prone to failure in scenes with
excessive acceleration or degradation. Using the results of
the visual odometry to initialize the LiDAR odometry’s pose
can increase the LOAM performance.

The contributions of this paper are as follows:
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1) A visual-LiDAR loosely coupled odometry. Solve the
problem that LOAM fails in degradative scenarios, and
increase the performance.

2) A novel scale correction algorithm is proposed that
does not need to enhance the depth of the visual
feature point. It guarantees that the output of the visual
odometry will not have a significant drift.

3) Implement our system on a large-scale dataset and
verify its effectiveness.

This paper is organized as follows. Section II presents
studies related to our work. Section III introduces the
proposed loosely coupled system and our scale correction
algorithm. Section IV shows the experimental datasets and
results. Finally, Section V demonstrates our conclusion and
possible extensions to our work.

II. RELATED WORK

LiDAR-camera SLAM can be broadly classified into three
categories: LiDAR-assisted visual SLAM, vision-assisted
LiDAR SLAM, and vision-LiDAR coupled SLAM. Note that
vision-assisted LiDAR SLAM systems [16] are not compre-
hensively reviewed in this paper because this system usually
hinges on semantic information, which requires knowledge
of image recognition that is out of our scope.

A. LiDAR-assisted Visual SLAM

LiDAR-assisted visual SLAM generally aims to utilize
LiDAR’s point cloud data to obtain more accurate depth
information for image feature points. A typical method in
this category is LIMO, where LiDAR data is directly applied
to estimate the depth of feature points [13]. Yuewen et
al. proposed CamVox, an RGBD SLAM system combined
with Livox LiDAR [21]. The performance of outdoor RGBD
cameras is improved by depth enhancement, and the depth of
many enhanced feature points reaches 100 meters. Another
approach to using LiDAR data in visual SLAM is by pro-
jecting point clouds onto images and performing the direct
method on projected points [14]. Reproject the projected
points to the next frame image and then minimize the photo-
metric error to solve the pose. This method does not have the
error caused by depth enhancement, but it requires accurate
extrinsic parameters between the camera and LiDAR. LiDAR
points are too sparse compared to image pixels, and the
above methods can obtain the depth of a small number of
points. In order to increase the number of pixels with depth,
Varuna et al. used the Gaussian process regression on the
projected points from LiDAR to the image to improve the
depth estimation [22]. Within a local image patch, they use
the enhanced depth pixels as a priori to predict the depth
of the remaining pixels in the image patch. In addition to
depth enhancement, LiDAR can also improve the robustness
of visual SLAM to illumination, which is also reflected in
CamVox [21]. Jiawei Mo et al. proposed a method that
uses LiDAR’s descriptor to address the issue that visual
loop closure detection is heavily affected by illumination
changes [23]. They calculate the LiDAR point cloud into
three descriptors and store them. The stereo SLAM map

is also calculated as three descriptors and matched with
the LiDAR descriptors. This method only relies on three-
dimensional points to complete visual loop closure detection.

To summarize, depth enhancement is the most popular
technique in LiDAR-assisted visual SLAM. In this paper, we
propose a novel approach that can apply to the low-resolution
LiDAR case, where the density of LiDAR point clouds is
much lower than that of the camera images.

B. Vision-LiDAR Coupled SLAM

In contrast to LiDAR-assisted visual SLAM, vision-
LiDAR coupled SLAM integrates both visual and LiDAR
odometry modules to enhance the system’s accuracy. V-
LOAM is a loosely coupled system that combines visual
and LiDAR odometry modules [24]. In this study, visual
odometry recovers the depth of feature points from sur-
rounding projected LiDAR points, while LiDAR odometry
leverages high-frequency camera poses to mitigate drift.
However, V-LOAM still faces two significant issues: inef-
fective depth enhancement and non-negligible drift error on
the z-axis (also remains in its baseline [6]). Zikang Yuan
et al. proposed SDV-LOAM [19]. It tracks the high-gradient
projected LiDAR points as visual odometry and employs an
adaptive scan-to-map optimization method to constrain pose
in all six dimensions well. By contrast, TVL-SLAM [20]
does not enhance the visual odometry’s depth estimation nor
utilize the motion estimation from visual odometry as the
LiDAR odometry’s initial guess. Instead, it establishes a joint
optimization problem of visual and LiDAR features, thereby
establishing a tightly coupled system.

The advantage of loose coupling is that the system struc-
ture is simple and the precision is high, but the robustness
is not strong due to the influence of each module. Tight
coupling is generally more robust due to joint state estimation
but requires more computation.

Fig. 1. Overview of our method.

III. METHODOLOGY

A. System Overview

The overview figure of our method is shown in Fig. 1,
and the definitions of primary notations are present in Table
I. Our system synchronizes the camera and LiDAR data at
10Hz. During the first stage, a local vision map is generated
using the mono camera initialization or tracking. Subse-
quently, we utilize LiDAR data to estimate the monocular
scale factor that represents the ratio between the correspond-
ing vision local map and laser scan. However, due to the scale
drift of the monocular odometry, we correct the scale factor
periodically during the trajectory using the proposed scale
corrector. Following scale correction, the LiDAR odometry
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Fig. 2. Pipeline of the Scale Corrector.

TABLE I
NOMENCLATURE

Notations Description

Ci ith frame of image keyframe
Li ith frame of point cloud

{xi
j} keypoints projected from Li onto Ci

{x̂i
j} reserved keypoints of {xi

j} after optical flow tracking

{xi
j} reserved keypoints of{x̂i

j} after keypoint culling

TB
A transformation of A with respect to B

Pi
w coordinates of ith map point with respect to the world

K camera intrinsic matrix

dij measured depth of the jth projected point onto Ci

vij visual depth of the jth projected point onto Ci

pi
j LiDAR point corresponding to xi

j

generates the final pose with the initial guess from the visual
odometry (we call it visual bootstrapping), resulting in a
final localization frequency of 10 Hz. The visual odometry
and LiDAR odometry are implemented based on ORB-
SLAM2 [1] and A-LOAM [6], respectively, so we focus
on performance comparison with the two baselines in our
experiments part (Section IV).

The remaining parts (Section III-B and Section III-C)
jointly introduce the implementation of the proposed scale
corrector. The pipeline of our scale corrector is displayed
in Fig. 2. To start with, we project the last frame of point
cloud Li−1 onto the corresponding image Ci−1 and select
keypoints {xi−1

j } among the projected points. Subsequently,
the optical flow algorithm is employed to track each xi−1

j in
the current image Ci and thus get {x̂i−1

j } and {x̂i
j} simul-

taneously. Moreover, to guarantee the accuracy of keypoint
correspondence, we also design two criteria for keypoints
culling based on epipolar lines, which are further introduced
in (3) and (4). Based on this keypoint matching, we can
conduct triangulation between matched {xi−1

j } and {xi
j} to

recover their depth in the local map. Finally, scale correction
is performed between the local map and the corresponding
laser scan periodically throughout the trajectory.

B. Scale Corrector: Keypoint Extraction

1) Projection and Matching: As outlined in Section III-A,
the content of this section includes the projection, matching
and culling steps of keypoints. For clarity, we did not take
image distortion into account. Then, the process of projection
between Ci−1 and Li−1 can be formulated in (1).

xi−1
j =

1

di−1
j

KTC
Lp

i−1
j (1)

where pi−1
j is the jth point of Li−1, TC

L is the extrinsic pa-
rameter between camera and LiDAR. Imprecise extrinsic will
cause a significant error, and the corresponding calibration
method is shown in our previous work [25].

Further, the following criteria are applied to filter out
distinctive {xi−1

j } through neighbouring image information.
a) xi−1

j should meet the requirements of the FAST-9 [26]
corner.

b) The image gradient at xi−1
j should be large enough.

Fig. 3. FAST-12 pre-testing process. The red point is the keypoint to be
tested. The blue points are domain image points.

However, the first criterion is not applicable to low-
resolution LiDAR due to the scarcity of projected points.
To resolve this issue, we lower the requirement to obtain
{xi−1

j } as shown in Fig. 3. We adopt the FAST-12 pre-testing
process. Calculate the difference in the pixel values between
the keypoint and the surrounding four points, and if more
than three meet the threshold, our requirements are met. In
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addition, we employ non-maximum suppression to ensure a
uniform distribution of keypoints.

Regarding keypoint matching, we employ the Lucas-
Kanade [27] optical flow with the input of {xi−1

j } from the
last image to track corresponding points {x̂i

j} in the current
image.

(a) Epipolar line (b) Error directions

Fig. 4. (a): The projection keypoint will theoretically lie on the epipolar
line. (b): The error between the tracked keypoint(black) and the theoretical
point(orange) is divided into tangential and normal errors.

2) Culling: Since many keypoints are not Fast corners,
tracking these keypoints by optical flow will cause significant
uncertainty. To further improve the accuracy of keypoint
matching, we conduct keypoint culling based on the epipolar
lines. Fig. 4(a) shows the conception of the epipolar line.
According to epipolar geometry, the keypoint x̂ij should be
located on the epipolar line. For one, it should be discarded
when its distance to the epipolar line is too large. For another,
in some special cases, the keypoint still should be culled
when its pixel gradient is perpendicular to the epipolar line
even though it is near the epipolar line. The reason is that
other points distributed along the pixel gradient direction are
also likely to be extracted to match this epipolar line, thereby
increasing the uncertainty of its distance to the epipolar line.
To cull the keypoints under the above circumstances, we
propose two errors indicated in Fig. 4(b), denoted as normal
error ϵn and tangential error ϵt. We will formulate them in
the following parts of this section.

According to the theory of epipolar line, x̂i−1
j and x̂i

j can
theoretically be constrained by (2).

(x̂i
j)

TK−T (tCi

Ci−1
)×R

Ci

Ci−1
K−1x̂i−1

j = 0 (2)

where RCi

Ci−1
and tCi

Ci−1
are the rotation and transla-

tion parts of TCi

Ci−1
respectively, and (·)× represents an

antisymmetric matrix. More obviously, from the formula
(2), the equation of the epipolar line can be obtained as
Ax+By + C = 0.

Based on this definition, the quality of tracking points
can be evaluated quantitatively. As displayed in Fig. 4(b),
we propose two evaluation metrics of different directions.
Intuitively, as formulated in (3), the normal error ϵn is
evaluated through the distance between x̂i

j and epipolar line.

Fig. 5. Two extreme cases of pixel gradient and epipolar line directions. The
yellow line is the epipolar line, and the red is the pixel gradient. Left: The
two are perpendicular; many similar pixels are on the epipolar line. Thus,
the matching uncertainty on the epipolar line is significant. Right: The two
are parallel; the boundary pixels have a higher degree of discrimination
than other pixels on the epipolar line. Thus, the matching uncertainty on
the epipolar line is small.

We also set a threshold (0.5) to filter out fine points subject
to this condition.

ϵn =
|Ax̂i

j.x +Bx̂i
j.y + C|√

A2 +B2
< 0.5 (3)

where x̂i
j.x & x̂i

j.y are the x & y coordinates of x̂i
j ,

respectively.
Before explaining the tangential error, it is necessary to

introduce optical flow again. Optical flow relies on pixel
gradient to track the keypoint, usually using an image patch
around the keypoint to increase accuracy. The same trick
is used in the epipolar search [4]. Therefore, we can refer
to the epipolar search to give a qualitative description of
the tangential error. Inspired by [28], the angle between
the epipolar line direction and the pixel gradient can be
used to describe the matching uncertainty along the epipolar
tangential direction. Fig. 5 shows two extreme cases. The
larger the angle between the pixel gradient and the epipolar
line, the more considerable the uncertainty along the epipolar
tangential direction.

Consequently, for a keypoint x̂i
j tracked by optical flow,

we denote
−−→
epi and

−→
dI as the epipolar line direction vector

and pixel gradient vector, respectively, as shown in Fig. 4(b).
Then, we can define the | cos θ| and its threshold in (4).

| cos θ| =
∣∣∣∣∣

−−→
epi · −→dI
∥−−→epi∥ · ∥−→dI∥

∣∣∣∣∣ > 0.5 (4)

Where θ is the angle between
−−→
epi and

−→
dI . The tangential

error ϵt may be more significant if | cos θ| is smaller than
the threshold according to the matching uncertainty from the
previous analysis.

At the end of keypoint culling, the points not subject to
(3) and (4) are discarded, thereby reserving reliable matched
points {xi

j} and {xi−1
j }.

3) Scale Calculation: With matched keypoints {xi
j} and

{xi−1
j }, we can restore the depth of each point xi−1

j by
triangulation and calculate the scale factor si−1

j through
being dividing by the measured depth di−1

j , which is the
distance of LiDAR point pi

j previously projected to Ci in
(1).

si−1
j =

di−1
j

vi−1
j

(5)
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Note that there are probably a considerable proportion of
outliers among {si−1

j }, so we introduce RANSAC [29] for
outlier rejection and output the mean of inliers as the final
scale factor.

C. Scale Corrector: Scale Correction

In this section, we detail how to apply scale correction
to the whole SLAM system. As mentioned in Section III-
A, our visual odometry is implemented based on ORB-
SLAM2 [1]. We remove the loop closing thread and employ
scale correction during local mapping process. Without loop
detection and closure, the scale of local map is unstable, and
thus we periodically correct the scale of local map throughout
the trajectory.

At the first stage, denote {TC0
w ,TC1

w ,TC2
w . . .TCm

w }
as the poses of keyframes in the local map and
{P0

w,P
1
w,P

2
w . . .P

n
w} as the constituent map points of the

local map. Note that these values are all with respect to
the world coordinate system. Therefore, we transform poses
and map points to reference frame C0 using (TC0

w )−1.
Subsequently, in the local map coordinate system, we can
correct the scale of the local map after local bundle adjust-
ment. Finally, the local map is transformed into the world
coordinate system again for the sake of compatibility with
ORB-SLAM2.

Notably, we do not frequently correct the scale, as this
can interfere with the local mapping thread and cause a loss
of efficiency. Instead, the scale correction is only triggered
when |scale− 1| ≥ 2%, where scale is the final scale factor
calculated by the scale corrector.

IV. EXPERIMENTS

We evaluate the performance of the proposed system on
KITTI Odometry and S3E datasets. They both incorporate
data collected from visual and LiDAR sensors. Four chal-
lenging sequences with long distances are selected for eval-
uation. Regarding data setting, KITTI Odometry uses HDL-
64E LiDAR and FL2-14S3M-C cameras, while S3E uses
VLP-16 LiDAR and HikRobot MV-CS050-10GC cameras,
which is more challenging for scale correction due to the
vertical sparsity of reprojected LiDAR points. Note that we
have presented a solution to the sparsity issue in Section III-
B.1.

Given that our method is developed based on ORB-
SLAM2 [1] and A-LOAM [6], we focus on comparing
the localization performance of our system to that of these
two baselines. In addition, we also compared with SDV-
LOAM [19], one of the state-of-the-art algorithms introduced
in Section II-B. All SLAM systems are performed on a laptop
with a single-core AMD 6800H @3.2GHz.

A. Effectiveness of Scale Corrector

To verify the effectiveness of the proposed scale corrector,
we compare the absolute rotation and translation error (ATE
& ARE) between our visual odometry and the stereo-mode
ORB-SLAM2. The formulation and implementation of the
two metrics can be found in evo [30] tool.
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Fig. 6. Trajectories estimated by visual odometry. Other legends are
consistent with (a). In S3E, the pose of some frames cannot be estimated
due to monocular initialization.

It should be noted that the ground-truth poses of the S3E
dataset are provided by RTK without orientation (ARE is
not evaluated for S3E), which worked at a much lower
rate than the camera. In addition, the extrinsic calibration
between RTK and camera (left) is not given. To solve
these problems, we interpolate the trajectory of the visual
odometry using timestamps to synchronize the predicted
poses to the ground truth values using evo and meanwhile
employ Umeyama [31] alignment between the predicted
and ground-truth trajectories. Quantitative results on five
representative sequences are shown in Table II while cor-
responding qualitative results are drawn in Fig 6. When
loop closure is banned for both, our visual odometry yields
better performance than stereo-mode ORB-SLAM2 in most
cases, indicating the effectiveness of our scale correction
module. Regarding underlying reasoning, we assume that our
method is more capable of correcting the depth of distant
keypoints due to the assistance of scale corrector, which is
challenging for stereo vision as the parallax is not sufficient
enough in this case. Moreover, we change the reference
coordinate system during local optimization to the earliest
keyframe in the local map, which reduce the value during
optimization compared to the original solution and bring a
slight performance improvement.
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TABLE II
TRAJECTORY ERRORS OF SLAM METHODS

Sequence / Length Ours VO ORB-SLAM2(Stereo) Ours VLO A-LOAM SDV-LOAM

KITTI 00 / 3724m ATE(m) 5.631 8.946 translationl RMSE(%) 1.182 1.655 0.9836
ARE(deg) 1.791 1.920 rotational error(deg/m) 0.0061 0.0078 0.0041

KITTI 02 / 5067m ATE(m) 13.53 17.20 translationl RMSE(%) 3.263 11.26 0.8022
ARE(deg) 1.821 3.300 rotational error(deg/m) 0.0103 0.0307 0.0024

KITTI 05 / 2205m ATE(m) 5.096 4.460 translationl RMSE(%) 1.4496 4.7189 0.7036
ARE(deg) 0.6319 1.100 rotational error(deg/m) 0.0065 0.0155 0.0030

KITTI 08 / 3222m ATE(m) 13.98 12.47 translationl RMSE(%) 1.895 5.100 1.1031
ARE(deg) 1.803 1.824 rotational error(deg/m) 0.0075 0.0187 0.0037

1S3E College / 920m ATE(m) 1.673 5.374 ATE(m) 3.097 5.505 2FailedARE(deg) – – ARE(deg) – –

1 The ground truth of the S3E dataset has only the translation part, and the rotation part is the unit quaternion.
2 SDV-LOAM fails on S3E College.

(a) GT (b) A-LOAM (c) Ours

Fig. 7. Performance of degraded scenes. On a big detour with a degraded scene, A-LOAM makes wrong pose estimates, while ours works well.

B. Effectiveness of Visual Bootstrapping

As for the verification of the effectiveness of Visual
Bootstrapping for the LiDAR odometry, we compare it with
the baseline A-LOAM [6] and SDV-LOAM [19] on the same
datasets shown in Section IV-A. However, there is a slight
difference in evaluation. For the KITTI dataset, we replace
the evo tool with the official KITTI evaluation tool [32] for
localization evaluation since it better demonstrates the drift
degree in a long distance. Table II illustrates that our system
achieves significantly lower translation drift and slightly
lower rotation drift than the A-LOAM. In the KITTI dataset,
our performance is not as good as SDV-LOAM, but SDV-
LOAM does not adapt to the VLP-16 LiDAR and thus fails
on the S3E dataset.

For qualitative results, we present a partial view of LiDAR
map in Fig 7, which is part of a curved road with only trees
around. In this case, A-LOAM suffers degradation while our
LiDAR odometry works well. Therefore, both qualitatively
and quantitatively, our method outperforms A-LOAM. As
for the reasons, A-LOAM lacks constraints on the z-axis,
and the loss function easily falls into a minimum value in
a degraded scene. Using the results of visual odometry to
compensate for the initial value of A-LOAM can reduce the
number of iterations and avoid the problem that the loss
function falls into a minimum value due to the significant
difference between the initial value and the actual value.

V. CONCLUSION AND FUTURE WORK

In this study, we propose a loosely coupled monocular-
LiDAR SLAM technique with a novel scale corrector. Its
pose prediction derives from monocular odometry with scale
correction and LiDAR odometry with visual bootstrapping.
Concerning localization performance, our visual odometry
achieves better performance than stereo-mode ORB-SLAM2
when loop closure for neither is available, while our LiDAR
odometry significantly outperforms baseline A-LOAM [6].
It is illustrated by quantitative results that the whole system
yields markedly lower translation drift and moderately lower
rotation drift. Qualitative results also show that our system
is more robust than A-LOAM [6] in degraded scenes. On
the other hand, as for limitations, the proposed system relies
heavily on the stability of visual odometry. In other words,
a severe drift of visual odometry can cause a great loss
of performance to our system, which deserves our deeper
investigation.

In our future study, we are expected to refine the proposed
framework, including enhancing the robustness of visual
odometry through back-end optimization, adding trouble-
detection and troubleshooting tragedies for visual odometry
failure and involving LiDAR points in constructing visual
map.
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Difficulty-Aware Time-Bounded Planning under Uncertainty
for Large-Scale Robot Missions

Michal Staniaszek, Lara Brudermüller, Raunak Bhattacharyya, Bruno Lacerda, Nick Hawes

Abstract— We consider planning problems where a robot
must visit a large set of locations to complete a task at each
one. Our focus is problems where the difficulty of each task,
and thus its duration, can be predicted, but not fully known in
advance. We propose a general Markov decision process (MDP)
model for difficulty-aware problems, and propose variants on
this model which allow adaptation to different robotics domains.
Due to the intractability of the general problem, we propose
simplifications to allow planning in large domains, the key
being constraining navigation using a solution to the travelling
salesperson problem (TSP). We build a set of variant models
for two domains with different characteristics: UV disinfection,
and cleaning, evaluating them on maps generated from real-
world environments. We evaluate the effect of model variants
and simplifications on performance, and show that our models
outperform a rule-based baseline.

I. INTRODUCTION

Many real-world mobile robot applications such as cleaning,
visual inspection, and environmental monitoring involve
missions where the robot must execute tasks to service each
of a set of locations within a time bound.

In this paper, we identify and model a general class of
such problems where the duration of actions required to
make progress on a specific task is influenced by its difficulty.
Because the factors which typically make a robotic task
difficult, such as environment dynamics or state estimation
uncertainty, can only be observed at execution time, we
use probabilistic models to predict the difficulty at each
location. This yields a problem which requires planning under
uncertainty. To keep within the time bound, the system must
take into account the fact that difficulty affects task duration.
Time bounds may be imposed by various sources, such as
operational requirements to complete tasks before a certain
time, times when humans are in the environment, or weather.
We refer to difficulty-aware planning problems as those where
1) difficulty of tasks can be modelled probabilistically, 2) task
duration depends on difficulty and can also be modelled
probabilistically, and 3) a location’s task difficulty can be
observed online when the robot reaches it.

The class of difficulty-aware problems naturally captures a
wide range of current robotics applications: 3D reconstruction
of human spaces, where difficulty is due to scene complexity
and dynamics [1]; underwater asset inspection, due to
uncertain communication and currents moving the vehicle

All authors are with the Oxford Robotics Institute, University
of Oxford, Oxford, UK. {michal, larab, raunakbh, bruno,
nickh}@robots.ox.ac.uk. This work was supported by the EPSRC
Programme Grant “From Sensing to Collaboration” (EP/V000748/1), the
UKAEA/EPSRC Fusion Grant (EP/W006839/1), and a gift from Amazon
Web Services. 979-8-3503-0704-7/23/$31.00 ©2023 IEEE.

as it captures data [2], [3]; and UV disinfection, due to
localisation uncertainty [4], [5].

To solve a difficulty-aware planning problem, the planner
has to jointly consider two problems: the order in which to
visit locations (ordering), and how much time to spend ser-
vicing each location (time allocation). The ordering problem
requires the planner to implicitly solve a TSP, so planning
for difficulty-aware missions is computationally challenging
even for small problems. As originally proposed by Lane
and Kaelbling [6], we exploit the fact that these two problem
aspects can be decoupled to apply a hierarchical planning
approach. We solve the TSP to produce a tour of locations,
following that tour while solving the difficulty-aware time
allocation problem. Decoupling ordering in this way reduces
both the action and state spaces of the MDP and allows our
models to scale to much larger problem instances.

Our main contribution is a novel model for difficulty-aware
time-bounded planning problems under uncertainty, which
allows a wide range of mobile robot missions to be expressed
as a reward maximisation problem in an acyclic MDP with
a set of terminal states. We present variants of the model to
indicate its adaptability to robotics problems, and use state
space reduction methods to scale to large problem instances
of over 250 tasks, showing that using a TSP to constrain
ordering has the greatest effect. We validate our approach
through a systematic evaluation of planning and simulated
execution in two robotics domains.

II. RELATED WORK

The core of our paper is a time-bounded planning problem
under uncertainty. Such problems are commonly formulated
as finite-horizon MDPs [7]. We consider a variation where
we include time in the state and allow actions to take variable
amounts of time. We are specifically interested in problems
where reward-generating actions have stochastic duration, but
the duration distribution for each action depends on the task
difficulty, which is an observable state factor. Prior work has
formulated related time-bounded planning problems using
MDPs, such as an approach for speeding up the solution of
time-bounded planning problems with multiple objectives,
minimising time taken while maximising reward [8]. While
we do not consider multiple objectives, our model could
encode their example and handle larger problem instances.
When action duration distributions are not known in advance,
a Gaussian process (GP) can be used to maintain a belief over
environmental features which influence the distributions, and
sampled from when planning [9]. As we assume difficulty is
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a discrete set of values which do not influence each other, a
GP is overly complex for our needs.

Including uncertainty as a state factor is a way of avoiding
formulating problems as a more complex and harder to
solve partially observable Markov decision process (POMDP),
instead creating an Augmented MDP [10], [11]. Those works
consider localisation uncertainty, and we represent difficulty
a similar way in our UV disinfection example domain. We
discretise a distribution on the location variance and use it
as a state factor representing different degrees of uncertainty.

Visiting a set of locations under a time-bound has been
investigated in the literature on the orienteering problem
(OP) [12]. In the OP, the goal is to visit a subset of a given
set of locations that provides the maximum reward given a
time bound. Probabilistic extensions to the OP have also been
investigated where the associated reward with each location
is stochastic [13], [14]. Both robotic exploration [15] and
persistent monitoring problems [16] have been approached
using solutions to the OP. However, our problem differs in that
the reward is not obtained simply by visiting each location.
It depends on the actions performed, and consequently the
time spent, at a location.

Prior work has used a TSP to simplify practical robotics
navigation problems by forcing an ordering of tasks [6]. They
use a TSP to enforce ordering on a set of navigation macro-
actions, considering uncertainty only at the macro-action
level, and do not consider time as a factor in the model.
We show that the same technique can be useful without
the macro action decomposition, and in MDPs which must
consider uncertainty in time coming from multiple sources.
More formal hierarchical planning methods can be used to
reduce the state space of a large MDP by breaking it into
sub-problems. Some methods use new algorithms to convert
and solve a problem in a hierarchical manner [17], [18],
while others use standard MDP solution methods on hand-
designed or learned hierarchies [19]–[21]. Both approaches
impose an additional burden on the model designer, requiring
either implementation of non-standard solution algorithms,
or manual design and building of hierarchies. Our models
are standard MDPs, with domain-specific simplification
approaches.

III. PRELIMINARIES

A Markov decision process (MDP) is a tuple M =
〈S, ι, A, T,R, γ〉, where S is a finite set of states; ι is a
probability distribution over the initial state; A is a finite
set of actions; T : S × A × S → [0, 1] is a probabilistic
transition function returning the probability of arriving at
state s′ after taking action a in state s; R : S × A → R a
function returning a reward for performing a in state s; and
γ ∈ (0, 1] is a discount factor. The aim for an MDP is to find
an optimal policy π∗ : S → A that maximises the expected
cumulative discounted reward:

π∗ = argmaxπEπM,ι

[ ∞∑

i=0

γiR(si, ai)
]

(1)

The optimisation objective may diverge when γ = 1, but
if all runs of the MDP reach a terminal state from which no
more reward can be gathered, the objective converges to a
finite value regardless. All runs of our model reach a terminal
state as mission duration is bounded, so we consider γ = 1.

IV. PROBLEM FORMULATION

We consider a mobile robot that navigates in a discrete
topological map. A topological map is a tuple T =
〈V,E, durnav 〉, where V = {v1, . . . , vn} is a set of loca-
tions in the environment represented by poses of the form
(x, y, z, θ) in a global frame; E ⊆ V × V encodes a set of
directed edges the robot can traverse; and durnav : E → N
is a function which maps edges to travel durations. The goal
is for the robot to navigate around the locations and service
them by executing an action (e.g. clean or take a sensor
reading). The action set available to the robot is to service
its current location v, or traverse an edge (vc, v

′) ∈ E.
Service actions increase the service level at the robot’s

current location. Service levels are denoted by l ∈ NL, where
L ∈ N and NL = {0, . . . , L}. These actions have a difficulty,
modelled as a function diff : V → ND, where D ∈ N,
ND = {0, . . . , D}, which can vary according to the location.
This function is unknown a priori, but we have access to a
discrete distribution over the difficulty level at each location.
For v ∈ V and d ∈ D, P (diff (v) = d) is the probability of
the difficulty at node v being d. There is also a utility function
U : V ×NL×NL×ND → R≥0 such that U(v, l, l′, d), known
a priori, is the utility of moving the service level at v from
level l to level l′, l′ > l, given that the difficulty at v is d.

The difficulty level at a location impacts the service
duration. We assume a discrete set Λ = {λ1, · · · , λ|Λ|} ⊂ N
of |Λ| representative durations, obtained by discretising a
continuous distribution over possible durations. The exact
mapping between difficulty and duration is unknown, but
we assume that we have access to the probability of the
robot taking duration λ to change the service level at v
from l to l′ under difficulty d, where v ∈ V , l, l′ ∈ NL
with l′ > l, d ∈ ND and λ ∈ Λ. We denote this as
P (dur serv (v, l, l′, d) = λ).

Note that we make two core assumptions, neither of which
reduce applicability to practical robotics problems. 1) The
deterministic duration set Λ requires that possible durations be
known in advance. 2) Difficulty distributions are independent,
so difficulty at one location cannot influence that at another.

Mission Goal: Given an initial node v ∈ V and time
bound B ∈ N, find a policy which decides the navigation
and servicing actions to execute to maximise the expected
sum of gathered utility U , while ensuring the robot returns
to v within B units of time.

V. MODELLING

A. General MDP Model

We start by defining a general MDP model of the time-
bounded mission described above. We define n = |V | and,
for set X , denote the Cartesian product of X with itself n
times as Xn. Given a set of discrete durations Λ and a time
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bound B, we define Λ+
B as the set of all sums of elements

of Λ that are less than or equal to B.
States: The state space is of the form S = V × NnL ×

ND×Λ+
B . A state s = (vi, l1, · · · , ln, di, τ) means that robot

is at location vi, for some 1 ≤ i ≤ n; the service level at
each location vj is lj , for each 1 ≤ j ≤ n; the difficulty
level at the current location vi is di; and the elapsed time
since the start of the mission is τ . The probability of the
initial state being (v̄, 0, · · · , 0, d, 0) is P (diff (v̄) = d), i.e.
the robot starts at initial location v̄, the service level at every
location is initialised as 0 and the mission starts at time 0;
the difficulty at v̄ is defined according to P (diff (v̄) = d).

Actions and Transitions: In state s, the robot can move
between locations using a topological map edge with action ae.
Taking ae to traverse e = (vi, v

′) ∈ E, the current location
changes to v′, and the time component of the state changes
to τ ′ = τ + durnav (e). The difficulty changes stochastically
to d′, according to P (diff (v′) = d′).

The robot can increase the service level at its current loca-
tion to some l′ > li with action ali,l′ . Taking service action
ali,l′ with target service level l′, the current service level li
changes to l′, and the time component is updated to τ ′ =
τ +λ stochastically, according to P (dur serv (v, li, l

′, d) = λ).
Service actions can only increment the service level, such
that for all ali,l′ ∈ A, l′ = li + 1.

To ensure the robot returns to v̄ within time bound B, we
disallow actions that have some probability of transitioning to
a state from which it is not possible to return to v̄ in time. For
some action a ∈ A, let λamax denote the maximum possible
time increment according to the duration model of a; and let
λ(va, v̄) be the time to travel to v̄ from the location the robot
will be at after executing a, according to the shortest path in
T . If τ + λamax + λ(va, v̄) > B, then a is not enabled in s.
States with no action enabled have a return to start action
which moves the robot from vi to v̄ by the shortest path in
T , and puts the model into a terminal state from which no
more reward can be gathered.

Reward Function: The reward function returns a reward
based on the utility U , known a priori, of service actions,
which may have different utility depending on the difficulty,
service level, or location. Other actions do not give a reward.

R((vi, l1, . . . , ln, di, τ), a) =

{
U(vi, li, l

′, di) if a = ali,l′

0 otherwise.
(2)

Optimisation Objective: Optimise the expected cumula-
tive reward on the proposed MDP according to Equation 1.
We construct the MDP to ensure all policies return to the start
node within the time-bound B, after which no more reward
can be gathered. Thus, maximising the cumulative reward
matches the mission goal stated in the problem formulation.

B. Variants

Our model makes assumptions about how difficulty should
be tracked and how the time component is incremented. We
now discuss some variations on those assumptions which can
be used to model different types of problems.

Endogenous/Exogenous Difficulty: The difficulty of
servicing a task can be internal or external to the robot. For
example, the difficulty of tasks based on accurate localisation
depends on the robot’s quantification of its localisation
uncertainty, while the difficulty of cleaning an area can be
related to the amount of dirt detected there. The former is an
example of endogenous difficulty and the latter of exogenous
difficulty. Assuming a static world, once the robot observes
a level of exogenous difficulty at a given location, that level
remains the same until the end of the mission. Difficulty in
endogenous processes changes whenever the robot observes
the value of that internal process again. The model in
Section V-A assumes endogenous difficulty, so the state only
tracks the difficulty value at the current node. Exogenous
difficulty can be specified by adding a difficulty state feature
for each location, replacing di by a set of state factors
{d1, · · · , dn}. This changes the state factor for difficulty
from ND to NnD. The difficulty for each location is initialised
to 0, indicating unknown difficulty. When the robot visits the
location for the first time, the difficulty is set to the value
retrieved from diff (v). After the difficulty for a location is
set, it does not change.

Informative Action Durations: In our general model, we
assume that the execution of a service action at a node v
does not provide extra information on the duration of further
service actions on v. However, there are situations where the
duration of a service action in a node informs the duration
of further actions there. For example, when applying UV
radiation to a surface, how long it takes to apply a certain
dose depends on the pose of the robot and is stochastic. Once
the time taken is observed, the time to apply the dose again
in the same pose does not change. In these cases, the value
of P (dur serv (v, l, l′, d) = λ) depends on the duration values
previously observed when servicing v. We consider a special
case of this, where the observed duration λ of an initial
service action determines the duration for subsequent service
actions at a location. One additional state factor is required,
which starts as 0 to indicate an unknown duration, and is
set to λ once a service action is executed and its duration
observed. If the uncertainty over the duration is exogenous,
it is necessary to keep a factor for each location. The value
of the factor is the deterministic duration for further service
actions there. In the endogenous case this value is reset when
revisiting a location. In the exogenous case, its value can be
fixed once it is observed as it is a feature of the environment.

VI. EXAMPLE DOMAINS

We define two domains to show how our proposed models
can be adapted to robotics problems with different properties.

UV disinfection: In the UV disinfection problem, the
aim is to use a robot to disinfect a series of locations by
irradiating surfaces with UVC light in the 100-280nm range
to apply a dose which will achieve log reductions in microbial
activation [4]. A 1-log reduction indicates 90% inactivation
of a microbial colony, 2-log 99%, and so on.

We assign four service levels, 0 indicating the location
has not been cleaned, the other levels corresponding to 1,
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2, and 3-log reductions in activation. The dose applied to a
surface is proportional to the inverse square of distance to the
UV source, which means that small variations in the robot’s
position can have a significant effect. As such, we define
the difficulty as the robot’s metric localisation uncertainty,
discretised into three levels representing high (0), medium
(1), and low (2) confidence in its location.

To generate difficulty distributions diff (v) we use empirical
localisation uncertainty data from navigation of a Scitos X3
robot in Oxfordshire County Library (the library map in
Fig. 1). We cluster the data using a Gaussian mixture model
for each confidence level. A location’s distribution is based
on how often the localisation uncertainty there is matched
by each mixture model. This data is used over all maps by
randomly sampling from the set of location distributions.

The service duration distribution dur serv is generated by
sampling poses from the GMM and using an irradiation
simulation to determine the duration required to apply the
dose required to reach service level 1 for each difficulty. We fit
a categorical distribution to these samples with a discretisation
of 5s. As the service levels are log-linear, we can multiply the
durations for dur serv (v, 0, 1, d) by two to get the distribution
for level 2, and multiply by 4 to get the durations for level
3. This domain has rewards with diminishing returns, to
encourage higher coverage. 100 reward is given for service
level 1, 50 for 2, and 25 for 3. For further details, see the
supplementary material1 or our previous work [22].

Cleaning: In the cleaning domain, the robot must fully
clean floors in various locations, which may have different
sizes and dirtiness levels. There are only two service levels,
as a location is either clean or not clean. A location’s dirtiness
corresponds to the difficulty, affecting how long the robot
takes to clean it. We track the difficulty for each location,
as it is exogenous. A location can have no dirt (0), or low
(1), medium (2) or heavy (3) dirt. The robot only knows how
dirty a location is after visiting it, and could be determined
using computer vision or human input. During model building
diff (v) for each location is sampled from a set of 3 artificially
generated distributions by uniform random selection. Each
location is randomly designated as a small, medium, or large
room. dur serv is deterministic, found by multiplying the
duration for the difficulty by the location’s size. For servicing
a location with difficulty d, the system receives 100d reward.

VII. STATE SPACE REDUCTION STRATEGIES

As our model has state factors which depend on the
number of locations, the resulting MDP is impractical to
solve for anything more than trivial problems. Combining
simple strategies can greatly reduce the state space.

A. Fixed Navigation

The most drastic state space reduction comes from limiting
navigation on the topological map to a tour generated by
solving a TSP [6]. Let Vnext : V → V be the mapping from
a location to the next location to visit. It is defined by a

1robots.ox.ac.uk/˜michal/papers/difficulty-aware-supp.pdf

TSP tour constrained to the topological graph, generated by
an optimal TSP solver [23], which visits all locations. This
prunes possible edge transition actions ae at location vi by
making the only valid edge e = (vi, Vnext(vi)). It can be the
case that (vi, Vnext(vi)) /∈ E, as to get from vi to Vnext(vi)
requires traversing through an intermediate location in the
topological map. We redefine durnav : V × V → N to give
the shortest duration path between any two locations. This
simulates a fully connected map and means that ae can be
used to jump directly from one location to another without
having to traverse individual edges along the shortest path.
The tour takes time BTSP , based on the sum of durnav

for the traversed edges. The remaining budget to service
all locations is BMDP = B − BTSP . By pruning actions
according to Vnext, it is impossible for the model to return
to any previous location, so the state only needs to track
state factors relevant for the current location. The service
level state factors for all nodes go from NnL to NL. The state
s = (vi, l1, · · · , ln, di, τ) becomes s = (vi, li, di, τ), greatly
reducing the number of dimensions in the Cartesian product.

B. Single Service Action

We change the action al,l′ such that l must be 0. This
compresses actions for incrementally increasing the service
level at a location into a single action to go from service
level 0 to any service level l′.

The probability distributions P (dur serv (v, l, l′, d)) for
incremental actions must be collapsed to represent a transition
from service level 0 to l′ without reaching intermediate
service levels. This can be done by taking the product of the
probability distributions for each incremental service level,
i.e. P (dur serv (v, 0, l′, d)) =

∏l′−1
l=0 P (dur serv (v, l, l+1, d)).

This leads to a reduction of choices available at each location.
With incremental actions there is a choice at each service
level increment to either continue servicing or leave. With
single actions, it is only necessary to choose which (if any)
service level to achieve, without having to make the same
decision again at each increment. This is limiting, as the
policy cannot choose to abort servicing early if the service
time observed from dur serv (v, l, l′, d)) is unfavourable, and
if service times are favourable it cannot exploit the extra time
to return to locations for further servicing.

The state factor for the service level at each location li,
which contributes NnL to the state space, can become Boolean
NL = {0, 1} instead of an integer value NL = {0, 1, . . . , L},
greatly reducing the model’s state space. The outcome of any
action a0,l′ is that li = 1. The simplification relies on implicit
encoding of the service level l′ in the action. We maintain
the reward by summing values of U for each increment.

VIII. EXPERIMENTAL EVALUATION

We will refer to models based on which variants and
reduction strategies they use: incremental (I) or single (S)
actions; stochastic (ST), informative action duration (AD), or
deterministic (D) service duration distributions (in the deter-
ministic case, for a given level of difficulty, dur serv (v, l, l′, d)
has a single outcome λ ∈ Λ with probability 1); and free (FN)
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Fig. 1. Topological maps used in experiments. From left to right and top
to bottom: tiny (6 locations), tiny fc (6), warehouse (10), foyer (19), library
(70), hall (107), oilrig (138), plant (172), fence (257). See supplementary
material for examples of environment pointclouds.

or fixed (TSP) navigation. For example, the model described
in Section V-A has incremental service actions, stochastic
action transitions, and free navigation, so is written as I-ST-
FN. For the UV domain there are six models with endogenous
difficulty. Single action and informative action duration
models are mutually exclusive, so we have three free (I-AD-
FN, I-ST-FN, S-ST-FN), and three fixed navigation models
(I-AD-TSP, I-ST-TSP, S-ST-TSP). The cleaning domain has
only a single service level, and its service duration distribution
is deterministic, so it has two models, S-D-FN and S-D-
TSP, with exogenous difficulty. Models are evaluated by
solving their MDP with the PRISM model checker [24],
which generates an optimal policy using value iteration. All
models were solved using 64GB RAM, 16GB of swap space,
and an Intel Core i7-8700 CPU at 3.20GHz. Models are
evaluated on the maps in Fig. 1, with all except the tiny map
generated from visits to real environments.

A. Domain Baselines

We compare our models to a rule-based baseline behaviour
to quantify performance and highlight the benefits of planning.

1) UV Baseline: Allocates uniform service duration β =
BMDP /|V | to all locations in the map, and follows the TSP
tour. With no stochasticity in difficulty or time, constant
service time per node should always reach the same service
level. In practice this is not the case and the level reached at
different locations will vary.

2) Cleaning Baseline: Follows the TSP tour, greedily
cleaning each location for the deterministic service time
computed from its size and dirtiness, while ensuring it can
return to the start location within the time bound.

B. Time Bound Selection

Models are evaluated with three different time bounds
B = BTSP +BMDP . BMDP is defined by α1, α2, and α3,
where

∑
i αi = 1, as described below. The purpose of the α

values is to generate time bounds proportional to the number
of nodes in a map, and to use knowledge of the service levels
and expected times to define how constraining the bound is
on the service level and number of nodes that can be serviced.

Fig. 2. Number of states in MDPs for the UV domain across topological
maps of different sizes. Models which we are unable to solve due to memory
constraints are omitted. B for each map is defined by α2 = α3 = 0.5.
tiny fc is omitted as it is identical to tiny, except I-AD-FN is unsolvable.

1) UV Time Bound: Values of αs correspond to what
proportion of locations should be serviced to level s in the
ideal case, e.g. if α1 = 0.5, and α2 = 0.5 we expect half
of nodes should be serviced to level 1 and half to level 2.
ts is the time to reach level s at all locations assuming a
deterministic setting. The bound is then BMDP =

∑3
s=1 αltl.

2) Cleaning Time Bound: The time to service a location
depends on the difficulty. We compute the expected number
of locations for each difficulty level, and the expected time
to clean a location with a specific difficulty regardless of
the size of the location. The dot product of the resulting
vectors gives the total expected time E(ts) to clean the
expected number of nodes at each difficulty. The bound is then
BMDP =

∑3
s=1 αsE(ts), with values of α controlling the

bound according to the proportion of locations each difficulty
we might expect to be serviced, e.g. setting α1 = 0.5 and
α2 = 0.5, the model should have enough time to clean half
of locations with low dirt, and half with medium dirt.

C. Results

1) State Space and Solution Time: Figure 2 shows the
states for models across all maps in the UV domain. The
number of states required to represent the I-AD-FN on the
smallest map is larger than that required for S-ST-TSP on the
largest map. We were unable to generate solutions for any
free navigation models for maps larger than 19 nodes due
to memory limits. In the cleaning domain, with the largest
time bound on the tiny map, S-D-FN has around 1.02× 107,
while S-D-TSP has 457. Even in the 257 node map with
the largest bound S-D-TSP has only 1.17× 106 states. The
growth of the state space for free navigation models appears
approximately log-linear in the number of nodes, but also
depends on the average degree of the topological map.

TABLE I
SOLUTION TIME IN SECONDS FOR FIXED NAVIGATION MODELS ACROSS

SELECTED MAPS WITH HORIZON α2 = α3 = 0.5.

Model foyer library hall oilrig plant fence
I-AD-TSP 14 773 2767 6378 16431 N/A
I-ST-TSP 4 125 555 974 1956 7540
S-ST-TSP 2 74 269 570 1181 4074
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Table I shows solution time across selected maps. The
number of states is closely related to solution time of the
MDP. In the map with 6 locations, for the longest horizon
PRISM required 30m to solve I-AD-FN, the most complex
model, but less than 0.2s to solve S-ST-TSP, the simplest.
The disparity between the fixed navigation models becomes
clearer on the library map, where the horizon is around 50
minutes. For the largest map of 257 locations, with the time
bound defining 3 hours of robot operation, solution time for
S-ST-TSP is a little over an hour. Computation time on the
tiny fc map for free navigation models is over twice that of
the same models on the tiny map, as a result of increased
choices and transitions in the MDP.

2) Service levels: We evaluate our models by executing
the policies they generate in a discrete event simulator which
evolves the state according to the dynamics of a model without
simplifications. Any variation in reward should show the
effects of the simplifications which do not directly map to the
behaviour of the world represented by the unsimplified model.
To represent the world, we use the world model I-AD-FN
for the UV domain, and S-D-FN for the cleaning domain, as
they are closest to how we expect the real world to evolve.
The simulator does not require solution of the MDP of the
world model, so we are able to run simulations of even the
largest maps. We run policies generated from other models
on the simulator. We can only compare all models on the tiny
map as we are unable to solve the full set of free navigation
models on larger maps due to memory constraints.

Fig. 3 shows the difference in service levels achieved
between the baseline and models. In the UV domain, models
always achieve a higher average service level across all nodes,
and are much closer to achieving the service levels we would
expect based on α. Compared to the rule-based baseline,
planning always achieves higher average service levels across
all nodes in the UV domain. In a deterministic setting, with
time bound from α1 = 1, the baseline should always reach
service level 1, but the majority of locations are not serviced as
the time allocated is insufficient. Planning achieves cleaning
level 1 in almost all locations.

The cleaning domain has only two service levels, so we
show the average number of nodes at each dirtiness level
after the policy has been executed (Fig. 4). The baseline and
models have access to the same service duration information,
but after policy execution the S-D-TSP model receives more
reward on average for shorter time bounds. As the time bound
increases, there is less difference between planning and the
baseline, as slack in the budget allows the baseline to gather
reward at every location regardless of uncertainty.

3) Rewards: Table II shows the mean reward for various
models on the library map for the UV and cleaning domains
over 1000 simulations. Our models always outperform the
baselines, even in the cleaning domain with deterministic
service action duration. On the 6 node map, mean rewards
across all models are within approximately 1.5% of each
other. This is also the case for the subsets of models we can
solve for larger maps. This indicates that for small maps the
state reduction strategies enable scalability while retaining

Fig. 3. Average number of locations at specific service levels achieved in
the UV domain on the tiny (top) and library (bottom) maps. Other maps
have similar results. 1000 policy executions per model on each time bound
as specified by α values. Standard error is less than 1% in all cases.

Fig. 4. Average number of locations with specific dirtiness after policy
execution in the cleaning domain by baseline and S-D-TSP model on the
library map. 1000 policy executions per model for each time bound specified
by α values. Standard error is less than 1% in all cases.

performance. We performed this evaluation with uniform and
non-uniform probability distributions to test whether more
uncertainty has a large effect. Uniform distributions show a
slight increase in variation, but all models are still within
approximately 2% of each other. The result of simulating
policies gives very similar reward values to the expected
policy value from PRISM. Over 1000 policy executions, the
mean reward for all models in simulation is within 1% of
the expected value of the policy, with the largest standard
deviation equivalent to a difference of fully servicing at most
two locations. On the tiny map, the only one where we can
run all models, we see very little difference in reward values
for fixed and free navigation variations. This is likely due to
the simplicity of the map, where there is little advantage to
free navigation models in making choices about navigation.
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TABLE II
TOTAL REWARD ON THE LIBRARY MAP OVER 1000 POLICY EXECUTIONS.

UV α1 = 1 α1 = α2 = 0.5 α2 = α3 = 0.5

Baseline 804± 261 4104± 211 9058± 107

S-ST-TSP 6781± 78 8608± 65 11302± 32

I-ST-TSP 6783± 75 8609± 63 11305± 34

I-AD-TSP 6784± 79 8662± 67 11329± 30

Cleaning α1 = 1 α1 = α2 = 0.5 α2 = α3 = 0.5

Baseline 2666± 169 5534± 298 12094± 511

S-D-TSP 4615± 117 8092± 188 12151± 302

On the warehouse map, the mean reward for the S-ST-FN
model over 1000 simulations for the shortest time bound was
1088, while the three fixed navigation models were between
905 and 912. For the foyer map, solving the MDP for the
shortest time bound took 32 hours. The expected reward value
was 1873, as opposed to the fixed navigation models having
reward of approximately 1790. Both of these differences are
significant according to a two-sided Kolmogorov-Smirnov test,
which further indicates that models with free navigation may
be able to get more reward on larger maps. Comparing results
on the tiny maps, connectivity also affects reward distribution,
with free navigation models performing up to 2% better for
some models. We hypothesise that this difference may be
clearer on larger maps, but we are unable to test this due to
memory constraints on the free navigation models.

IX. CONCLUSIONS

We propose a general MDP for robot task planning
under uncertainty which considers task difficulty, and apply
simplifications to solve it for large topological maps in two
representative robotics domains. We greatly reduce the state
space of the MDP by constraining the navigation with a TSP,
decoupling the ordering and time allocation problems. On
small maps, this simplification results in similar expected
reward to policies generated by unsimplified models. We show
that our models always outperform a rule-based baseline.
Unconstrained navigation with the general model should
outperform simplified models on larger maps, but even with
our simplifications, evaluating this will require different
solution approaches.

Future work will investigate the use of approximate
techniques such as Monte Carlo tree search [25] and labeled
real-time dynamic programming [26], or further simplification
through hierarchical planning methods to find solutions. We
aim to implement our models on a physical robot, where
the time bound might be set using expected battery life. A
potential difficulty is that real world task execution times
may not easily map onto our assumption of a fixed set of
possible task durations.
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Robust Multi-Agent Pickup and Delivery with Delays

Giacomo Lodigiani1, Nicola Basilico2, and Francesco Amigoni1

Abstract— Multi–Agent Pickup and Delivery (MAPD) is the
problem of computing collision-free paths for a group of agents
such that they can safely reach delivery locations from pickup
ones. These locations are provided at runtime, making MAPD
a combination between classical Multi–Agent Path Finding
(MAPF) and online task assignment. Current algorithms for
MAPD do not consider many of the practical issues encountered
in real applications: real agents often do not follow the planned
paths perfectly, and may be subject to delays and failures. In
this paper, we study the problem of MAPD with delays, and
we present two solution approaches that provide robustness
guarantees by planning paths that limit the effects of imperfect
execution. In particular, we introduce two algorithms, k–TP and
p–TP, both based on a decentralized algorithm typically used
to solve MAPD, Token Passing (TP), which offer deterministic
and probabilistic guarantees, respectively. Experimentally, we
compare our algorithms against a version of TP enriched with
online replanning. k–TP and p–TP provide robust solutions,
significantly reducing the number of replans caused by delays,
with little or no increase in solution cost and running time.

I. INTRODUCTION

In Multi–Agent Pickup and Delivery (MAPD) [1], a set
of agents must jointly plan collision–free paths to serve
pickup–delivery tasks that are submitted at runtime. MAPD
combines a task-assignment problem, where agents must be
assigned to pickup–delivery pairs of locations, with Multi–
Agent Path Finding (MAPF) [2], where collision–free paths
for completing the assigned tasks must be computed. A
particularly challenging feature of MAPD problems is that
they are meant to be cast into dynamic environments for long
operational times. In such settings, tasks appear at any time
in an online fashion.

Despite studied only recently, MAPD has a great relevance
for a number of real–world application domains. Automated
warehouses, where robots continuously fulfill new orders,
arguably represent the most significant industrial deploy-
ments [3]. Beyond logistics, MAPD applications include also
the coordination of teams of service robots [4] or fleets of
autonomous cars, and the automated control of non–player
characters in video games [5].

Recently, the MAPF community has focused on resolution
approaches that can deal with real–world–induced relax-
ations of some idealistic assumptions usually made when
defining the problem. A typical example is represented by
the assumption that the planned paths are executed without

1Giacomo Lodigiani and Francesco Amigoni are with the Department
of Electronics, Information, and Bioengineering (DEIB), Politecnico di
Milano, Milan, Italy giacomo.lodigiani@mail.polimi.it,
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2Nicola Basilico is with the Department of Computer Science, University
of Milan, Milan, Italy nicola.basilico@unimi.it
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

errors. In reality, execution of paths might be affected by
delays and other issues that can hinder some of their expected
properties (e.g., the absence of collisions). One approach is
to add online adaptation to offline planning, in order to cope
with situations where the path execution incurs in errors [6].
Despite being reasonable, this approach is not always desir-
able in real robotic applications. Indeed, replanning can be
costly in those situations where additional activities in the
environment are conditioned to the plans the agents initially
committed to. In other situations, replanning cannot even be
possible: think, as an example, to a centralized setting where
robots are no more connected to the base station when they
follow their computed paths. This background motivated the
study of robustness [1], [7], [8], generally understood as the
capacity, guaranteed at planning time, of agents’ paths to
withstand unexpected runtime events. In our work, we focus
on robustness in the long–term setting of MAPD, where it
has not been yet consistently studied.

Specifically, in this paper, we study the robustness of
MAPD to the occurrence of delays. To do so, we introduce
a variant of the problem that we call MAPD with delays
(MAPD–d for short). In this variant, like in standard MAPD,
agents must be assigned to tasks (pickup–delivery locations
pairs), which may continuously appear at any time step,
and collision–free paths to accomplish those tasks must be
planned. However, during path execution, delays can occur
at arbitrary times causing one or more agents to halt at some
time steps, thus slowing down the execution of their planned
paths. We devise a set of algorithms to compute robust solu-
tions for MAPD–d. The first one is a baseline built from a de-
centralized MAPD algorithm, Token Passing (TP), to which
we added a mechanism that replans in case collisions caused
by delays are detected when following planned paths. TP is
able to solve well–formed MAPD problem instances [9], and
we show that, under some assumptions, the introduction of
delays in MAPD–d does not affect well–formedness. We then
propose two new algorithms, k–TP and p–TP, which adopt
the approach of robust planning, computing paths that limit
the risk of collisions caused by potential delays. k–TP returns
solutions with deterministic guarantees about robustness in
face of delays (k–robustness), while solutions returned by p–
TP have probabilistic robustness guarantees (p–robustness).
We compare the proposed algorithms by running experiments
in simulated environments and we evaluate the trade–offs
offered by different levels and types of robustness.

In summary, the main contributions of this paper are:
the introduction of the MAPD–d problem and the study
of some of its properties (Section III), the definition of
two algorithms (k–TP and p–TP) for solving MAPD–d
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problems with robustness guarantees (Section IV), and their
experimental evaluation that provides insights about how
robustness and solution cost can be balanced (Section V).

II. PRELIMINARIES AND RELATED WORK

In this section, we discuss the relevant literature related
to our work and we introduce the formal concepts we build
upon in the following sections.

A basic MAPF problem assigns a start–goal pair of
vertices on a graph G = (V,E) to each agent from a set
A = {a1, a2, . . . , aℓ} and is solved by a minimum–cost
discrete–time set of paths allowing each agent to reach its
goal without collisions [2]. We shall define agent ai’s path
as πi = ⟨πi,t, πi,t+1, . . . , πi,t+n⟩, namely a finite sequence
of vertices πi,h ∈ V starting at some time t and ending at
t+n. Following πi, the agent must either move to an adjacent
vertex ((πi,t, πi,t+1) ∈ E) or not move (πi,t+1 = πi,t).

MAPD extends the above one–shot setting to a time–
extended setting by introducing tasks τj ∈ T , each spec-
ifying a pickup and a delivery vertex denoted as sj and
gj , respectively. A task has to be assigned to an agent
that must execute it following a collision–free path from its
initial location to sj and then from sj to gj . A peculiar
characteristic of this problem is that the set T is filled at
runtime: a task can be added to the system at any (finite) time
and from the moment it is added it becomes assignable to any
agent. An agent is free when it is currently not executing any
task and occupied when it is assigned to a task. If an agent is
free, it can be assigned to any task τj ∈ T , with the constraint
that a task can be assigned to only one agent. When this
happens, the task is removed from T and, when the agent
completes its task eventually arriving at gj , it returns free.
A plan is a set of paths, which are required to be collision–
free, namely any two agents cannot be in the same vertex
or traverse the same edge at the same time. Each action
(movement to an adjacent vertex or wait) lasts one time
step. Solving MAPD means finding a minimum–cost plan
to complete all the tasks in T . Cost usually takes one of two
possible definitions. The service time is the average number
of time steps needed to complete each task τj , measured as
the time elapsed from τj’s arrival to the time an agent reaches
gj . The makespan, instead, is the earliest time step at which
all the tasks are completed. Being MAPD a generalization
of MAPF, it is NP–hard to solve optimally with any of the
previous cost functions [10], [11].

Recent research focused on how to compute solutions
of the above problems which are robust to delays, namely
to runtime events blocking agents at their current vertices
for one or more time steps, thus slowing down the paths
execution. The MAPF literature provides two notions of
robustness, which we exploit in this paper. The first one is
that of k–robustness [8], [12]. A plan is k–robust iff it is
collision–free and remains so when at most k delays for each
agent occur. To create k–robust plans, an algorithm should
ensure that, when an agent leaves a vertex, that vertex is not
occupied by another agent for at least k time steps. In this
way, even if the first agent delays k times, no collision can

occur. The second one is called p–robustness [7]. Assume
that a fixed probability pd of any agent being delayed at any
time step is given and that delays are independent of each
other. Then, a plan is p–robust iff the probability that it will
be executed without a collision is at least p. Differently from
k–robustness, this notion provides a probabilistic guarantee.

Robustness for MAPD problems has been less studied.
One notion proposed in [9] and called long–term robustness
is actually a feasibility property that guarantees that a finite
number of tasks will be completed in a finite time. Authors
show how a sufficient condition to have long–term robustness
is to ensure that a MAPD instance is well–formed. This
amounts to require that (i) the number of tasks is finite;
(ii) there are as much non-task endpoints as agents, where
non-task endpoints are vertices designated as rest locations
at which agents might not interfere with any other moving
agent; (iii) for any two (task or non-task) endpoints, there
exists a path between them that traverses no other endpoints.

In this work, we leverage the above concepts to extend
k– and p–robustness to long–term MAPD settings. To do
so, we focus on a current state–of–the–art algorithm for
MAPD, Token Passing (TP) [9]. This algorithm follows
an online and decentralized approach that, with respect to
the centralized counterparts, trades off optimality to achieve
an affordable computational cost in real–time long–term
settings. We report it in Algorithm 1. The token is a shared
block of memory containing the current agents’ paths {πi},
the current task set T , and the current assignment of tasks
to the agents. The token is initialized with paths in which
each agent ai rests at its initial location loc(ai) (line 1). At
each time step, new tasks might be added to T (line 3).
When an agent has reached the end of its path in the token,
it becomes free and requests the token (at most once per
time step). The token is sent in turn to each requesting agent
(line 5) and the agent with the token assigns itself (line 9) to
the task τ in T whose pickup vertex is closest to its current
location (line 8), provided that no other path already planned
(and stored in the token) ends at the pickup or delivery
vertex of such task (line 6). The distance between the current
location loc(ai) of agent ai and the pickup location sj of a
task is calculated using a (possibly approximated) function
h (for the grid environments of our experiments we use the
Manhattan distance). The agent then computes a collision–
free path from its current position to the pickup vertex, then
from there to the delivery vertex, and finally it eventually
rests at the delivery vertex (line 11). Finally, the agent
releases the token (line 17) and everybody moves one step
on its path (line 19). If ai cannot find a feasible path it stays
where it is (line 13) or it calls the function Idle to compute
a path to a non-task endpoint in order to ensure long–term
robustness (line 15).

Note that other dynamic and online settings, different
from ours, have been considered for MAPF and MAPD. For
example, [13] introduces a setting in which the set of agents
is not fixed, but agents can enter and leave the system, [14]
proposes an insightful comparison of online algorithms that
can be applied to the aforementioned setting, and [15] studies
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Algorithm 1: Token Passing
1 initialize token with path ⟨loc(ai)⟩ for each agent ai

(loc(ai) is ai’s current (eventually initial) location);
2 while true do
3 add new tasks, if any, to the task set T ;
4 while agent ai exists that requests token do
5 /* token assigned to ai and ai executes now */;
6 T ′ ← {τj ∈ T | no path in token ends in sj or

gj};
7 if T ′ ̸= {} then
8 τ ← argminτj∈T ′ h(loc(ai), sj);
9 assign ai to τ ;

10 remove τ from T ;
11 update ai’s path in token with the path

returned by PathPlanner(ai, τ, token);
12 else if no task τj ∈ T exists with gj = loc(ai)

then
13 update ai’s path in token with the path

⟨loc(ai)⟩;
14 else
15 update ai’s path in token with Idle(ai, token);
16 end
17 /* ai returns token to system */;
18 end
19 agents move on their paths in token for one time step;
20 end

a related problem where the actions have uncertain costs.

III. MAPD WITH DELAYS

Delays are typical problems in real applications of MAPF
and MAPD and may have multiple causes. For example,
robots can slow down due to some errors occurring in
the sensors used for localization and coordination [16].
Moreover, real robots are subject to physical constraints,
like minimum turning radius, maximum velocity, and maxi-
mum acceleration, and, although algorithms exists to convert
time–discrete MAPD plans into plans executable by real
robots [17], small differences between models and actual
agents may still cause delays. Another source of delays is
represented by anomalies happening during path execution
and caused, for example, by partial or temporary failures of
some agent [18].

We define the problem of MAPD with delays (MAPD–d)
as a MAPD problem (see Section II) where the execution of
the computed paths πi can be affected, at any time step t, by
delays represented by a time–varying set D(t) ⊆ A. Given
a time step t, D(t) specifies the subset of agents that will
delay the execution of their paths, lingering at their currently
occupied vertices at time step t. An agent could be delayed
for several consecutive time steps, but not for indefinitely
long in order to preserve well–formedness (see next section).
The temporal realization of D(t) is unknown when planning
paths, so a MAPD–d instance is formulated as a MAPD
one: no other information is available at planning time. The
difference lies in how the solution is built: in MAPD–d we
compute solutions accounting for robustness to delays that
might happen at runtime.

More formally, delays affect each agent’s execution trace.

Agent ai’s execution trace ei = ⟨ei,0, ei,1, ..., ei,m⟩1 for a
given path πi = ⟨πi,0, πi,1, . . . , πi,n⟩ corresponds to the
actual sequence of m (m ≥ n) vertices traversed by ai while
following πi and accounting for possible delays. Let us call
idx(ei,t) the index of ei,t (the vertex occupied by ai at time
step t) in πi. Given that ei,0 = πi,0, the execution trace is
defined, for t > 0, as:

ei,t =

{
ei,t−1 if ai ∈ D(t)
πi,h | h = idx(ei,t−1) + 1 otherwise

.

An execution trace terminates when ei,m = πi,n for some
m.

Notice that, if no delays are present (that is, D(t) = {}
for all t) then the execution trace ei exactly mirrors the path
πi and, in case this is guaranteed in advance, the MAPD–
d problem becomes de facto a regular MAPD problem. In
general, such a guarantee is not given and solving a MAPD–d
problem opens the issue of computing collision–free tasks–
fulfilling MAPD paths (optimizing service time or makespan)
characterized by some level of robustness to delays.

The MAPD–d problem reduces to the MAPD problem as
a special case, so the MAPD–d problem is NP-hard.

A. Well-formedness of MAPD–d

In principle, if a problem instance is well–formed, delays
will not affect its feasibility (this property is also called long–
term robustness, namely the guarantee that a finite number
of tasks will be completed in a finite time, see Section II).
Indeed, well–formedness is given by specific topological
properties of the environment and delays, by their definition,
are not such a type of feature. There is, however, an exception
to this argument corresponding to a case where a delay does
cause a modification of the environment, eventually resulting
in the loss of well–formedness and, in turn, of feasibility.
This is the case where an agent is delayed indefinitely
and cannot move anymore (namely when the agent is in
D(t) for all t ≥ T for a given time step T ). In such
a situation, the agent becomes a new obstacle, potentially
blocking a path critical for preserving the well–formedness.
The assumption that an agent cannot be delayed indefinitely
made in the previous section ensures the well-formedness of
MAPD–d instances. More precisely, a MAPD–d instance is
well–formed when, in addition to requirements (i)–(iii) from
Section II, it satisfies also: (iv) any agent cannot be in D(t)
forever (i.e., for all t ≥ T for a given T ).

In a real context, condition (iv) amounts to removing
or repairing the blocked agents. For instance, if an agent
experiences a permanent fail, it will be removed (in this
case its incomplete task will return in the task set and at
least one agent must survive in the system) or repaired after
a finite number of time steps. This guarantees that the well–
formedness of a problem instance is preserved (or, more
precisely, that it is restored after a finite time).

1For simplicity and w.l.o.g., we consider a path and a corresponding
execution trace starting from time step 0.

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

173



Algorithm 2: TP with replanning
1 initialize token with the (trivial) path ⟨loc(ai)⟩ for each

agent ai;
2 while true do
3 add new tasks, if any, to the task set T ;
4 R← CheckCollisions(token);
5 foreach agent ai in R do
6 retrieve task τ assigned to ai;
7 πi ← PathPlanner(ai, τ, token);
8 if πi is not null then
9 update ai’s path in token with πi;

10 else
11 recovery from deadlocks;
12 end
13 end
14 while agent ai exists that requests token do
15 proceed like in Algorithm 1 (lines 5-17);
16 end
17 agents move along their paths in token for one time

step (or stay at their current position if delayed);
18 end

B. A MAPD–d baseline: TP with replanning

Algorithms able to solve well–formed MAPD problems,
like TP, are in principle able to solve well–formed MAPD–d
problems as well. The only issue is that these algorithms
would return paths that do not consider possible delays
occurring during execution. Delays cause paths to possibly
collide, although they did not at planning time. (Note that,
according to our assumptions, when an agent is delayed at
time step t, there is no way to know for how long it will be
delayed.)

In order to have a baseline to compare against the al-
gorithms we propose in the next section, we introduce an
adaptation of TP allowing it to work also in presence of
delays. Specifically, we add to TP a replanning mechanism
that works as follows: when a collision is detected between
agents following their paths, the token is assigned to one of
the colliding agents to allow replanning of a new collision–
free path. This is a modification of the original TP mech-
anism where the token can be assigned only to free agents
that have reached the end of their paths (see Algorithm 1).
To do this, we require the token to include also the current
execution traces of the agents.

Algorithm 2 reports the pseudo–code for this baseline
method that we call TP with replanning. At the current time
step a collision is checked using the function CheckCollisions
(line 4): a collision occurs at time step t if an agent ai
wants to move to the same vertex to which another agent aj
wants to move or if ai and aj want to swap their locations
on adjacent vertices. For example, this happens when aj
is delayed at t or when one of the two agents has been
delayed at an earlier time step. The function returns the
set R of non–delayed colliding agents that will try to plan
new collision–free paths (line 7). The PathPlanner function
considers a set of constraints to avoid conflicts with the
current paths of other agents in the token. A problem may
happen when multiple delays occur at the same time; in

Fig. 1. An example of TP with replanning. The figure shows a grid
environment with two agents and two tasks at different time steps. At time
step 0 (top), the agents plan their paths without collisions. At time steps 6
and 7 (middle) a2 is delayed and at time step 7 a collision is detected in
the token. Then, a1 regains the token and replans (bottom).

particular situations, two or more agents may prevent each
other to follow the only paths available to complete their
tasks. In this case, the algorithm recognizes the situation
and implements a deadlock recovery behavior. In particular,
although with our assumptions agents cannot be delayed
forever, we plan short collision–free random walks for the
involved agents in order to speedup the deadlock resolution
(line 11). An example of execution of TP with replanning is
depicted in Figure 1.

IV. ALGORITHMS FOR MAPD WITH DELAYS

In this section we present two algorithms, k–TP and p–
TP, able to plan paths that solve MAPD–d problem instances
with some guaranteed degree of robustness in face of de-
lays. In particular, k–TP provides a deterministic degree of
robustness, while p–TP provides a probabilistic degree of
robustness. For developing these two algorithms, we took
inspiration from the corresponding concepts of k– and p–
robustness for MAPF that we outlined in Section II.

A. k–TP Algorithm

A k–robust solution for MAPD–d is a plan which is
guaranteed to avoid collisions due to at most k consecutive
delays for each agent, not only considering the paths already
planned but also those planned in the future. (By the way,
this is one of the main differences between our approach
and the robustness for MAPF.) As we have discussed in
Section III, TP with replanning (Algorithm 2) can just react
to the occurrence of delays once they have been detected.
The k–TP algorithm we propose, instead, plans in advance
considering that delays may occur, in the attempt of avoiding
replanning at runtime. The algorithm is defined as an exten-
sion of TP with replanning, so it is able to solve all well–
formed MAPD–d problem instances. A core difference is an
additional set of constraints enforced during path planning.
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Algorithm 3: k-TP
1 initialize token with the (trivial) path ⟨loc(ai)⟩ for each

agent ai;
2 while true do
3 add new tasks, if any, to the task set T ;
4 R← CheckCollisions(token);
5 foreach agent ai in R do
6 proceed like in Algorithm 2 (lines 6-11);
7 end
8 while agent ai exists that requests token do
9 /* token is assigned to ai and ai executes now */;

10 T ′ ← {τj ∈ T | no path in token ends in sj or in
gj};

11 if T ′ ̸= {} then
12 τ ← argminτj∈T ′ h(loc(ai), sj);
13 assign ai to τ ;
14 remove τ from T ;
15 πi ← PathPlanner(ai, τ, token);
16 if πi is not null then
17 update token with k-extension(πi, k);
18 else if no task τj ∈ T exists with gj = loc(ai)

then
19 update ai’s path in token with the path

⟨loc(ai)⟩;
20 else
21 πi ← Idle(ai, token);
22 if πi is not null then
23 update token with k-extension(πi, k);
24 end
25 /* ai returns token to system */;
26 end
27 agents move along their paths in token for one time

step (or stay at their current position if delayed);
28 end

The formal steps are reported in Algorithm 3. A new path
πi, before being added to the token, is used to generate the
constraints (the k–extension of the path, also added to the
token, lines 17 and 23) representing that, at any time step t,
any vertex in

{πi,t−k, . . . , πi,t−1, πi,t, πi,t+1, . . . , πi,t+k}

should be considered as an obstacle (at time step t) by
agents planning later. In this way, even if agent ai or agent
aj planning later are delayed up to k times, no collision
will occur. For example, if πi = ⟨v1, v2, v3⟩, the 1-extension
constraints will forbid any other agent to be in {v1, v2} at
the first time step, in {v1, v2, v3} at the second time step, in
{v2, v3} at the third time step, and in {v3} at the fourth time
step.

The path of an agent added to the token ends at the
delivery vertex of the assigned task, so the space requested in
the token to store the path and the corresponding k–extension
constraints is finite, for finite k. Note that, especially for large
values of k, it may happen that a sufficiently robust path for
an agent ai cannot be found at some time step; in this case,
ai simply returns the token and tries to replan at the next
time step. The idea is that, as other agents advance along
their paths, the setting becomes less constrained and a path
can be found more easily. Clearly, since delays that affect

the execution are not known beforehand, replanning is still
necessary in those cases where an agent gets delayed for
more than k consecutive time steps.

B. p–TP Algorithm

The idea of k–robustness considers a fixed value k for
the guarantee, which could be hard to set: if k is too low,
plans may not be robust enough and the number of (possibly
costly) replans could be high, while if k is too high, it will
increase the total cost of the solution with no extra benefit
(see Section V for numerical data supporting these claims).

An alternative approach is to resort to the concept of p–
robustness. A p–robust plan guarantees to keep collision
probability below a certain threshold p (0 ≤ p ≤ 1). In
a MAPD setting, where tasks are not known in advance, a
plan could quickly reach the threshold with just few paths
planned, so that no other path can be added to it until the
current paths have been executed. Our solution to avoid this
problem is to impose that only the collision probability of
individual paths should remain below the threshold p, not of
the whole plan. As discussed in [19], this might also be a
method to ensure a notion of fairness among agents.

We thus need a way to calculate the collision probability
for a given path. We adopt a model based on Markov
chains [20]. Assuming that the probability that any agent
is delayed at any time step is fixed and equal to pd, we
model agent ai’s execution trace ei (corresponding to a path
πi) with a Markov chain, where the transition matrix P is
such that with probability pd the agent remains at the current
vertex and with probability 1−pd advances along πi. We also
assume that transitions along chains of different agents are
independent. (This simplification avoids that delays for one
agent propagate to other agents, which could be problematic
for the model [19], while still providing an useful proxy for
robustness.)

This model is leveraged by our p–TP algorithm reported as
Algorithm 4. The approach is again an extension of TP with
replanning, so also in this case we are able to solve any well–
formed MAPD instance. Here, one difference with the basic
algorithms is that before inserting a new path πi in the token,
the Markov chain model is used to calculate the collision
probability cprobπi

between πi and the paths already in
the token (lines 18 and 30). Specifically, the probability
distribution for the vertex occupied by an agent ai at the
beginning of a path πi = ⟨πi,t, πi,t+1, . . . , πi,t+n⟩ is given
by a (row) vector s0 with length n that has every element
set to 0 except that corresponding to the vertex πi,t, which is
1. The probability distribution for the location of an agent at
time step t+ j is given by s0P j (where P is the transition
matrix defined above). For example, in a situation with 3
agents and 4 vertices (v1, v2, v3, v4), the probability distri-
butions at a given time step t for the locations of agents a1,
a2, and a3 could be ⟨0.6, 0.2, 0.1, 0.1⟩, ⟨0.3, 0.2, 0.2, 0.3⟩,
and ⟨0.5, 0.1, 0.3, 0.1⟩, respectively. Then, for any vertex
traversed by the path πi, we calculate its collision probability
as 1 minus the probability that all the other agents are not
at that vertex at that time step multiplied by the probability
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Algorithm 4: p-TP
1 initialize token with path ⟨loc(ai)⟩ for each agent ai;
2 while true do
3 add new tasks, if any, to the task set T ;
4 R← CheckCollisions(token);
5 foreach agent ai in R do
6 proceed like in Algorithm 2 (lines 7 - 13);
7 end
8 while agent ai exists that requests token do
9 /* token assigned to ai and ai executes now */;

10 T ′ ← {τj ∈ T | no path in token ends in sj or in
gj};

11 if T ′ ̸= {} then
12 τ ← argminτj∈T ′ h(loc(ai), sj);
13 assign ai to τ ;
14 remove τ from T ;
15 j ← 0;
16 while j < itermax do
17 πi ← PathPlanner(ai, τ, token);
18 cprobπi

← MarkovChain(πi, token);
19 if cprobπi

< p then
20 update ai’s path in token with πi;
21 break
22 j ← j + 1;
23 end
24 else if no task τj ∈ T exists with gj = loc(ai)

then
25 update ai’s path in token with the path

⟨loc(ai)⟩;
26 else
27 j ← 0;
28 while j < itermax do
29 πi ← Idle(ai, token);
30 cprobπi

← MarkovChain(πi, token);
31 if cprobπi

< p then
32 update ai’s path in token with πi;
33 break
34 j ← j + 1;
35 end
36 end
37 /* ai returns token and system executes now */;
38 end
39 agents move along their paths in token for one time

step (or stay at their current position if delayed);
40 end

that the agent is actually at that vertex at the given time
step. Following the above example, the collision probability
in v1 for agent a1 at t (i.e., the probability that at least
one of the other agents is at v1 at t) is calculated as
[1 − (1 − 0.3) · (1 − 0.5)] · 0.6 = 0.39. The collision
probabilities of all the vertices along the path are summed
to obtain the collision probability cprobπi

for the path πi. If
this probability is above the threshold p (lines 19 and 31),
the path is rejected and a new one is calculated. If an enough
robust path is not found after a fixed number of rejections
itermax, the token is returned to the system and the agent will
try to replan at the next time step (as other agents advance
along their paths, chances of collisions could decrease).

Also for p–TP, since the delays are not known beforehand,
replanning is still necessary. Moreover, we need to set the
value of pd, with which we build the probabilistic guarantee

according to the specific application setting. We deal with
this in the next section.

V. EXPERIMENTAL RESULTS

A. Setting

Our experiments are conducted on a 3.2 GHz Intel Core i7
8700H laptop with 16 GB of RAM. We tested our algorithms
in two warehouse 4–connected grid environments where the
effects of delays can be significant: a small one, 15 × 13
units, with 4 and 8 agents, and a large one, 25 × 17, with
12 and 24 agents (Figure 2). (Environments of similar size
have been used in [9].) At the beginning, the agents are
located at the non-task endpoints. We create a sequence of
50 tasks choosing the pickup and delivery vertices uniformly
at random among a set of predefined vertices. The arrival
time of each task is determined according to a Poisson
distribution [21]. We test 3 different arrival frequencies λ
for the tasks: 0.5, 1, and 3 (since, as discussed later, the
impact of λ on robustness is not relevant, we do not show
results for all values of λ). During each run, 10 delays per
agent are randomly inserted and the simulation ends when
all the tasks have been completed.

We evaluate k–TP and p–TP against the baseline TP with
replanning (to the best of our knowledge, we are not aware of
any other algorithm for finding robust solutions to MAPD–
d). For p–TP we use two different values for the parameter
pd, 0.02 and 0.1, modeling a low and a higher probability
of delay, respectively. (Note that this is the expected delay
probability used to calculate the robustness of a path and
could not match with the delays actually observed.) For
planning paths of individual agents (PathPlanner in the
algorithms), we use an A* path planner with Manhattan
distance as heuristic.

Solutions are evaluated according to the makespan (i.e.,
the earliest time step at which all tasks are completed, see
Section II). (Results for the service time are qualitatively
similar and are not reported here.) We also consider the
number of replans performed during execution and the total
time required by each simulation (including time for both
planning and execution). The reported results are averages
over 100 randomly restarted runs. All algorithms are imple-
mented in Python and the code is publicly available at an
online repository2.

B. Results

Results relative to small warehouse are shown in Tables I
and II and those relative to large warehouse are shown in
Tables III and IV. For the sake of readability, we do not
report the standard deviation in tables. Standard deviation
values do not present any evident oddity and support the
conclusions about the trends reported below.

The baseline algorithm, TP with replanning, appears twice
in each table: as k–TP with k = 0 (that is the basic
implementation as in Algorithm 2) and as p–TP with pd =

2https://github.com/Lodz97/Multi-Agent_Pickup_
and_Delivery
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Fig. 2. Large warehouse with 24 agents, obstacles (black), pickup (colored
squares) and delivery (triangles) vertices, and endpoints (green circles)

TABLE I
SMALL WAREHOUSE, λ = 0.5, AND 10 DELAYS PER AGENT

ℓ = 4 ℓ = 8

k or p makespan # replans runtime [s] makespan #replans runtime [s]

k
-T

P

0 364.88 7.26 0.85 234.59 16.04 2.11

1 374.48 1.4 0.91 240.69 3.85 2.27

2 390.82 0.1 1.16 241.14 0.73 2.15

3 411.09 0.01 1.59 259.38 0.09 3.12

4 436.12 0.0 2.0 278.33 0.04 4.49

p
-T

P,
p
d
=

.1

1 364.88 7.26 1.14 234.59 16.04 2.63

0.5 369.5 6.29 1.81 237.27 12.59 5.0

0.25 395.07 4.29 2.88 255.21 5.63 6.11

0.1 409.17 2.9 3.16 268.99 3.23 6.32

0.05 428.64 2.93 3.42 279.26 2.76 6.48

p
-T

P,
p
d
=

.0
2 0.5 366.72 7.34 1.29 238.83 12.81 3.87

0.25 378.42 6.8 1.57 236.21 10.21 4.38

0.1 391.63 4.53 2.37 250.39 6.73 5.57

0.05 405.53 3.51 2.66 256.24 4.25 5.34

TABLE II
SMALL WAREHOUSE, λ = 3, AND 10 DELAYS PER AGENT

ℓ = 4 ℓ = 8

k or p makespan # replans runtime [s] makespan # replans runtime [s]

k
-T

P

0 354.77 8.3 0.6 217.79 14.67 1.93

1 363.22 1.47 0.77 219.87 4.01 1.81

2 383.59 0.2 0.95 226.75 0.58 1.89

3 400.77 0.01 1.33 250.23 0.12 3.02

4 429.12 0.0 1.68 263.47 0.01 4.32

p
-T

P,
p
d
=

.1

1 354.77 8.3 0.86 217.79 14.67 2.53

0.5 360.29 6.7 1.45 224.31 11.06 4.93

0.25 381.98 5.12 2.3 245.24 6.46 5.83

0.1 404.92 2.93 2.81 251.42 3.55 5.66

0.05 417.04 2.65 3.05 262.73 3.65 6.11

p
-T

P,
p
d
=

.0
2 0.5 358.14 8.05 1.25 219.58 13.19 3.61

0.25 372.92 7.02 1.57 228.25 10.93 3.77

0.1 380.31 4.41 2.12 233.97 6.89 4.65

0.05 393.55 3.45 2.5 244.62 4.81 4.98

0.1 and p = 1 (which accepts all paths). The two versions of
the baseline return the same results in terms of makespan
and number of replans (we use the same random seed
initialization for runs with different algorithms), but the total
runtime is larger in the case of p–TP, due to the overhead of

TABLE III
LARGE WAREHOUSE, λ = 0.5, AND 10 DELAYS PER AGENT

ℓ = 12 ℓ = 24

k or p makespan # replans runtime [s] makespan # replans runtime [s]

k
-T

P

0 283.62 17.18 2.8 269.25 20.71 8.32

1 276.7 3.88 3.27 264.96 5.37 5.78

2 285.32 1.18 4.89 275.48 1.62 9.54

3 304.05 0.24 7.54 300.55 0.4 15.55

4 310.59 0.01 10.9 300.45 0.1 22.11

p
-T

P,
p
d
=

.1

1 283.62 17.18 4.12 269.25 20.71 11.2

0.5 286.95 10.02 11.3 291.78 17.09 38.61

0.25 305.13 5.38 17.26 313.63 9.59 58.95

0.1 330.58 4.51 19.6 322.26 4.51 54.92

0.05 337.33 3.56 20.27 348.89 3.89 57.24

p
-T

P,
p
d
=

.0
2 0.5 289.86 14.51 7.41 290.05 20.3 28.74

0.25 287.72 9.92 10.19 286.77 14.15 39.47

0.1 311 6.53 13.76 304.24 8.94 49.04

0.05 313.38 6.41 14.91 308.1 7.02 49.96

TABLE IV
LARGE WAREHOUSE, λ = 3, AND 10 DELAYS PER AGENT

ℓ = 12 ℓ = 24

k or p makespan # replans runtime [s] makespan # replans runtime [s]

k
-T

P

0 265.23 18.96 2.91 258.49 30.83 8.12

1 269.78 4.22 3.28 254.56 8.98 9.81

2 274.78 1.19 4.75 261.3 1.71 12.03

3 279.02 0.18 7.31 273.56 0.59 19.43

4 290.59 0.04 10.76 282.07 0.17 30.91

p
-T

P,
p
d
=

.1

1 265.23 18.96 4.16 258.49 30.83 10.78

0.5 268.74 11.31 9.04 257.64 17.21 36.74

0.25 298.01 7.39 14.58 287.75 9.96 48.14

0.1 318.37 5.3 16.33 310.46 6.32 47.11

0.05 331.1 3.83 16.83 334.06 4.42 47.62

p
-T

P,
p
d
=

.0
2 0.5 259.64 12.47 7.22 247.76 20.47 26.21

0.25 289.75 12.05 9.23 264.6 15.72 39.68

0.1 280.07 6.78 11.59 290.65 9.88 42.76

0.05 298.34 6.21 12.98 293.68 8.81 42.23

calculating the Markov chains and the collision probability
for each path.

Looking at robustness, which is the goal of our algorithms,
we can see that, in all settings, both k–TP and p–TP
significantly reduce the number of replans with respect to the
baseline. For k–TP, increasing k leads to increasingly more
robust solutions with less replans, and the same happens for
p–TP when the threshold probability p is reduced. However,
increasing k shows a more evident effect on the number of
replans than reducing p. More robust solutions, as expected,
tend to have a larger makespan, but the first levels of robust-
ness (k = 1, p = 0.5) manage to reduce significantly the
number of replans with a small or no increase in makespan.
For instance, in Table IV, k–TP with k = 1 decreases the
number of replans of more than 75% with an increase in
makespan of less than 2%, with respect to the baseline.
Pushing towards higher degrees of robustness (i.e., increasing
k or decreasing p) tends to increase makespan significantly
with diminishing returns in terms of number of replans,
especially for k–TP.
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Comparing k–TP and p–TP, it is clear that solutions pro-
duced by k–TP tend to be more robust at similar makespan
(e.g., see k–TP with k = 1 and p–TP with pd = .1 and
p = 0.5 in Table I), and decreasing p may sometimes lead
to relevant increases in makespan. This suggests that our
implementation of p–TP has margins for improvement: if
the computed path exceeds the threshold p we wait the next
time step to replan, without storing any collision information
extracted from the Markov chains; finding ways to exploit
this information may lead to an enhanced version of p–TP
(this investigation is left as future work). It is also interesting
to notice the effect of pd in p–TP: a higher pd (which, in
our experiments, amounts to overestimating the actual delay
probability that, considering that runs last on average about
300 time steps and there are 10 delays per agent, is equal
to 10

300 = 0.03) leads to solutions requiring less replans, but
with a noticeable increase in makespan.

Considering runtimes, k–TP and p–TP are quite different.
For k–TP, we see a trend similar to that observed for
makespan: a low value of k (k = 1) often corresponds
to a slight increase in runtime with respect to the baseline
(sometimes even a decrease), while for larger values of k the
runtime may be much longer than the baseline. Instead, p–TP
shows a big increase in runtime with respect to the baseline,
that does not change too much with the values of p, at least
for low values of p (p = 0.1, p = 0.05). Finally, we can see
how different task frequencies λ have no significant impact
on our algorithms, but higher frequencies have the global
effect of reducing makespan tasks (which are always 50 per
run) are available earlier.

Finally, we run simulations in a even larger warehouse
4–connected grid environment of size 25 × 37, with 50
agents, λ = 1, 100 tasks, and 10 delays per agent. The
same qualitative trends discussed above are observed also
in this case. For example, k–TP with k = 2 reduces the
number of replans of 93% with an increase of makespan
of 5% with respect to the baseline. The runtime of p–TP
grows to hundreds of seconds, also with large values of p,
suggesting that some improvements are needed. Full results
are not reported here due to space constraints.

VI. CONCLUSION

In this paper, we introduced a variation of the Multi-Agent
Pickup and Delivery (MAPD) problem, called MAPD with
delays (MAPD–d), which considers an important practical
issue encountered in real applications: delays in execution. In
a MAPD–d problem, agents must complete a set of incoming
tasks (by moving to the pickup vertex of each task and then
to the corresponding delivery vertex) even if they are affected
by an unknown but finite number of delays during execution.
We proposed two algorithms to solve MAPD–d, k–TP and
p–TP, that are able to solve well–formed MAPD–d problem
instances and provide deterministic and probabilistic robust-
ness guarantees, respectively. Experimentally, we compared
them against a baseline algorithm that reactively deals with
delays during execution. Both k–TP and p–TP plan robust
solutions, greatly reducing the number of replans needed

with a small increase in solution makespan. k–TP showed
the best results in terms of robustness–cost trade–off, but p–
TP still offers great opportunities for future improvements.

Future work will address the enhancement of p–TP accord-
ing to what we outlined in Section V-B and the experimental
testing of our algorithms in real–world settings.
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On Improvement Heuristic to Solutions of the Close Enough Traveling
Salesman Problem in Environments with Obstacles

Jindřiška Deckerová Kristýna Kučerová Jan Faigl

Abstract— In this paper, we present a novel improvement
heuristic to address the Close Enough Traveling Salesman
Problem in environments with obstacles (CETSPobs). The
CETSPobs is a variant of the Traveling Salesman Problem
(TSP), where the goal is to find a sequence of visits to
given disk-shaped regions together with the points of visits to
the regions. We address challenging instances in a polygonal
domain with polygonal obstacles, where the final path con-
necting the regions must be collision-free. We propose a novel
Post-Optimization procedure using Mixed Integer Non-
Linear Programming (MINLP) to improve existing heuristic
solutions to the CETSPobs. We deploy the method with existing
heuristic solvers and based on the presented evaluation results,
the proposed Post-Optimization significantly improves the
heuristic solutions of all examined solvers and makes them com-
petitive regarding the solution quality. The statistical evaluation
reveals that the sequence found using relatively sparse sampling
of the disk regions yields the best solutions among the evaluated
solvers. The results support the benefit of the proposed MINLP-
based solution to the continuous optimization of the CETSPobs.

I. INTRODUCTION

The studied problem is motivated by multi-goal path
planning [1] that is a robotic variant of the well-known
combinatorial Traveling Salesman Problem (TSP) [2], where
paths connecting the given set of locations are collision-free
among possible obstacles in the environment. In the TSP,
we search for a cost-efficient closed-loop tour visiting the
locations, and we thus determine an optimal sequence of
visits to the locations. Hence, the TSP represents a suitable
problem formulation for various robotic sequencing tasks [3].
Furthermore, in remote data collection missions [4], [5], it is
sufficient to visit a close region around the particular location
and thus save the travel cost. In such scenarios, the TSP
becomes the TSP with Neighborhoods (TSPN), where we
need to determine the optimal sequence to visit the regions
and also the optimal point of the visit to each region.

The neighborhoods in the TSPN can be represented as
continuous regions [4], [6], [7], [8], or as clusters of re-
gions [9], [10], [11], [12], or as clusters of locations [13]. In
general, the TSPN is an APX-hard [14], and many heuristic
approaches [15], [16], [17], [18], and approximation algo-
rithms [19], [20], [14], [21] have been proposed. Further, the
TSPN with disk-shaped neighborhoods has been introduced
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(a) t10_005 (b) t9_005

Fig. 1. Instances of the CETSPobs with found solutions depicted in blue.

as the Close Enough TSP (CETSP) in [4]. Although exact
methods have been proposed to solve the CETSP [22], [23],
they do not account for possible obstacles, and connections
between the regions are only straight line segments with the
length determined as the Euclidean distance between points
of visits to the regions.

In this paper, we address the robotic variant of the CETSP
in the polygonal domain with polygonal obstacles, further
referred to as the CETSPobs; see examples of instances
in Fig. 1. When compared to the CETSP, the main chal-
lenge of the CETSPobs is determining collision-free paths
between points of visits to the regions that can be arbitrarily
located in the regions while finding the optimal sequence.
Thus, the shortest paths connecting the regions need to be
determined quickly, as many queries can be expected during
the optimization of the sequence and points of visits to the
regions. For the regular TSP with point locations or sampled
regions to a discrete set of points, visibility graph can be
constructed [24], [25] for shortest path queries; however, it
is not the case of the CETSPobs with continuous regions.

Only two approaches explicitly address the CETSPobs (to
the best of the authors’ knowledge). The first is based on
the shortest-path approximation employed in an unsuper-
vised learning-based solution of the TSP in the polygonal
domain [26], [27]. The second is the GLNSC [28] based on
the decomposition of the CETSPobs to the continuous opti-
mization of the CETSP and the point-to-point optimization
using Delaunay triangulation. Besides, the discretized variant
of the CETSPobs can be solved as the Generalized TSP
(GTSP) [13] using pre-computed shortest paths among the
obstacles and each sampled location of the regions. However,
the optimal solution of such a discretized instance would
be only the approximate solution of the original CETSPobs
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depending on the sampling density.
We propose to address approximations of existing so-

lutions to the CETSPobs by the Post-Optimization
procedure that improves any existing heuristic solution. The
procedure is based on formulating the problem as Mixed
Integer Non-Linear Programming (MINLP) and exploits the
given sequence of visits to the regions. We employed the
procedure to existing solvers GLNSC [28] and unsupervised
learning of the Self-Organizing Map (SOM) [27]. In addition,
we adopted GTSP-based approach [18] to the Generalized
TSPN (GTSPN), which first determines the sequence of visits
to the regions’ centers and then computes the points of visits
using the local iterative optimization. Based on the empirical
evaluation, the proposed Post-Optimization procedure
improves solutions found by the existing solvers and makes
the sampling-based GTSP the best-performing solver.

The rest of the paper is organized as follows. The
CETSPobs is formally defined in Section II. The examined
SOM and GTSP-based solvers are briefly described in Sec-
tion III. The proposed Post-Optimization procedure
is presented in Section IV. The results of the empirical
evaluation are summarized in Section V, and the paper is
concluded in Section VI.

II. PROBLEM STATEMENT

The studied CETSPobs is to find the shortest multi-point
path that visits each of the n disk-shaped regions S =
{S1, . . . , Sn} while avoiding m polygonal obstacles O =
{O1, . . . , Om}. Each region Si ∈ S is defined by its center
ci ∈ R2, radius δi ≥ 0, and it is entirely inside the free
space of the polygonal domain. A polygon obstacle Oj ∈ O
is defined by a sequence of lj vertices represented as points
in R2, Oj = (o1

j , . . . ,o
lj
j ), otj ∈ R2, for 1 ≤ t ≤ lj .

A solution of the CETSPobs is defined by a sequence Σ of
visits to regions together with the points of visits P further
referred to as waypoints. The final multi-point path is formed
by a sequence of (shortest) paths among obstacles connecting
P according to Σ. Hence, for the purpose of finding a path
among obstacles connecting two waypoints, we consider a set
of obstacles’ points Q denoting the vertices of the obstacles’
borders. Thus, the multi-point path is denoted (Σ,P,Q),
where the terms can be defined as follows.
• Σ – Sequence of visits defining the order of visits to the

regions: Σ = (σ1, . . . , σn), σi 6= σj for i 6= j.
• P – Waypoints are the points of visits to the regions:
P = {p1, . . . ,pn}, pi ∈ R2. For each waypoint pi, it
holds ‖ci − pi‖ ≤ δi.

• Q – Obstacles’ points forming the final path connect-
ing P according to Σ, Q = ∪ni=1{q0

i , . . . , q
ki
i }, where

ki ≥ 0 denotes the number of obstacles’ points of the
path connecting consecutive waypoints pσi

and pσi+1
.

Note that for a closed multi-point path, pσ1
is the

consecutive waypoint of pσn
.

The length L∗ of the path between two waypoints pi and
pj can be defined according to the number of obstacles’
points ki. If the straight line connection of the waypoints is
collision-free, the length is directly the Euclidean distance

Fig. 2. A solution of the CETSPobs instance with n = 4 regions and one
obstacle, m = 1. Regions’ centers are small green disks. Vertices of the
obstacles are small red disks, while obstacles’ points Q are in orange. The
determined waypoints P are visualized as small blue disks.

L∗(pi,pj) =
∥∥pi − pj

∥∥ and ki = 0; for ki = 1, it is
L∗(pi,pj) =

∥∥pi − q1
i

∥∥+
∥∥q1

i − pj
∥∥; otherwise

L∗(pi,pj) =
∥∥pi − q1

i

∥∥+

ki−1∑

l=1

∥∥qli − ql+1
i

∥∥+
∥∥∥qkii − pj

∥∥∥ .

(1)
The used notation is visualized in an example of the solution
instance in Fig. 2. The CETSPobs is formulated as the
optimization problem in Problem 1.

Problem 1 (CETSP with polygonal domain (CETSPobs)):

L∗ = min
Σ,P,Q

L∗(pσn
,pσ1

) +

n−1∑

i=1

L∗(pσi
,pσi+1

) (2)

s.t.

Σ = (σ1, . . . , σn), σi 6= σj if i 6= j, 1 ≤ σi ≤ n, (3)

P = {pσ1
, . . . ,pσn

}, pi ∈ R2, (4)∥∥pσi
− cσi

∥∥ ≤ δσi
∀i ∈ {1, . . . , n}. (5)

III. BACKGROUND

The studied CETSPobs is solved using existing heuris-
tics and applying the proposed Post-Optimization
procedure to their provided solution. In addition to the
GLNSC [28] that directly solves the addressed CETSPobs,
an unsupervised learning approach has been proposed to
solve the CETSPobs with polygonal regions in [27]. Besides,
the GTSP-based approach [18] can be utilized to solve a
discretized variant of the CETSPobs. Therefore, the two
additional methods are briefly overviewed with the relatively
straightforward modifications for the CETSPobs to make the
paper self-contained.

A. SOM-based Unsupervised Learning for the CETSPobs

The unsupervised learning approach presented in [27] is
based on the SOM for the TSP [29] and has been deployed
in the polygonal domain in [26] using an approximation of
the shortest path based on the underlying convex partition-
ing of the polygonal domain. Although there are multiple
improvements of the SOM-based unsupervised learning for
various routing problems, such as [30], [31], [32] and its
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generalization Growing Self-Organizing Array (GSOA) [17]
deployed in [18], we directly utilize the available solver [27].

The unsupervised learning [27] is an iterative procedure
in which a ring of 2n nodes (representing the multi-point
path) is adapted to the regions during learning epochs. For
each region, the closest node of the ring is determined as
a winner node. Then, the winner node is adapted (moved)
toward the region together with its neighboring nodes with
the decreasing power of adaptation based on the neighboring
function. The adaptation’s power is controlled by the learning
gain decreased every learning epoch to converge the ring to a
stable solution. Note that the adaptation (movement) is along
the shortest paths (or their approximation) among obstacles.
Besides, the regions are examined in a random order in each
epoch to avoid local minima [26].

After a finite number of epochs, the ring represents a
multi-point path as each region has a unique winner node
because of inhibition of the winners for each epoch [27].
Since the ring is represented as an array of nodes, the se-
quence of visits to the regions can be retrieved by traversing
the ring. Besides, the winner node is associated with the
point of the visit to the polygonal region.

Fig. 3. Illustration of the winner node ν∗ for the region Sk and its point
of visit to the region p∗ determined in the SOM solver [27]. The ring of
nodes is represented as connected small blue disks.

The main modification of [27] for the herein addressed
CETSPobs with disk-shaped regions is to represent each disk
as the polygonal region with l vertices. However, unsuper-
vised learning can still benefit from continuous regions. It is
because the point of the visit to the region p∗ is determined
as the point on the region’s boundary that intersects the
shortest path between a node ν∗ and disk’s center, see Fig. 3.
If the winner node is already inside the region, which can be
caused by the adaptation of other nodes, its position is used
as p∗. The final multi-point path is retrieved by traversing
the ring and connecting the associated points to the winner
nodes. The reader is referred to [27] or [26] for further details
on the utilized unsupervised learning.

B. GTSP-based Solver to the CETSPobs

The GTSP-based solver [18] has been proposed to solve
a continuous variant of the GTSPN by discretization to
the GTSP using regions’ centers and deploying the heuris-
tic GTSP solver [33] to determine the sequence of vis-
its. Deploying the GTSP-based solver to the CETSPobs is
straightforward. The disk-shaped regions are discretized into
a finite set of samples on the disks’ boundaries. Then, the
visibility graph [34] is employed to determine the shortest

Fig. 4. An example of the GTSP-based solution of the CETSPobs using
visibility graph. The found solution is depicted in blue.

paths between the samples; see Fig. 4. The following four
steps summarize the usage of the GTSP-based solver [18].
• Step 1. Sample each region Si into l samples Ξ on the

region’s border.
• Step 2. Construct visibility graph G in the polygonal

domain for the samples Ξ.
• Step 3. Create an instance of the GTSP for the GTSP

solver [33] using samples Ξ as a set of locations and
the shortest paths between samples determined with G
as the lengths between sets.

• Step 4. Use the GLKH solver [33] to find a sequence
of visits and G to determine the solution (Σ,P,Q).

IV. PROPOSED POST-OPTIMIZATION PROCEDURE

The proposed Post-Optimization procedure is based
on the MINLP mathematical model to find locally optimal
solutions of the studied problem using the given sequence
of visits Σ from some feasible solution (Σ,P,Q). The
optimization idea is to minimize the path connecting the
waypoints; however, we need to account for the obstacles’
points through which a path among obstacles connects the
waypoints. Therefore, in the MINLP model, we have two
types of waypoints. The first waypoints are denoted P , fur-
ther also called the disks’ waypoints, and are being optimized
according to the problem statement in Section II. The second
type of waypoints are the obstacles’ pointsQ, further referred
to as the obstacles’ waypoints.

We do not need to include all obstacles’ points in the
model, but only those connected with a region’s waypoint
by a straight line segment in the multi-point path. A con-
nection between two consecutive obstacles’ points (vertices)
is guaranteed to be collision-free (e.g., using a visibility
graph), and we do not change the topology of the multi-
point path. Thus, depending on the number of obstacles’
vertices of the path connecting two consecutive waypoints
pi and pj , we add zero, one q1

i or two obstacles’ waypoints
q1
i and q2

i as defined in (1). Furthermore, if an obstacle’s
point (vertex) is included in two (or multiple) paths, such as
the (orange) vertex in Fig. 4, the point is added to the model
as the obstacle waypoint multiple times. Thus, the number
of waypoints n′ in the model can be n′ ≥ n.

Since all the waypoints have disk-shaped regions in the
MINLP formulation, we consider zero disk’s radius for
obstacles’ waypoints, and we get a sequence of regions
S ′. Hence, a position of the waypoint with δi = 0 is not
effectively optimized in the MINLP solution. The model is
summarized in Model 1 with the following variables.
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• Decision variables x ∈ Rn′×2 represent the optimized
waypoints Popt = (p1, . . . ,pn′).

• Auxiliary variables f ∈ Rn′ and w ∈ Rn′×2 are used
to minimize the squared difference of two consecutive
waypoints (6–8).

• Further auxiliary variables v ∈ Rn′×2 are used to
ensure that each waypoint pi is within δi distance from
the particular region’s center ci (9–10).

Model 1 (MINLP model):

min
x∈Rn′×2

n′∑

i=1

fi (6)

s.t.

f2
i ≥ wT

i wi, ∀i ∈ {1, . . . , n′} (7)
wi = xi+1 − xi, ∀i ∈ {1, . . . , n′ − 1} (8)

δ2
i ≥ vTi vi, ∀i ∈ {1, . . . , n′} (9)
vi = xi − ci, ∀i ∈ {1, . . . , n′} (10)

In solving the created Model 1, we aim to optimize the
position of the disks’ waypoints within the particular disk.
However, the optimized position might yield a collision
of the straight line segment connecting two consecutive
waypoints (regions of S ′) and an obstacle. Therefore, three
constraints are added if and only if there is an obstacle Oj
between two consecutive regions of S ′ as follows.

The first constraint
di = xi+1 − xi (11)

uses auxiliary variables di ∈ Rn′×2 to express a straight
line segment of two consecutive waypoints as the difference
in coordinates. The second and third constraints are for lj
obstacle’s vertices
−di,2 olj,1 + di,1 o

l
j,2 + di,2 xi,1 − di,1 xi,2 ≤M yi,j (12)

and
−di,2 olj,1 + di,1 o

l
j,2 + di,2 xi,1 − di,1 xi,2 ≥ −M (1− yi,j)

(13)
for 1 ≤ l ≤ lj to ensure that the straight line segment
expressed as di does not intersects the obstacle Oj repre-
sented by a sequence of points Oj = (o1

j , . . . ,o
lj
j ). The

constraints express that two waypoints are on the same half-
plane. Therefore, only one of the constraints (12) or (13) is
activated in the model. That is achieved by using the Big-
M method (we use M = 100 000), and binary variables
y ∈ {0, 1}n′ are used to activate the particular constraints.

The proposed Post-Optimization is based on the
MINLP model’s construction, summarized in Algorithm 1.
Adding constraints (11–13) corresponds to Lines 9, 11 and
12 of Algorithm 1, respectively. Note that the implementation
of isObstacleBetween() depends on the type of the regions
as a determination of an obstacle between two disk regions
or between a disk and a point (disk region with zero radius
for the obstacle’s waypoint), as depicted in Fig. 5.

The proposed improvement procedure is a relatively
straightforward adjustment of the waypoints within the disk-
shaped regions. The procedure has been applied to the ex-
isting solutions of the CETSPobs and examined empirically.
The results are reported in the following section.

Algorithm 1: Post-Optimization of the given
CETSPobs solution (Σ, P , Q)

Input: S = {S1, . . . , Sn} – a set of the regions.
Input: O = {O1, . . . , Om} – a set of the obstacles.
Input: (Σ, P , Q) – Σ is a sequence of visits to S with the

corresponding waypoints P and obstacles’ points Q.
Output: (Σ, Popt, Q) – optimized solution.

1 S ′ ← () // Regions ordered by Σ

2 for σi in Σ do
3 S ′ ← insert(S ′, Sσi)
4 for l in 0 : kσi do
5 S ′ ← insert(S ′, S(c = qlσi ; δ = 0)) // Insert

obstacle’s point as a new region with zero

radius.

6 M← createModel(S ′) // According to Model 1 with

decision variables x

7 forall consecutive regions (Si, Si+1) ∈ S ′ and Oj ∈ O do
8 if isObstacleBetween((Si, Si+1), Oj) then
9 M← addConstraint(M,di = xi+1 − xi)

10 for l in 1 : lj do
11 M← addConstraint(M,−di,2 olj,1 +

di,1 o
l
j,2 + di,2 xi,1 − di,1 xi,2 ≤M yi,j

12 M← addConstraint(M,−di,2 olj,1 +
di,1 o

l
j,2 + di,2 xi,1 − di,1 xi,2 ≥

−M (1− yi,j))

13 Popt ← solveMINLP(M) // Extract the optimized

disks’ waypoints

14 return (Σ,Popt,Q)

S'i
S'i+1

(a) Two disk regions.

S'i

S'i+1

(b) Disk with zero radius of the ob-
stacle’s waypoint and disk region.

Fig. 5. Visualization of the detecting obstacles between two consecutive
regions. For two disk regions (left), the tangents are determined from the
connection of the disks’ centers. The disk has zero radius for the obstacle
waypoint; thus, tangents are determined from the cone. Each obstacle’s
vertice must be on one side of the tangents, ensuring no obstacle between
the regions.

V. EMPIRICAL EVALUATION

The proposed Post-Optimization procedure has
been evaluated with the existing GLNSC [28], SOM [27],
and GTSP [18] adjusted as described in Section III.
All the methods are examined with and without the
Post-Optimization procedure. The optimized solutions
are denoted as GLNSC+, SOM+, and GTSP+. The evalua-
tion has been performed for a set of 32 randomly generated
instances of the CETSPobs, and one instance based on a real
data collection scenario using a wheeled vehicle in an elec-
trical substation depicted in Fig. 6. Each instance is named
tn_x, where n ∈ {5, 6, 7, 8, 9, 10, 26} denotes the number
of regions, and x denotes the instance label, where x ∈
{1, . . . , 6} for n = 5 and n = 8, and x ∈ {1, . . . , 5} for each
n ∈ {6, 7, 9, 10}. The SOM-based and GTSP-based solvers
depend on the discretization l, selected to l = 6 providing
the best trade-off between the computational requirements

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

182



TABLE I
PERFORMANCE INDICATORS OF THE EXAMINED CETSPobs SOLVERS INSTANCES AGGREGATED BY THE NUMBER OF NODES n.

Instance GLNSC [28] GLNSC+ SOM (l = 6) [27] SOM+ (l = 6) GTSP (l = 6) GTSP+ (l = 6) GTSP (l = 1) GTSP+ (l = 1)
%PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM

t5 0.00 32.75 0.00 31.98 1.66 35.49 0.08 32.91 1.37 33.98 0.00 32.67 15.38 51.96 0.00 33.13
t6 0.00 38.35 0.00 38.33 0.72 40.97 0.00 38.76 0.40 38.94 0.00 38.33 19.59 55.69 0.00 38.99
t7 0.00 48.91 0.00 48.91 0.44 51.91 0.00 49.51 0.25 49.39 0.00 48.60 15.99 66.04 0.16 48.91
t8 0.00 27.20 0.00 27.20 0.70 25.60 0.00 23.98 0.58 22.94 0.08 22.53 16.07 38.23 0.00 23.59
t9 0.00 15.74 0.00 15.74 1.67 17.73 0.00 16.15 0.96 16.08 0.00 15.45 18.11 30.40 1.15 16.84
t10 0.56 20.68 0.00 20.14 1.69 20.70 0.56 18.93 1.65 19.40 0.56 18.48 17.12 40.11 0.56 21.41
t26 0.00 1.58 0.00 1.09 1.95 4.46 0.00 2.74 2.46 2.46 1.89 1.89 30.89 30.89 8.47 21.92

(a) Map of an electrical
substation with buildings
as obstacles.

(b) GLNSC,
L = 1507.44, L+ =
1480.38.

(c) SOM (l = 6),
L = 1517.5, L+ =
1465.32.

(d) GTSP (l = 6),
L = 1470.69, L+ =
1462.57.

(e) GTSP (l = 1),
L = 1878.87, L+ =
1557.07.

Fig. 6. A map of an electrical substation utilized as an real-world CETSPobs instance t26_001. Solutions of this instance CETSPobs instance found
by the particular solver are depicted in blue, and the optimized solutions by the Post-Optimization procedure are in red.

and solution quality among l ∈ {6, 12, 24, 64, 128}. Besides,
we include the GTSP solver with l = 1 using the disks’
centers in the evaluation to highlight the benefit of the
proposed Post-Optimization to improve the solution
quality even for sparse sampling.

The proposed Post-Optimization procedure and
the GTSP solver are implemented in Julia v1.7. using
JuMP and the MINLP solver Juniper [35]. The GLNSC
and SOM are implemented in C++, and the GLNSC uses
SOM-based initialization in a fast mode [28]. Each solver
was executed for 20 trials on the Intel i7-9700 pro-
cessor running at 3 GHz, and two performance indicators
are used for the evaluation. The solution quality %PDB
for each instance is measured as the percentage deviation
from the best overall solution L∗best of the best solution L∗
among all performed trials of the particular method %PDB =
(L∗ − L∗best)/L∗best 100%. The solution robustness %PDM
for each instance is measured as the percentage deviation
from the best overall solution L∗best of the mean solution
value L̄∗ among all performed trials of the particular method
%PDM = (L̄∗ − L∗best)/L∗best 100%. Besides, we report the
computational times T in milliseconds.

n=5 n=6 n=7 n=8 n=9 n=10 n=26

0
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GLNSC

GLNSC+

SOM (l=6)

SOM+ (l=6)

GTSP (l=6)

GTSP+ (l=6)

GTSP (l=1)

GTSP+ (l=1)

Fig. 7. Median computational times T aggregated from instances with the
size n with standard deviation visualized as area around the medians.

The aggregated results are reported in Table I. The results
support the expected improvement of the CETSPobs solutions
and make the examined solvers competitive regarding the

solution quality. Although the robustness varies and there is
no clear winner, regarding the %PDB, the best-performing
method is GLNSC, which can be considered the most
complex algorithm. On the other hand, solutions of the very
straightforward GTSP with l = 1, which can be solved as
an instance of the TSP, are significantly improved by the
proposed Post-Optimization.

The computational requirements of all solvers are expo-
nential with n; see Fig. 7. Here, it is worth noting that the
GLNSC method requires preprocessing the input instances
by creating supporting structures, which is not included
in the presented results, and similarly for the SOM-based
solver. However, in both cases, the preprocessing time is
competitive with the reported times, but the GLNSC becomes
very demanding for larger instances.

TABLE II
STATISTICAL EVALUATION RESULTS OF THE CETSPobs SOLVERS.

a1: GLNSC+

= a1: GLNSC [28] + a1: GLNSC [28] - a1: GLNSC [28] +
a2: GLNSC [28] a2: SOM (l = 6) [27] a2: GTSP (l = 6) a2: GTSP (l = 1)

a1: SOM+ (l = 6) = a1: SOM (l = 6) [27] + a1: SOM (l = 6) [27] - a1: SOM (l = 6) [27] +
a2: GLNSC+ a2: SOM+ (l = 6) a2: GTSP (l = 6) a2: GTSP (l = 1)

a1: GTSP+ (l = 6) = a1: GTSP+ (l = 6) + a1: GTSP+ (l = 6) + a1: GTSP (l = 6) +
a2: GLNSC+ a2: SOM+ (l = 6) a2: GTSP (l = 6) a2: GTSP (l = 1)

a1: GTSP+ (l = 1) - a1: GTSP+ (l = 1) - a1: GTSP+ (l = 1) - a1: GTSP+ (l = 1) +
a2: GLNSC+ a2: SOM+ (l = 6) a2: GTSP+ (l = 6) a2: GTSP (l = 1)

Symbols +,−, and = denote the method a1 provides statistically better, worse, or similar results than the method a2, respectively.

We further report a statistical comparison of the solvers
using the Wilcoxon Signed Rank Test [36], where the null
hypothesis H0 is that the solvers a1 and a2 provide solutions
with statistically similar costs. H0 is rejected if the obtained
p-values are less than 0.001. In the statistical evaluation
depicted in Table II, the symbol = denotes a1 performs
similarly to a2, or + and − if it performs better and worse,
respectively, depending on the average solution cost. The re-
sults further support the statistically significant improvement
of the solutions by the proposed Post-Optimization
procedure. The GTSP-based solver with l = 6 performs best,
and SOM is competitive with the GLNSC.
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VI. CONCLUSION

We propose the Post-Optimization procedure to im-
prove the heuristic solutions of the CETSPobs. The procedure
is based on the MINLP model to optimize the waypoints,
and additional constraints are added to account for the
polygonal obstacles. The procedure is employed with three
solvers, the GLNSC, currently the only direct method to the
CETSPobs with disk-shaped regions, and two existing heuris-
tics straightforwardly modified for the disk-shaped regions.
Based on the evaluation results, the proposed procedure
improves all the found solutions and makes the methods
competitive. Furthermore, based on a statistical comparison
of the found solutions, the best-performing method is the
GTSP with just six samples per each disk region. The
sequence of visits to the disks is thus found on the discretized
instance of the CETSPobs, and the MINLP model enables
finding the optimal solution of the continuous optimization
part of the CETSPobs for that sequence. Hence, the proposed
Post-Optimization represents a groundwork toward an
optimal solution for finding the sequence using a branch-and-
bound method, similar to the developed solvers to the CETSP
without obstacles.
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Context-Conditional Navigation with a Learning-Based Terrain- and
Robot-Aware Dynamics Model

Suresh Guttikonda ∗,1,2, Jan Achterhold ∗,1, Haolong Li 1, Joschka Boedecker 2, and Joerg Stueckler 1

Abstract— In autonomous navigation settings, several quan-
tities can be subject to variations. Terrain properties such
as friction coefficients may vary over time depending on
the location of the robot. Also, the dynamics of the robot
may change due to, e.g., different payloads, changing the
system’s mass, or wear and tear, changing actuator gains
or joint friction. An autonomous agent should thus be able
to adapt to such variations. In this paper, we develop a
novel probabilistic, terrain- and robot-aware forward dynamics
model, termed TRADYN, which is able to adapt to the above-
mentioned variations. It builds on recent advances in meta-
learning forward dynamics models based on Neural Processes.
We evaluate our method in a simulated 2D navigation setting
with a unicycle-like robot and different terrain layouts with
spatially varying friction coefficients. In our experiments, the
proposed model exhibits lower prediction error for the task of
long-horizon trajectory prediction, compared to non-adaptive
ablation models. We also evaluate our model on the downstream
task of navigation planning, which demonstrates improved
performance in planning control-efficient paths by taking robot
and terrain properties into account.

I. INTRODUCTION

Autonomous mobile robot navigation– the robot’s ability
to reach a specific goal location – has been an attractive
research field over several decades, with applications ranging
from self-driving cars, warehouse and service robots, to
space robotics. In certain situations, e.g. weeding in agricul-
tural robotics or search and rescue operations, robots operate
in harsh and unstructured outdoor environments with limited
or no human supervision to complete their task. During such
missions, the robot needs to navigate over a wide variety
of terrains with changing types, such as grass, gravel, or
mud with varying slope, friction, and other characteristics.
These properties are often hard to fully and accurately model
beforehand [1]. Moreover, properties of the robot itself can
change during operation due to battery consumption, weight
changes, or wear and tear of the robot. Thus, the robot needs
to be able to adapt to both changes in robot-specific and
terrain-specific properties.

In this work, we develop a novel context-conditional
learning approach which captures robot-specific and terrain-
specific properties from interaction experience and envi-
ronment maps. The idea for adaptability to varying robot-
specific properties is to learn a deep forward dynamics model

This work has been supported by Max Planck Society and Cyber Valley. The
authors thank the International Max Planck Research School for Intelligent
Systems (IMPRS-IS) for supporting Jan Achterhold and Haolong Li.
1Embodied Vision Group, Max Planck Institute for Intelligent Systems,
Tuebingen, Germany, 2University of Freiburg, Germany
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Fig. 1. Terrain- and robot-aware control-efficient navigation. We
propose a method for control-cost optimal navigation with learned dynamics
models. Our method can adapt to varying, unobserved properties of the
robot, such as the mass, and spatially varying properties of the terrain, such
as the friction coefficient. In the above example of navigating from a single
starting point (white cross) to two different goals (black cross), as a result,
our method circumvents areas of high friction coefficient and favors areas
of low-friction coefficient. As the dissipated energy also depends on the
mass of the robot, a heavy robot (m = 4kg, blue, orange) is allowed to
take longer detours to the goal than a light robot (m = 1kg, green, red).

which is conditioned on a latent context variable. The context
variable is inferred online from observed state transitions.
The terrain features are extracted from an environment map
and additionally included as conditional variable for the
dynamics model.

We develop and evaluate our approach in a 2D simulation
of a mobile robot modeled as a point mass with unicycle
driving dynamics that depend on a couple of robot-specific
and terrain-specific parameters. Terrains are defined by re-
gions in the map with varying properties. We demonstrate
that our context-aware dynamics model learning approach
can capture the varying robot and terrain properties well,
while a dynamics model without context-awareness achieves
less accurate prediction and planning performance.

In summary, in this paper, we contribute the following:
1) We propose a probabilistic deep forward dynamics

model which can adapt to robot- and terrain-specific
properties that influence the mobile robot’s dynamics.

2) We demonstrate in a 2D simulation environment that
these adaptation capabilities are crucial for the predic-
tive performance of the dynamics model.
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3) The learned context-aware dynamics model is used for
robot navigation using model-predictive control. This
way, efficient paths can be planned that take robot and
terrain properties into account (see Fig. 1).

II. RELATED WORK

Some approaches to terrain-aware navigation use semantic
segmentation for determining the category of terrain and use
this information to only navigate on segments of traversable
terrain [2], [3]. Zhu et al. [4] propose to use inverse rein-
forcement learning to learn the control costs associated with
traversing terrain from human expert demonstrations. These
methods, however, do not learn the dynamical properties of
the robot on the terrain classes explicitly like our methods.

In BADGR [5] a predictive model is learned of future
events based on the current RGB image and control actions,
which can be used for planning navigation trajectories.
The predicted events are collision, bumpiness, and position.
The model is trained from sample trajectories in which
the events are automatically labelled. Grigorescu et al. [6]
learn a vision-based dynamics model which encodes camera
images into a state observation for model-predictive con-
trol. Different to our approach, however, the method does
not learn a model that can capture a variety of terrain-
and robot-specific properties jointly. Siva et al. [7] learn
an offset model from the predicted to the actual behavior
of the robot from multimodal terrain features determined
from camera, LiDAR, and IMU measurements. In Xiao et
al. [8] a method for learning an inverse kinodynamics model
from inertial measurements is proposed to handle high-speed
motion planning on unstructured terrain. Sikand et al. [9] use
contrastive learning to embed visual features of terrain with
similar traversability properties close in the feature space.
The terrain features are used for learning preference-aware
path planning. Different to our study, the above approaches
do not distinguish terrain- and robot-specific properties and
model them concurrently.

Several approaches for learning action-conditional dynam-
ics models have been proposed in the machine learning
and robotics literature in recent years. In the seminal work
PILCO [10], Gaussian processes are used to learn to predict
subsequent states, conditioned on actions. The approach is
demonstrated for balancing and swinging up a cart-pole.
Several approaches learn latent embeddings of images and
predict future latent states conditioned on actions using
recurrent neural networks [11], [12], [13], [14]. The models
are used in several of these works for model-predictive
control and planning. Learning-based dynamics models are
also popular in model-based reinforcement learning (see
e.g. [15]). Shaj et al. [16] propose action-conditional re-
current Kalman networks which implement observation and
action-conditional state-transition models in a Kalman filter
with neural networks. While these approaches can model
context from past observations in the latent state of the recur-
rent neural network, some approaches allow for incorporating
an arbitrary set of context observations to infer a context
variable [17] or a probability distribution thereon [18]. In

this paper, we base our approach on the context-conditional
dynamics model learning approach in [18] to infer the
distribution of a context variable of robot-specific parameters
using Neural Processes [19].

III. BACKGROUND
We build our approach on the context-conditional prob-

abilistic neural dynamics model of Explore the Context
(EtC [18]). In EtC, the basic assumption is that the dynamical
system can be formulated by a Markovian discrete-time state-
space model

xn+1 = f(xn,un,α) + εn, εn ∼ N (0,Qn), (1)

where xn is the state at timestep n, un is the control input,
and α is a latent, unobserved variable which modulates the
dynamics, e.g., robot or terrain parameters. Gaussian additive
noise is modeled by εn, having a diagonal covariance matrix
Qn. Not only α is assumed to be unknown, but also
the function f itself. To model the system dynamics, EtC
thus introduces an approximate forward dynamics model
qfwd. To capture the environment-specific properties α, the
learned dynamics model is conditioned on a latent context
variable β ∈ RB . A probability density on β is inferred from
interaction experience on the environment, represented by K
transitions (x+ ← x,u) following Eq. (1) and collected in a

context set Cα = {(x(k),u(k),x
(k)
+ )}

K

k=1
. A learned context

encoder qctx(β | Cα) infers the density on β. The target
rollout Dα = [x0,u0,x1,u1, . . . ,uN−1,xN ] is a trajectory
on the environment. Both context set and target rollout are
generated on the same environment instance α. For a pair
of target rollout and context set, the learning objective is to
maximize the marginal log-likelihood

log p(Dα | Cα) = log

∫
p(Dα | β) p(β | Cα) dβ. (2)

Overall, we aim to maximize log p(Dα | Cα) in expectation
over the distribution of environments Ωα, and a distribution
of pairs of target rollouts and context sets ΩDα,Cα , i.e.

Eα∼Ωα,(Dα,Cα)∼ΩDα,Cα [log p(Dα | Cα)] . (3)

The term p(Dα | β) is modeled by single-step and
multi-step prediction factors and reconstruction factors,
all implemented by the approximate dynamics model
qfwd

(
xn | x0,u0:n−1,β

)
, while p(β | Cα) is approximated

by qctx(β | Cα).
Technically, the forward dynamics model is implemented

with gated recurrent units (GRU, [20]) in a latent space. The
initial state x0 is encoded into a hidden state z0. The control
input u and context variable β are encoded into feature
vectors and passed as inputs to the GRU

z0 = ex(x0) (4)
zn+1 = GRU (zn, [eu(un), eβ(β)]) (5)

where ex, eu, and eβ are neural network encoders. The (pre-
dicted) latent state zn is decoded into a Gaussian distribution
in the state space

xn ∼ N
(
dx,µ(zn), dx,σ2(zn)

)
(6)
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Fig. 2. Architecture of our proposed terrain- and robot-aware forward
dynamics model (TRADYN). The initial state of the robot x0 is embedded
as hidden state of a gated recurrent unit (GRU) cell. The GRU makes a
single-step forward prediction in the latent space using embeddings of the
context variable β, action u and terrain observation τ as additional inputs.
Latent states are mapped to Gaussian distributions on the robot’s observation
space for decoding. While during training the actual terrain observation
τ(xn) is used, during prediction, the map τ is queried at predicted robot
locations τ(x̂n). See Section IV for details.

using neural networks dx,µ, dx,σ2 .
The context encoder gets as input a set of state-action-state

transitions Cα with flexible size K. The context encoder is
implemented by first encoding each transition in the context
set independently using a transition encoder etrans, and, for
permutation invariance, aggregating the encodings using a
dimension-wise max operation. This yields the aggregated
latent variable zβ . Lastly, a Gaussian density over the context
variable β is predicted from the aggregated encodings

qctx(β | Cα) = N
(
β; dβ,µ(zβ),diag(dβ,σ2(zβ))

)
(7)

with neural network decoders dβ,µ, dβ,σ2 . The network dβ,σ2

is designed so that the predicted variance is positive and
decreases monotonically when adding context observations.

To form a tractable loss, the marginal log likelihood
in Eq. (2) is (approximately, see [21]) bounded using the
evidence lower bound

log p(Dα | Cα) ' Eβ∼qctx(β|Dα∪Cα) [log p(Dα | β)]

− λKL KL (qctx(β | Dα ∪ Cα) ‖ qctx(β | Cα)) . (8)

similar to Neural Processes [19]. For training the dynamics
model and context encoder, the approximate bound in Eq. (8)
is maximized by stochastic gradient ascent on empirical sam-
ples for target rollouts and context sets. Samples are drawn
from trajectories generated on a training set of environments.

By collecting context observations at test time, and infer-
ring β using qctx(β | Cα), the dynamics model qfwd(xn |
x0,u0:N−1,β) can adapt to a particular environment in-
stance α (called calibration).

IV. METHOD

In the modeling assumption of EtC, changes in the
dynamics among different instances of environments are
captured in a global latent variable α (see Eq. (1)) which
is unobserved. In terrain-aware robot navigation, among
different environments, the terrain varies (with the terrain

layout captured by αterrain), in addition to robot-specific
parameters such as actuator gains (captured by αrobot). In
principle, both effects can be absorbed into a single latent
variable α = (αterrain,αrobot). Here, we make more specific
assumptions, and assume the terrain-specific properties to be
captured in a state-dependent function αterrain(xn).

A. Terrain- and Robot-Aware Dynamics Model

Conclusively, we assume the following environment dy-
namics

xn+1 = f(xn,un,αrobot, αterrain(xn)) + εn (9)

with εn ∼ N (0,Qn) as in Eq. (1). In our case of terrain-
aware robot navigation, xn refers to the robot state at
timestep n, un are the control inputs, αrobot captures
(unobserved) properties of the robot (mass, actuator gains),
and αterrain(xn) captures the spatially dependent terrain
properties (e.g., friction). While we assume αterrain to be
unobserved, we assume the existence of a known map of
terrain features τterrain(xn), which can be queried at any xn
to estimate the value of αterrain(xn). Exemplarily, τterrain

may yield visual terrain observations, which relate to friction
coefficients.

As we retain the assumption of EtC that αrobot is not
directly observable, we condition the multi-step forward
dynamics model on the latent variable β. In addition, we
condition on observed terrain features τ0:n−1, i.e.,

x̂n ∼ qfwd(xn | x0,u0:n−1,β, τ0:n−1). (10)

We obtain τ0:n−1 differently for training and prediction.
During training, we evaluate τ at ground-truth states, i.e.
τ0 = τ(x0), τ1 = τ(x1), etc. During prediction, we do not
have access to ground-truth states, and obtain τ0:n−1 auto-
regressively from predictions as τ0 = τ(x0), τ1 = τ(x̂1),
etc.

To capture terrain-specific properties, we extend EtC as
follows. We introduce an additional encoder eτ which en-
codes a terrain feature τ . The encoded value is passed as
input to the GRU, such that Eq. (5) is updated to

zn+1 = GRU (z0, [eτ (τn), eu(un), eβ(β)]) . (11)

Also, the context set is extended to contain terrain features

Cα = {(x(k), τ(x(k)),u(k),x
(k)
+ , τ(x

(k)
+ ))}

K

k=1
. (12)

We refer to Fig. 2 for a depiction of our model.
For each training example, the context set size K is

uniformly sampled in {0, . . . , 50}. The target rollout length is
N = 50. As in EtC [18], we set λKL = 5. The dimensionality
of the latent variable β is 16. For details on the networks
(eu, eβ , dx,µ, dx,σ2 , etrans, dβ,µ, dβ,σ2) we refer to [18], as
we strictly follow the architecture described therein. The
additional encoder network we introduce, eβ , follows the
architecture of eτ and eu. It contains a single hidden layer
with 200 units and ReLU activations, and an output layer
which maps to an embedding of dimensionality 200.
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Fig. 3. Exemplary rollouts (length 50) on two different terrain layouts
(rows) and for two exemplary robot configurations (low-inertia, high-
inertia) (columns). Rollouts start from the center; actions are sampled time-
correlated. The low-inertia robot has minimal mass m = 1 and maximal
control gains kthrottle = 1000, ksteer = π/4. The high-inertia robot
has maximal mass m = 4 and minimal control gains kthrottle = 500,
ksteer = π/8. Equally colored trajectories ( ,  ,  ) correspond to identical
sequences of applied actions. See Section V-A for details.

B. Path Planning and Motion Control

We use TRADYN in a model-predictive control setup. The
model qfwd yields state predictions x̂1:H for an initial state
x0 and controls u0:H−1. For calibration, i.e., inferring β
from a context set C with the context encoder qctx, calibration
transitions are collected on the target environment prior to
planning. This allows adapting to varying robot parameters.
The predictive terrain feature lookup (see Fig. 2) with τ(x)
allows adapting to varying terrains. We use the Cross-
Entropy Method (CEM [22]) for planning. We aim to reach
the target position with minimal throttle control energy, given
by the sum of squared throttle commands during navigation.
This gives rise to the following planning objective, which
penalizes high throttle control energy and a deviation of the
robot’s terminal position to the target position p∗:

J(u0:H−1, x̂1:H) =

1

2

H−1∑

n=0

u2
throttle,n + ||[p̂x,H , p̂y,H ]

> − p∗||22. (13)

In our CEM implementation, we normalize the distance term
in Eq. (13) to have zero mean and unit variance over all CEM
candidates, to trade-off control- and distance cost terms even
under large terrain variations. At each step, we only apply
the first action and plan again from the resulting state in a
receding horizon scheme.

V. EXPERIMENTS

A. Simulation environment

1) Simulated Robot Dynamics: We perform experiments
in a 2D simulation with a unicycle-like robot setup where
the continuous time-variant 2D dynamics with position p =
[px, py]

>, orientation ϕ′, and directional velocity v, for
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Fig. 4. Relationship of RGB terrain features τ (left column) to friction
coefficient µ (right column). See Section V-A.2 for details.

control input u = [uthrottle, usteer]
> ∈ [−1, 1]

2, are given
by

ṗ(t) =
[
cosϕ′ sinϕ′

]>
v(t)

v̇(t) =
1

m
(Fthrottle + Ffric)

Fthrottle = uthrottle kthrottle

Ffric = − sign(v(t)) µm g.

(14)

As our method does not use continuous-time observations,
but only discrete-time samplings with stepsize ∆T = 0.01 s,
we approximate the state evolution between two timesteps
as follows. First, we apply the change in angle as ϕ′ =
ϕ(t + ∆T ) = ϕ(t) + usteer ksteer. We then query the
terrain friction coefficient µ at the position p(t). With the
friction coefficient µ and angle ϕ′ we compute the evolution
of position and velocity with Eq. (14). The existence of
the friction term in Eq. (14) requires an accurate inte-
gration, which is why we solve the initial value problem
in Eq. (14) numerically using an explicit Runge Kutta
(RK45) method, yielding p(t + ∆T ) and v(t + ∆T ). Our
simulated system dynamics are deterministic. To avoid dis-
continuities, we represent observations of the above system
as x(t) = [px(t), py(t), v(t), cosϕ(t), sinϕ(t)]

>. We use
g = 9.81 m s−2 as gravitational acceleration. Positions p(t)
are clipped to the range [0, 1] m; the directional velocity
v(t) is clipped to [−5, 5] m s−1. The friction coefficient
µ = αterrain(px, py) ∈ [0.1, 10] depends on the terrain layout
αterrain and the robot’s position. The mass m and control
gains kthrottle, ksteer are robot-specific properties, we refer
to Table I for their value ranges.

2) Terrain layouts: To simulate the influence of varying
terrain properties on the robots’ dynamics, we programmat-
ically generate 50 terrain layouts for training the dynamics
model and 50 terrain layouts for testing (i.e., in prediction-
and planning evaluation). For generating terrain k, we first
generate an unnormalized feature map τ̂ (k), from which we
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Fig. 5. Prediction error evaluation for the proposed model and its ablations (no terrain lookup / no calibration), plotted over the prediction horizon (number
of prediction steps). From left to right: Positional error (euclidean distance), velocity error (absolute difference), angular error (absolute difference). Depicted
are the mean and 20%, 80% percentiles over 150 evaluation rollouts for 5 independently trained models per model variant. Our approach with terrain
lookup and calibration clearly outperforms the other variants in position and velocity prediction (left and center panel). For predicting the angle (right
panel), terrain friction is not relevant, which is why the terrain lookup brings no advantage. However, calibration is important for accurate angle prediction.
See Section V-C for details.
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Fig. 6. Comparison of model variants with and without terrain lookup
and calibration. Ev

k,i denotes the throttle control energy for method v on
navigation task k ∈ {1, . . . , 150} for a trained model with seed i ∈
{1, . . . , 5}. We show statistics (20% percentile, median, 80% percentile) on
the set of pairwise comparisons of control energies {Erow

k,i1
−Ecol

k,i2
| ∀k ∈

{1, . . . ,K}, i1 ∈ {1, . . . , 5}, i2 ∈ {1, . . . , 5}}. Significant (p < 0.05)
results are printed bold (see Section V-D). Exemplarily, both performing
terrain lookup and calibration (last row) yields navigation solutions with
significantly lower throttle control energy (negative numbers) compared to
all other methods (columns). See Section V-D for details.

compute α(k)
terrain and the normalized feature map τ (k). The

unnormalized feature map is represented by a 2D RGB image
of size 460 px×460 px. For its generation, first, a background
color is randomly sampled, followed by sequentially placing
randomly sampled patches with cubic bezier contours. The
color value (r, g, b) ∈ {0, . . . , 255}3 at each pixel maps to
the friction coefficient µ = αterrain(px, py) through bitwise
left-shifts � as

η = ((r � 16) + (g � 8) + b)/(224 − 1)

αterrain(px, py) = 0.1 + (10− 0.1)η2.
(15)

The agent can observe the normalized terrain color
τ (k)(px, py) ∈ [0, 1]

3 with τ (k)(px, py) = τ̂ (k)(px, py)/255,
and can query τ (k)(px, py) at arbitrary px, py. The simulator
has direct access to µ = α

(k)
terrain(px, py). We denote the

training set of terrains Atrain = {α(k)
terrain | k ∈ {1, . . . , 50}}
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left terrain right terrain

Variant Thr. ctrl.
energy

Target
dist [mm]

Thr. ctrl.
energy

Target
dist [mm]

 −T, −C 4.08 7.82 3.96 2.69
 −T, +C 3.47 4.89 2.78 4.87
 +T, −C 2.01 4.57 1.88 5.14
 +T, +C 2.02 5.55 1.43 6.66

Fig. 7. Exemplary navigation trajectories and their associated throttle
control energy and final distance to the target (see table). The robot starts
at the white cross, the goal is marked by a black cross. With terrain lookup
( +T, -C and  +T, +C), our method circumvents areas of high friction
coefficient (i.e., high energy dissipation), resulting in lower throttle control
energy (see table). Enabling calibration (+C) further reduces throttle control
energy on the right terrain. See Section V-D for details.

and the test set of terrains Atest = {α(k)
terrain | k ∈

{51, . . . , 100}}. We refer to Fig. 4 for a visualization of two
terrains and the related friction coefficients.

3) Environment instance: The robot’s dynamics depends
on the terrain αterrain as it is the position-dependent fric-
tion coefficient, and the robot-specific parameters αrobot =
(m, kthrottle, ksteer). A fixed tuple (αterrain,αrobot) forms
an environment instance.

4) Trajectory generation: We require the generation of
trajectories at multiple places of our algorithm for training
and evaluation: To generate training data, to sample candi-
date trajectories for the cross-entropy planning method, to
generate calibration trajectories, and to generate trajectories
for evaluating the prediction performance. One option would
be to generate trajectories by independently sampling actions
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Fig. 8. Failure cases for the non-calibrated models. The top row shows
the full terrain of extent [0, 1]m. The bottom row is zoomed around the
goal. In the cases shown, planning with the non-calibrated models does not
succeed in reaching the goal marked by the black cross within the given
step limit of 50 steps, in contrast to the calibrated models. See Section V-D
for details.

TABLE I
ROBOT-SPECIFIC PROPERTIES.

Property Min. Max.

Mass m [kg] 1 4
Throttle gain kthrottle 500 1000
Steer gain ksteer π/8 π/4

from a Gaussian distribution at each timestep. However,
this Brownian random walk significantly limits the space
traversed by such trajectories [23]. To increase the traversed
space, [23] propose to use time-correlated (colored) noise
with a power spectral density PSD(f) ∝ 1

fω , where f is the
frequency. We use ω = 0.5 in all our experiments.

5) Exemplary rollouts: We visualize exemplary rollouts
on different terrains and with different robot parametrizations
in Fig. 3. We observe that both the terrain-dependent friction
coefficient µ, as well as the robot properties, have a signif-
icant influence on the shape of the trajectories, highlighting
the importance of a model to be able to adapt to these
properties.

B. Model training

We train our proposed model on a set of precollected tra-
jectories on different terrain layouts and robot parametriza-
tions. First, we sample a set of 10000 unique terrain layout
/ robot parameter settings to generate training trajectories.
For validation, a set of additional 5000 settings is used.
On each setting, we generate two trajectories, used later
during training to form the target rollout Dα and context
set Cα, respectively. Terrain layouts are sampled uniformly
from the training set of terrains, i.e. Atrain. Robot parameters

are sampled uniformly from the parameter ranges given in
Table I. The robots’ initial state x0 = [px,0, py,0, v0, ϕ0]

> is
uniformly sampled from the ranges px,0, py,0 ∈ [0, 1], v0 ∈
[−5, 5], ϕ0 ∈ [0, 2π]. Each trajectory consists of 100 applied
actions and the resulting states. We use time-correlated
(colored) noise to sample actions (see previous paragraph).
We follow the training procedure described in [18].

1) Model ablation: As an ablation to our model, we only
input the terrain features τ at the current and previously
visited states of the robot as terrain observations, but do not
allow for terrain lookups in a map at future states during
prediction. We will refer to this ablation as No(−) terrain
lookup in the following.

C. Prediction evaluation

In this section we evaluate the prediction performance
of our proposed model. To this end, we generate 150 test
trajectories of length 150, on the test set of terrain layouts
Atest. Robot parameters are uniformly sampled as during
data collection for model training. The robot’s initial position
is sampled from [0.1, 0.9]

2, the orientation from [0, 2π]. The
initial velocity is fixed to 0. Actions are sampled with a
time-correlated (colored) noise scheme. In case the model
is calibrated, we additionally collect a small trajectory for
each trajectory to be predicted, consisting of 10 transitions,
starting from the same initial state x0, but with different
random actions. Transitions from this trajectory form the
context set C, which is used by the context encoder qctx(β |
C) to output a belief on the latent context variable β.
In case the model is not calibrated, the distribution is
given by the context encoder for an empty context set, i.e.
qctx(β | C = {}). We evaluate two model variants; first, our
proposed model which utilizes the terrain map τ(px, py) for
lookup during predictions, and second, a model for which the
terrain observation is concatenated to the robot observation.
All results are reported on 5 independently trained models.
Figure 5 shows that our approach with terrain lookup and
calibration clearly outperforms the other variants in position
and velocity prediction. As the evolution of the robot’s angle
is independent of terrain friction, for angle prediction, only
performing calibration is important.

D. Planning evaluation

Aside the prediction capabilities of our proposed method,
we are interested whether it can be leveraged for efficient
navigation planning. To evaluate the planning performance,
we generate 150 navigation tasks, similar to the above
prediction tasks, but with an additional randomly sampled
target position p∗ ∈ [0.1, 0.9]

2 for the robot. We perform
receding horizon control as described in Section IV-B.

Again, we evaluate four variants of our model. We com-
pare models with and without the ability to perform terrain
lookups. Additionally, we evaluate the influence of calibra-
tion, by either collecting 10 additional calibration transitions
for each planning task setup, or not collecting any calibration
transition (C = {}), giving four variants in total.
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TABLE II
DISTANCE TO GOAL (MEDIAN AND 20% / 80% PERCENTILES) AND

FAILURE RATE FOR 5 cm DISTANCE THRESHOLD TO GOAL. VARIANTS

ARE WITH/WITHOUT TERRAIN LOOKUP (±T) AND WITH/WITHOUT

CALIBRATION (±C). OUR FULL APPROACH (+T, +C) YIELDS BEST

PERFORMANCE IN REACHING THE GOAL AND SUCCEEDS IN ALL RUNS.

Variant Euclidean distance to goal [mm] Failed tasks
P20 median P80

 −T, −C 3.00 5.19 8.67 6/750
 −T, +C 3.13 5.23 7.65 0/750
 +T, −C 2.33 4.22 6.49 14/750
 +T, +C 2.16 3.85 5.61 0/750

As we have trained five models with different seeds, over
all models, we obtain 750 navigation results. We count a
navigation task as failed if the final Euclidean distance to
the goal exceeds 5 cm.

We evaluate the efficiency of the navigation task solu-
tion by the sum of squared throttle controls over a fixed
trajectory length of N = 50 steps, which we denote as
E =

∑N−1
n=0 u

2
throttle,n. We introduce super- and subscripts

Evk,i to refer to model variant v, planning task index k
and model seed i. Please see Figs. 6 and 7 for results
comparing the particular variants. For pairwise comparison
of control energies E we leverage the Wilcoxon signed-
rank test with a p-value of 0.05. We can conclude that,
regardless of calibration, performing terrain lookups yields
navigation solutions with significantly lower throttle control
energy. The same holds for performing calibration, regardless
of performing terrain lookups. Lowest control energy is
obtained for both performing calibration and terrain lookup.

We refer to Table II for statistics on the number of
failed tasks and final distance to the goal. As can be
seen, our terrain- and robot-aware approach yields overall
best performance in Euclidean distance to the goal and
succeeds in all runs in reaching the goal. Planning with non-
calibrated models variants occasionally fails, i.e., the goal is
not reached. We show such failure cases in Fig. 8.

VI. CONCLUSIONS

In this paper, we propose a forward dynamics model which
can adapt to variations in unobserved variables that govern
the system’s dynamics such as robot-specific properties,
as well as to spatial variations. We train our model on
a simulated unicycle-like robot, which has varying mass
and actuator gains. In addition, the robot’s dynamics are
influenced by instance-wise and spatially varying friction co-
efficients of the terrain, which are only indirectly observable
through terrain observations. In 2D simulation experiments,
we demonstrate that our model can successfully cope with
such variations through calibration and terrain lookup. It
exhibits smaller prediction errors compared to model variants
without calibration and terrain lookup, and yields solutions to
navigation tasks which require lower throttle control energy.
In future work, we plan to extend our novel learning-
based approach for real-world robot navigation problems

with partial observability, noisy state transitions, and noisy
observations.
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Social Robot Navigation through Constrained Optimization: a
Comparative Study of Uncertainty-based Objectives and Constraints

Timur Akhtyamov1, Aleksandr Kashirin1, Aleksey Postnikov1,2, Gonzalo Ferrer1

Abstract— This work is dedicated to the study of how
uncertainty estimation of the human motion prediction can
be embedded into constrained optimization techniques, such as
Model Predictive Control (MPC) for the social robot navigation.
We propose several cost objectives and constraint functions
obtained from the uncertainty of predicting pedestrian positions
and related to the probability of the collision that can be applied
to the MPC, and all the different variants are compared in
challenging scenes with multiple agents. The main question
this paper tries to answer is: what are the most important
uncertainty-based criteria for social MPC? For that, we eval-
uate the proposed approaches with several social navigation
metrics in an extensive set of scenarios of different complexity
in reproducible synthetic environments. The main outcome of
our study is a foundation for a practical guide on when and how
to use uncertainty-aware approaches for social robot navigation
in practice and what are the most effective criteria.

I. INTRODUCTION

Social robot navigation remains a difficult problem since
navigating in a socially acceptable manner, in a dynamic and
complex environment, is often unpredictable and uncertain
mostly due to its human nature. This involves not only
avoiding obstacles but also interacting with humans in a way
that is natural, safe, and comfortable.

One of the main challenges is that human behaviour is
ambiguous and difficult to predict. People may move in un-
expected ways, change direction suddenly, or give non-verbal
cues that are difficult for robots to interpret. Fortunately, with
modern techniques now it is possible to predict accurately
and with a correct measure of the inherent uncertainty [1]. In
addition, social norms and conventions vary between cultures
and contexts, making it difficult to develop a one-size-fits-all
approach.

Finally, safety is a critical concern in social navigation, as
robots must avoid collisions and other hazards while navi-
gating in close proximity to humans. This requires advanced
planning and control algorithms that can take into account
the robot’s own capabilities and limitations, as well as those
of the people in the environment. It is unclear which are the
dominant criteria in social robot navigation, and our initial
hypothesis is that accurate uncertainty prediction should play
a fundamental role on the social navigation task.

MPC is one of the world’s industrial standards for the
variety of control and planning tasks, especially in robotics.
Modern MPC solutions are built on top of the efficient

1The authors are with Skolkovo Institute of Science and Tech-
nology (Skoltech), Center for AI Technology. Corresponding e-mail:
timur.akhtyamov@skoltech.ru

2The author is with Sber Robotics group
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

solvers that achieve real-time or near-real-time performance
in various deterministic settings. Constrained optimization
techniques employed by MPC allow to leverage different
navigation objectives and constrains, for instance, distance
to goal, probability of collision or deterministic geometric
collision constraints.

In this work, we propose to study how pedestrians trajec-
tory prediction uncertainty can be embedded into MPC-based
planning via various objectives and constraints derived from
the uncertainty in the environment, and how it influences
in practice the performance of the controller. The main
contributions of the paper are:

• Several uncertainty-unaware and uncertainty-aware
MPC designs that incorporate CovarianceNet-based ap-
proach [1] for pedestrian trajectory prediction;

• Extensive evaluation of the proposed approaches in
simulation environments with practice-oriented conclu-
sions;

• Introduction of the novel simulation environment tar-
geted for social robot navigation tasks.

II. RELATED WORKS

A. Social robot navigation approaches

Generally, social robot navigation problem has been stud-
ied for several decades, and variety of approaches have been
proposed [2]–[4]. Methods based on the enhancement of
the classical path planning [5]–[8] are built on top of the
algorithms like A*, RRT or RRT*. Adaptivity to the pedes-
trian dynamics is achieved by using time-based variations
of those algorithms, dynamic cost maps that are built using
pedestrians motion prediction and socially-aware transition
or steering functions.

Optimization-based methods employ advances in non-
linear programming to generate a sequence of safe robot
control inputs. These methods first of all include MPC
schemes adapted to the social navigation and dynamic colli-
sion avoidance [9]–[11]. The core idea is to use an external
pedestrian trajectory prediction method and embed its output
into the cost function or constraints.

Some authors also relate reaction-based methods like
Social Force Model [12]–[15] and velocity obstacles [16]
to the possible social navigation approaches. But in practice,
those methods usually applied as supervisors for pre-training
learning-based models or combined with optimization-based
or learning-based approaches.

With the rising popularity of Deep Learning, learning-
based social navigation, especially Reinforcement Learning
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(RL)-based methods have become their own direction in
robotics [17]–[20]. For today, main directions in the RL-
based social navigation research are modeling interaction
between pedestrians and robot [18]–[20], efficient usage of
the pedestrians motion prediction by RL policy [19]–[21] and
combination of the RL-based methods with non-learnable
approaches [10], [22], [23].

B. Uncertainty-aware objectives and constraints

The goal of incorporating into robot navigation in general
is to minimize collision probability, directly or indirectly.
A common approach is to model robot and pedestrian as
circles (or spheres, if going to 3D), but calculating exact
collision probability even for such simple representation is a
challenging problem [24], [25].

One way of tackling this issue is the chance constraint
which gives approximate bounds on collision up to fixed
probability. Several groups of chance constraints are present
in the literature. The first group is based on approximation of
the collision probability or finding its upper bound [25]–[29].
The second group represents dynamic obstacles as circles or
ellipses whose sizes derived via Gaussian level-sets of some
fixed probability [8], [30], [31].

Another way of incorporating uncertainty into planning is
using the concept of risk introduced in [32]. According to
[32], risk is defined as a mapping of the cost random variable
to a real number that should follow a set of axioms. Most
popular risk metrics that can be found in the literature are
Expected Cost [9], Conditional Value at Risk (CVaR) [33]–
[35] and Mean-Variance [36].

Recent works also made steps towards uncertainty-
awareness in RL via risk-aware RL [37]–[39] and Distri-
butional RL [40], [41], but application of those method for
social robot navigation problem is not well-studied problem
yet.

C. Uncertainty-aware trajectory prediction

Uncertainty-aware trajectory prediction has been an ac-
tive research area in robotics and autonomous navigation,
particularly for applications involving social interactions.
Traditional approaches to trajectory prediction rely on de-
terministic models [12], which may not account for the
inherent uncertainty in the environment and the behavior of
other agents. To address this issue, several recent works have
proposed uncertainty-aware prediction models that explicitly
model the uncertainty in the trajectory estimation [1], [42],
[43]. In this work we use a variation of the CovarianceNet
[1] model as an explicit method for uncertainty prediction in
pedestrian trajectory estimation. In sake of simplicity and
computational efficiency, our implementation is not using
the Conditional Variational Autoencoder (CVAE) part of the
original model. While the CVAE has been shown to produce
diverse and realistic trajectories, we expect it would suffice
to achieve the desired performance to omit the CVAE from
our implementation of CovarianceNet. Also, as an underlying
trajectory prediction method for CovarianceNet, the Constant
Velocity (CV) model is used. Despite its extreme simplicity,

TABLE I: Variable Definition Table.

Variable Definition

N number of pedestrians
i = {1, . . . , N} pedestrian index
H number of receding horizon steps
k = {0, 1, . . . , H − 1} receding horizon step index
∆t receding horizon time step interval, [s]
T sim number of simulation steps
∆tsim simulation time step interval, [s]
Hghost number of receding horizon steps

to track ghost pedestrians
rrob robot circumference radius, [m]
V S volume of the sphere used for

Mahalanobis constraints,
[
m3

]

rped pedestrian circumference radius, [m]
dsafe safe distance between robot and

pedestrian circumferences, [m]
ε target reach threshold, [m]
ℓvis robot vision range, [m]
φvis robot angle of view, [rad]
δ adaptive margin constraint value
x position along x axis, [m]
y position along y axis, [m]
θ ∈ [−π;π) angular position, [rad]
v linear velocity,

[
m
s

]

ω angular velocity,
[
m
s

]

rk = [xrobk , yrobk ]⊤ robot position vector at step k
rtarget robot target position
xk = [xrobk , yrobk , θrobk ]⊤ robot state vector at step k
uk = [vrobk , ωrob

k ]⊤ robot control vector at step k
ūk = [vrobk , ωrob

k , δk]
⊤ augmented robot control vector at step k

pk,i = [xpedk,i , y
ped
k,i ]

⊤ i-th pedestrian position vector at step k
Σk,i covariance of i-th pedestrian at k step
λ
(1)
k,i , λ

(2)
k,i eigenvalues of the Σk,i

γ number of standard deviations
ak,i, bk,i length of the ellipsoid constraint semi-axes
ψk,i rotation angle of the ellipsoid constraint
Rot(ψ) rotation matrix
P col collision probability threshold
Qu control input weight matrix
Qū augmented control input weight matrix
Qr position unattainability factor
QED Euclidean distance cost weight
QMD Mahalanobis distance cost weight
dED
k,i Euclidean distance

for i-th pedestrian at k step
dMD
k,i Mahalanobis distance

for i-th pedestrian at k step
W position space
X state space
U action space
Ū augmented action space

in practice CV often produces results comparable to more
sophisticated models in both prediction and navigation tasks
[20], [44].

III. METHOD

In this section, we present a comprehensive explanation
of our proposed approaches that utilize MPC. For ease of
reference, Table I is provided to define the main variables
used throughout this section.

A. Robot Model

We first introduce the target robot model and system
dynamics. The deterministic Markov decision process serves
as a critical constraint that governs the behavior of the
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system. For this study, we selected the kinematic unicycle
model of the robot, which can be represented as a discrete
system:

xrobk+1 = xrobk + vrobk · cos(θrobk ) ·∆t,
yrobk+1 = yrobk + vrobk · sin(θrobk ) ·∆t,
θrobk+1 = θrobk + wrob

k ·∆t.
(1)

It should be noted that in all proposed methods, the robot
(ego-agent) and the pedestrians (agents) are modeled as
circles with respective radii (rrob and rped). The control input
vector consists of linear and angular velocities, denoted as
uk = [vrobk , ωrob

k ]⊤.

B. Model Predictive Control

This section outlines the methods we have studied, all
of which are based on MPC. MPC is an advanced control
strategy that predicts the future behavior of a system using a
mathematical model and a cost function as an optimization
objective that encapsulates the target behavior of the agent.
The cost function in our proposed methods consists of two
parts: the stage cost (4) and the terminal cost (5). The stage
cost is accumulated at each stage of the prediction horizon
up to the terminal step and includes the control input cost
(2) and the normalized target distance cost (3), which was
inspired by the cost function presented in [10].

The control input cost 2 penalizes the usage of the control
signal, which consists of the linear and angular velocities:

Ju
k (uk) = u⊤

k Quuk. (2)

The normalized target distance cost (3) penalizes the
robot’s deviation from the target position during the opti-
mization process. This cost decreases as the robot gets closer
to the target position at each iteration relative to its initial
position at the beginning of the horizon:

Jr
k (rk) = Qr

(∥rk − rtarget∥2
∥r0 − rtarget∥2

)2

. (3)

The combination of the control input cost and the normal-
ized target point distance cost results in the definition of the
basic stage cost (4):

Jk(uk, rk) = Ju
k (uk) + Jr

k (rk) . (4)

In the terminal step of the optimization problem, we only
penalize the robot’s inability to reach the target position (5):

JH := Jr
k(rk) | k = H. (5)

Combining all of the previously mentioned terms results
in a basic MPC optimization problem, which we refer to as
MPC (6) in the Table II:

min
r1:H ,u0:H−1

H−1∑

k=0

Jk(uk, rk) + JH (rH)

subject to r0 = r(0)

uk ∈ U
rk ∈W.

(6)

Currently, we have defined a basic MPC optimization
problem that is suitable for navigation tasks. However, it does
not consider pedestrians in the environment. In the following
section, we discuss how we can incorporate pedestrians
into the optimization problem, both considering and not
considering uncertainty.

1) Uncertainty-unaware: We introduce a classical
uncertainty-unaware approach commonly used in motion
planning to account for obstacles, other agents, and
environmental borders - the Euclidean distance. The
Euclidean distance (ED) is a measure of the straight-line
length between two points in Euclidean space 7:

dED
k,i (rk,pk,i) = ∥rk − pk,i∥2 . (7)

It is often used in optimization problems to prevent
controllers from colliding with obstacles by imposing a
constraint on the distance between the ego-agent and other
agents [10]. However, in our approach, we also study the
utilization of the Euclidean distance as a component 8 of the
stage-cost function. This is usually referred to as penalty-
based optimization:

JED
k (rk,pk,1:N ) = QED

N∑

i=0

1

dED
k,i (rk,pk,i)

2 . (8)

We refer to the optimization problem that includes Eu-
clidean distance as an additional component of the stage-cost
function as ED-MPC 9:

min
r1:H ,u0:H−1

H−1∑

k=0

(
Jk(uk, rk) + JED

k (rk,pk,1:N )
)
+

+ JH (rH)

subject to r0 = r(0)

uk ∈ U
rk ∈W.

(9)

In order to use Euclidean distance as a constraint, an
inequality must be introduced 10 to ensure that the safe dis-
tance between the ego-agent and pedestrians is not violated:

dED
k,i (rk,pk,i)

2 ≥ (rrob + rped + dsafe)2. (10)

An optimization problem that includes Euclidean distance
as an inequality constraint is referred to as MPC-EDC (11):

min
r1:H ,u0:H−1

H−1∑

k=0

Jk(uk, rk) + JH (rH)

subject to r0 = r(0)

dED
k,i (rk,pk,i)

2 ≥ (rrob + rped + dsafe)2

uk ∈ U
rk ∈W.

(11)
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2) Uncertainty-aware: For the uncertainty-awareness, we
first introduce approaches based on the Mahalanobis dis-
tance, which measures the distance between a point, e.g.
robot position rk, and a distribution, e.g. predicted pedestrian
position modeled as a Gaussian distribution with mean pk,i

and covariance matrix Σk,i (which may include off-diagonal
elements):

dMD
k,i (rk,pk,i,Σk,i) =

=
√
(rk − pk,i)

⊤
Σ−1

k,i (rk − pk,i). (12)

We propose to employ Mahalanobis distance as and alterna-
tive to the Euclidean distance that will allow MPC to capture
uncertainty of the pedestrian trajectories prediction.

First, we propose to add the Mahalanobis distance as an
additional component to the stage cost function. To do this,
we compute a weighted sum of the inverse Mahalanobis
distance to each pedestrian at each horizon step:

JMD
k (rk,pk,1:N ) = QMD

N∑

i=0

1

dMD
k,i (rk,pk,i,Σk,i)

2 . (13)

This allows us to take into account for the uncertainty asso-
ciated with each pedestrian’s trajectory and adjust the cost
function accordingly. An MPC controller that incorporates
the Mahalanobis distance as an additional component to the
stage cost function is referred to as MD-MPC.

The Mahalanobis distance can also be added as an inequal-
ity constraint to the optimization problem. Work [25] derives
approximation for the collision probability for the spherical
robot, and corresponding constraint expression for holding
collision probability lower than given threshold probability
P col. We adopt this approximation to out problem where
pedestrian position is uncertain and introduce following
constraint:

dMD
k,i (rk,pk,i,Σk,i)

2 ≥ 2 ln

(√
det (2πΣk,i)

P col

V S

)
,

(14)
where V S is the volume of the sphere with radius rrob +
rped+dsafe, P col is the fixed collision probability threshold.

Along with Mahalanobis distance-based constraints, we
propose another type of chance constraints, based on the idea
of Gaussian iso-contours, proposed in [30], [31]. Assuming
that Σk,i is the covariance of the i-th pedestrian’s position at
horizon step k (which may include off-diagonal correlation
terms), the parameters of the ellipsoid corresponding to the
γ standard deviations are derived. We calculate eigenvalues
of the covariance matrix λ(1)k,i and λ(2)k,i which define ellipsoid
semi-axes lengths and angle ψk,i which define the rotation
of the coordinate system related to the ellipsoid. Taking into
account robot and pedestrian radii along with safe distance,
length of the semi-axes of the bounding ellipsoid ai,k and
bi,k are defined as:

[
ak,i
bk,i

]
= γ



√
λ
(1)
k,i√
λ
(2)
k,i


+ rrob + rped + dsafe. (15)

Final equation for the ellipsoid constraints has form:

(rk − pk,i)
⊤ Rot(ψk,i)

⊤
[

1
a2
k,i

0

0 1
b2k,i

]
×

× Rot(ψk,i) (rk − pk,i) > 1, (16)

where Rot(ψk,i) defines the rotation matrix. This constraint
holds that robot will not move inside the ellipsoid around
pedestrian, and size of this ellipsoid is based on selected
number of Gaussian standard deviations, and thus connected
with collision probability.

We refer to a variant of the MPC that uses ellipsoid
constraints as MPC-ELC. Stage cost and terminal cost are
defined by equations 4 and 5 correspondingly.

3) Adaptive constraint: We present an additional ap-
proach, called the adaptive constraint, initially introduced
in [31] via slack variable. The adaptive constraint approach
involves introducing a new optimization variable, denoted
as δ, which is added to the augmented control input vector
ū. To properly formalize this approach, we introduce an
augmented control input cost function, which replaces the
original control input cost function (2) in the optimization
problem (6):

J ū
k (ūk) = ū⊤

k Qūūk. (17)

Note that the initial robot model is not changed, and slack
variable is added to the control vector for the ease of
regularization.

The adaptive constraint can be in conjunction with the
Euclidean distance constraint to increase the safe distance
between the ego-agent and the pedestrian:

dED
k,i (rk,pk,i)

2 ≥ (rrob + rped + dsafe)2 + δ. (18)

The controller that incorporates both the adaptive constraint
and the Euclidean distance constraint is referred to as MPC-
AEDC. This approach provides additional flexibility in ad-
justing the safe distance between the ego-agent and the
pedestrians, making it particularly useful in dynamic and
uncertain environments.

The adaptive constraint can also be used in conjunction
with the Mahalanobis distance constraint to adjust the con-
verted collision probability:

dMD
k,i (rk,pk,i)

2 ≥ 2 ln

(√
det (2πΣk,i)

P col

V S

)
+ δ. (19)

The controller that incorporates both the adaptive constraint
and the Mahalanobis distance constraint is referred to as
MPC-AMDC. This approach provides additional flexibility
in adjusting the safety margin and collision probability.

We propose to apply adaptive constraint with ellipsoid
constraints in a similar way to the original work [31]. We
adjust the semi-axes of the bounding ellipsoid:
[
ak,i
bk,i

]
= γ



√
λ
(1)
k,i√
λ
(2)
k,i


 (1− δ)+ rrob+ rped+dsafe. (20)

We refer to such a controller as MPC-AELC.
Table II summarizes all the methods proposed in this paper

and provides an overview of the design of each method.
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TABLE II: Summary of Methods.

Controller Name Cost Component Constraint Type

ED-MPC Euclidean (8) -
ED-MPC-EDC Euclidean (8) Euclidean (10)
ED-MPC-MDC Euclidean (8) Mahalanobis (14)
MD-MPC-MDC Mahalanobis (13) Mahalanobis (14)
MD-MPC-EDC Mahalanobis (13) Euclidean (10)
ED-MPC-AEDC Euclidean (8) Adaptive Euclidean (18)
MD-MPC-AEDC Mahalanobis (13) Adaptive Euclidean (18)
MPC-AEDC - Adaptive Euclidean (18)
MPC-AMDC - Adaptive Mahalanobis (19)
MPC-ELC-2 - Ellipsoid, γ = 2 (15, 16)
MPC-ELC-3 - Ellipsoid, γ = 3 (15, 16)
MPC-AELC-2 - Adaptive Ellipsoid, γ = 2 (20, 16)
MPC-AELC-3 - Adaptive Ellipsoid, γ = 3 (20, 16)

IV. EVALUATION

In this section, we provide a detailed description of our
experimental setup, present and discuss the results of our
experiments.

A. Software and Datasets

We utilized the do-mpc framework [45] for implementa-
tion1 of all of the MPC-based controllers, which is built upon
the CasADi software package [46] for nonlinear optimiza-
tion and algorithmic differentiation. MUltifrontal Massively
Parallel sparse direct Solver (MUMPS) is used as a base
solver for MPC problem. CovarianceNet implementation
uses PyTorch framework. As a simulation tool we have
developed an open-source lightweight and flexible frame-
work called PyMiniSim2 (Fig. 1a). Our implemented Covari-
anceNet model3 was trained on the subset of the Stanford
Drone Dataset (SDD) [47].

B. Experimental Setup

We utilized the Headed Social Force Model (HSFM) [14],
an extension of a highly-regarded Social Force Model (SFM)
[48], as a model for simulation of pedestrians behavior.

To evaluate the effectiveness of the proposed methods,
we designed and simulated three types of scenarios- cir-
cular crossing, random crossing, and parallel crossing, as
illustrated in Figure 1b. These scenarios were inspired by
the work [49]. For each scenario, we consider a set of
scenes - configurations of number of pedestrians, initial
pedestrians’ poses, pedestrians’ goal, initial robot pose and
robot goal. Once pedestrians reach their goal positions, they
oscillate between their initial and goal positions, resulting
in continuous movement without stopping within the scene.
Possible number of pedestrians varies from 3 to 8. For
each number of the pedestrians, 100 scenes were generated,
resulting in 600 scenes per scenario and 1800 scenes in total.
Each of the controllers were evaluated on this set of scenes.

For evaluating the performance of the controllers, we
utilized standard metrics such as Simulation steps to Target,
[#], which represents the time taken for the controller to

1https-//github.com/TimeEscaper/social_nav_
baselines

2https-//github.com/TimeEscaper/pyminisim
3https-//github.com/alexpostnikov/CovarianceNet

reach the target position, Number of Collisions, [#], and
Number of Timeouts, [#], which depict the cautiousness of
the controller. Target is assumed to be reached by the robot
if the following criterion holds:

∥rk − rtarget∥2 − rrob < ε. (21)

Here are the parameters that we used for the evaluation of
the controllers:

N ∈ {3, 4, 5, 6, 7, 8}
H = 25
∆t = 0.1
T sim = 2000
∆tsim = 0.01
Hghost = 20
Qū =

(
0.005 0 0

0 0.005 0
0 0 100000

)

rrob = 0.35

rped = 0.3
dsafe = 0.3
P col = 0.01
ε = 0.1
ℓvis = 5
φvis = 2π
Qu = ( 1 0

0 1 )
QED = 500
QMD = 1000,

Qr = 100 if an additional cost component is Euclidean,
otherwise Qr = 1000. We make the assumption that the
robot is imperceptible to pedestrians, and therefore, they do
not respond to its presence. The unicycle kinematics model
described in Section III is used to model the robot in both the
controller optimization problem and the simulation model.
However, there is a difference in the time intervals used-
∆t = 0.1 in the optimization problem and ∆tsim = 0.01
in the simulation model. The controller is invoked every
∆t = 0.1 time interval within the simulation model, which
is known as a ’sample and hold’ system. To enhance the
navigation capabilities, we implemented the ghost-pedestrian
feature in PyMiniSim. This feature enables the robot to
continue tracking the pedestrian using his last trajectory
prediction when the pedestrian leaves the robot’s field of
view, up to Hghost steps.

C. Results and Analysis

Results of the experiments are represented by the statistics,
collected for each of the three proposed types of the scenar-
ios, showed at Fig. 2, 3 and 4 with means, medians and
interquartile ranges (IQR). Using this data, we provide both
scenario-specific analysis and derive general conclusions on
the practical applications of the proposed controllers.

According to our observations, the circular crossing sce-
nario (Fig. 2) is the most challenging scenario in practice,
since when the goal is sampled inside the inner circle, robot
needs to reach it as fast as possible until it becomes cramped
by the pedestrians; when the goal is sampled outside the
inner circle, robot needs to carefully break out of it. In
terms of the number of collisions, for the lowest number
of pedestrians all methods perform similarly. For the larger
numbers, we can observe degradation of several uncertainty-
aware methods and methods that do not employ adaptive
constraints. Generally, for this scenario good performance in
terms of collisions is achieved by MD-MPC-AEDC, MPC-
AEDC, ED-MPC-AEDC, MPC-ELC-3 and MPC-AELC-3.
In terms of numbers of simulation steps and timeouts, we see
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(a) PyMiniSim environment. (b) Scenario generation.

Fig. 1: Experimental setup. In this study we used simulation environment based on PyMiniSim (Fig. 1a) framework. We
used scenarios represented in (Fig. 1b).

that ellipsoid constraints based method with largest number
of standard deviations (MPC-ELC-3) tend to be much more
conservative, and usage of the adaptive constraints (MPC-
AELC-3) partially tackles this issue. With smaller number
of standard deviations (MPC-ELC-2 and MPC-AELC-3), el-
lipsoid constraints based methods show level of conservative
much closer to the other methods mentioned above. For the
hardest case in this scenario, we provide detailed results in
Table III. For this case, we highlight performance of MD-
MPC-AEDC and MPC-AEDC approaches.

The random crossing scenario (Fig. 3) tends to be a
’medium-complexity’ problem for the controllers. We again
see the trend of degrading performance of the Mahalanobis
and Euclidean non-adaptively constrained controllers. Com-
paring the hardest cases of 7-8 pedestrians, we can see that
good performance is shown by MPC-ELC-2, MPC-ELC-3,
MPC-AELC-2, MPC-AELC-3, MD-MPC-AEDC, ED-MPC-
AEDC. In terms of simulation steps and timeouts, a gap
between MPC-AELC-2 and both MPC-AELC-3 and ED-
MPC-AEDC can be seen, same for the MPC-ELC-2 and
MPC-ELC-3.

While visually looking like a relatively simple problem,
the parallel crossing scenario (Fig. 4) still tends to be a
challenging problem for the controllers, especially when
the robot becomes close to the two pedestrians approach-
ing each other. The trend of degrading performance of
the Mahalanobis and Euclidean non-adaptively constrained
controllers can be seen again. Comparing the hardest cases
of 6-8 pedestrians, we can see that good performance is
shown by MPC-AEDC, MD-MPC-AEDC, MPC-AELC-2,
MPC-AELC-3 and ED-MPC-AEDC. Performance in terms
of simulation steps and timeouts is similar to the previous
case, still we see a huge gap between MPC-AELC-2 and
MPC-AELC-3 which gives insight on the influence of the
number of standard deviations on the agility.

Based on our findings for each of the scenarios, we can
propose following conclusions-

1) Adaptive constraints are the crucial part for MPC-
based methods. We see that leading controllers employ
the concept of adaptive constraints. We also observed

TABLE III: Circular Crossing Scenario Results, N = 8.

Simulation Steps to Target Number of Collisions Number of Timeouts
Controller Name Q1 | Median | Mean | Q2

ED-MPC 312.5 | 703.0 | 671.6 | 934.0 1.0 | 2.0 | 1.62 | 2.0 0.0 | 0.0 | 0.01 | 0.0
ED-MPC-EDC 593.0 | 780.0 | 940.9 | 1275.0 0.0 | 1.0 | 1.33 | 2.0 0.0 | 0.0 | 0.35 | 1.0
ED-MPC-MDC 612.3 | 802.0 | 819.6 | 1002.8 0.0 | 2.0 | 2.71 | 4.0 0.0 | 0.0 | 0.04 | 0.0
MD-MPC-MDC 318.0 | 483.0 | 575.8 | 791.0 1.0 | 2.0 | 3.11 | 5.0 0.0 | 0.0 | 0.00 | 0.0
MD-MPC-EDC 549.0 | 730.5 | 865.5 | 1189.8 0.0 | 1.0 | 1.23 | 2.0 0.0 | 0.0 | 0.28 | 1.0
ED-MPC-AEDC 384.0 | 780.0 | 760.9 | 1022.0 0.0 | 1.0 | 0.96 | 2.0 0.0 | 0.0 | 0.03 | 0.0
MD-MPC-AEDC 315.3 | 411.5 | 496.3 | 562.8 0.0 | 0.0 | 0.83 | 2.0 0.0 | 0.0 | 0.00 | 0.0
MPC-AEDC 296.0 | 406.0 | 483.0 | 538.0 0.0 | 0.0 | 0.87 | 2.0 0.0 | 0.0 | 0.00 | 0.0
MPC-AMDC 260.3 | 329.0 | 380.5 | 430.8 1.0 | 2.0 | 2.21 | 3.0 0.0 | 0.0 | 0.00 | 0.0
MPC-ELC-2 417.0 | 582.0 | 741.9 | 989.0 0.0 | 1.0 | 1.30 | 2.0 0.0 | 0.0 | 0.05 | 0.0
MPC-ELC-3 461.0 | 560.0 | 696.4 | 703.0 0.0 | 1.0 | 1.18 | 2.0 0.8 | 1.0 | 0.75 | 1.0
MPC-AELC-2 422.5 | 549.0 | 713.2 | 989.0 0.0 | 1.0 | 1.52 | 2.0 0.0 | 0.0 | 0.09 | 0.0
MPC-AELC-3 403.3 | 576.5 | 699.0 | 824.0 0.0 | 0.0 | 1.17 | 2.0 0.0 | 1.0 | 0.56 | 1.0

that adaptive constraints in some cases make con-
trollers more stable.

2) Designing uncertainty-aware MPC components is still
a hard task. Poor performance of the methods that use
non-adaptive Mahalanobis distance based constraints
tells that approximation introduced in 14 is too coarse
approximation, and, as was discussed in II-B, intro-
ducing more precise approximations can be a tricky
task. On the other hand, chance constraints require
tuning to find trade-off between safety and agility.
Still, both chance constraints and methods employing
Mahalanobis distance based cost showed their potential
in making the system safer.

V. CONCLUSION

In this work, we studied several approaches for design-
ing socially-aware MPC in both uncertainty-unaware and
uncertainty-aware settings. We provided their comprehensive
evaluation which includes the development of the simulation
environment, design of the social scenarios, collection of
the statistics on controllers’ performance and analysis of
those results. We derive several conclusions which may
help developers and researchers to decide when embedding
uncertainty-awareness may work efficiently and when sim-
pler uncertainty-unaware controllers may provide the same or
even better performance. Further directions for our study is
to explore uncertainty-unaware and uncertainty-aware MPC
implementations with numerical and sampling-based solvers
and conducting experiments on the real robotic platform.
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Fig. 2: Statistical results for the Circular Crossing Scenario.

Fig. 3: Statistical results for the Random Crossing Scenario.

Fig. 4: Statistical results for the Parallel Crossing Scenario.
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Delta filter – robust visual-inertial pose estimation in real-time:
A multi-trajectory filter on a spherical mobile mapping system∗

Fabian Arzberger1, Fabian Wiecha1, Jasper Zevering1, Julian Rothe2,
Dorit Borrmann3, Sergio Montenegro2, and Andreas Nüchter1

Abstract— Many state-of-the-art mobile mapping systems
accomplish reliable and robust pose estimation utilizing combi-
nations of inertial measurement units (IMUs), global navigation
satellite systems (GNSS), visual-inertial- or LiDAR-inertial
odometry (VIO/LIO). However, on a spherical mobile mapping
system the underlying inherent rolling motion introduces high
angular velocities, thus the quality of pose estimates, images,
and laser-scans, degrade. In this work we propose a pose filter
design that is able to do real-time sensor fusion between two
unreliable trajectories into one, more reliable trajectory. It
is a simple yet effective filter design that does not require
the user to estimate the uncertainty of the sensors. The
approach is not limited to spherical robots and theoretically
is also suitable for sensor fusion of an arbitrary number of
estimators. This work compares this filter against two pose
estimation methods on our spherical system: (1) An approach
that is based solely on IMU measurements, and (2) stereo-VIO
with an Intel® RealSense™ tracking camera. The proposed
“Delta” filter takes as input (1), (2), and a motion model. Our
implementation gets rid of the drift in (1) and (2), estimates
the scale of the trajectory, and deals with slow and fast motion
as well as driving curves. Our source code can be found on
github [1].

I. INTRODUCTION

Spherical mobile mapping systems are just comming of
age, as current research in the robotics community shows:
The majority of research dealing with spherical systems is
about locomotion mechanisms, e.g. [2]–[7]. Using spherical
robots for mobile mapping (see Figure 1) is a rather novel
field. To the best of our knowledge, Borrmann et al. [8] first
used a 2D laser-scanner mounted on a unicycle’s wheel axis,
to generate maps via offline- simultaneous localization and
mapping (SLAM). In a follow-up study from our own lab [9]
we used the same laser-scanner inside a spherical robot
with a protective outer plastic shell. The robot is capable
of self-initiated motion via flywheels utilizing an IBCOAM
(impulse by conservation of angular momentum) approach.
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Fig. 1: (Left:) Labotary setup with the spherical mobile
mapping system. (Right:) Resulting point cloud when ap-
plying the estimated trajectory of the proposed Delta-
filter to LiDAR data. A high-resolution video where
the filter runs onboard in real-time is available at
https://youtu.be/2yu1RHtTesc.

The idea of using spherical robots for mapping was explored
in more depth by the European Space Agency (ESA) in
2021 during a concurrent design facility (CDF) study. This
CDF study considers the general concept of a spherical robot
for environment mapping and exploring lunar caves, but
also terrestrial vents, to be feasible [10], [11]. Advantages
of using spherical robots are a shell that protects internal
sensors and a versatile locomotion mechanism that inherently
results in sensor rotation leading to optimal coverage of the
environment. During SLAM, large and aggressive rotations
are the least favorable motions that a mobile mapping system
could experience. This is because for any falsely estimated
translation, the errors in the resulting environment grow
linearly, whereas for rotation these errors grow exponen-
tially with increasing distance. While working with spherical
robots, non-centered rotation is the main movement of the
internal sensors, which proposes a huge challenge to state
of the art SLAM algorithms. In previous work, we proposed
initial offline-SLAM solutions for simplified sub-problems,
i.e., rotation while descending [12], and rolling on flat
surfaces [13]. However, in this work we address only the
localization of the system and do not perform offline-SLAM,
by introducing a pose estimation filter. Our implementation
fuses information from three IMUs and a stereo-tracking
camera onboard in real-time. The contributions of this work
are as follows:

• A robust yet simple 6-DoF multi-trajectory filter, de-
signed for but not limited to visual-inertial sensor
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fusion. The implementation on our spherical robot
requires only one hyperparameter: the radius of the
sphere.

• An evaluation of our spherical mobile mapping systems
accuracy based not only on ground truth point-clouds,
but also on ground truth trajectories, which is stated as
an open problem in [13].

The paper is structured as follows: In the next section,
we provide an overview of state of the art 6-DoF pose
filters, and outline the most similar approaches. Then, we
introduce the “Delta”-filter in a general fashion and show
an example implementation on a spherical mobile mapping
system. Finally, we introduce our accuracy measures and
experiments and show that the filter is able to deal with slow
and fast motion as well as driving curves.

II. STATE-OF-THE-ART

Many onboard multi-sensor pose estimation approaches
exist in the community. The majority of which being
implemented and developed towards autonomous driving
cars [14], [15], and unmanned aerial vehicles (UAV) [16],
[17]. Soloviev et al. [18] give a broad outline on the sensor
types used for navigation: They define a self-contained
inertial navigation system (INS) as the primary sensor, as it
is available on any platform. Further, the authors consider the
following secondary sensors which are qualified for fusion
with the INS solution: Global Navigation Satellite System
(GNSS) based (e.g. GPS), feature based (e.g. cameras or
LiDAR), beacon based (e.g. using specialized navigation
signals), or based on signals of opportunity (SoOP) (e.g.
radio-frequency signals). In this work we will focus on
visual-inertial navigation systems (VINS) and later propose a
filter for our spherical system. Santoso et al. [19] categorize
popular filters in the robotics community: (1) The Kalman
Filter (KF) [20] has been designed to estimate the most
likely system state under Gaussian noise by minimizing the
covariances of the estimation error. It has since been rein-
vented and extended serval times, leading to variants such as
the Unscented Kalman Filter (UKF) [21], Extended Kalman
Filter (EKF) [22], or Multistate Constrained Kalman Filter
(MSCKF) [23], just to name a few. KF-based approaches
are by far the most popular state estimators among the
robotics community. Example implementations on different
systems include [17], [24]–[28]. (2) The H∞ filter approach
originates from control theory where it is used as an optimal
robust controller. Instead of minimizing the covariance of
the estimation error, the H∞ filter minimizes the worst-
case estimation error, which leads to better performance if
modelling uncertanties are present [29]. (3) Particle filters
(PF), or Monte-Carlo Methods, are known for being applied
in many stochastic estimation problems [30]. By now, it is
well-known that PF outperforms KF in nonlinear systems
underlying non-Gaussian noise [31]. Its biggest drawback
is the computational load required for processing many
particles representing a single state. (4) Rao-Blackwellized
Particle filters (RBPF) combine the advantages of PF and
KF while getting rid of their major issues [32]. Therefore, if

the system state model contains linear parts with Gaussian
noise, these components are seperated and processed using
KFs, while nonlinear parts with non-Gaussian noise are dealt
with PFs. And finally, in recent years we have noticed
the use of (5) graph optimization based methods such as
GOMSF [33] and VIRAL-Fusion [34], where the system
states are represented and optimized in a pose-graph.

The above mentioned examples solely treat filters im-
plemented on ground vehicles or UAV. Yet other examples
exist that implement multi-sensor pose estimation on more
challenging systems. Kim et al. [35] fuse data from four sens-
ing modalities on an unmanned underwater vehicle (UUV)
using an approach using covariance intersection based on
nonlinear optimization. They consider measurements taken
via acoustic ultra-short baseline (USBL), Differential GPS
(DGPS), Doppler Velocity Logs (DVL), and an INS. Fang
et al. [36] use three different sensors for pose estimation on
wearable augmented reality (WAR): a monocular camera, a
depth sensor, and an INS. They use a KF-based approach in
a sliding window fashion. To our knowledge there exists only
one onboard pose estimation filter for spherical robots [37].
This approach [37] comes from our own lab and uses only
data from inertial measurement units (IMU). The basic idea
is to combine the well known IMU orientation filters: the
Madgwick filter [38] and Complementary filter [39]. As
for translation, the filter performs dead-reckoning using the
motion model of a rolling sphere and adding constraints for
slipping and sliding effects. Furthermore, the output of the
filter in [37] is being utilized as input for the filter proposed
in this paper. Lastly, we want to mention another filter that
is much simpler than any of the approaches stated above,
yet surprisingly effective: Gyrodometry [40]. This filter has
been implemented to combine data from wheel encoders
(Odometry) with data from a gyroscope by considering not
the measured state, but instead the change of state. Therefore,
the filter considers the similarity of the measurements to
each other to eliminate outliers and update the current state
accordingly. The proposed Delta-filter in this paper is similar
in these two aspects (change of state and similarity of
measurements), but extends the idea to an arbitrary number
of estimators in 6-DoF and adds a motion model.

III. SENSOR FUSION WITH 6-DOF DELTA-FILTER

In this section we propose a new pose filter design: the
“Delta” filter. Its purpose is to receive 6-DoF trajectory
estimates from multiple sources, which are known to be
unreliable, and filter them in a probabilistic way. We consider
a trajectory “unreliable” if it accumulates drift or makes
sudden jumps - which are common effects in IMU- and VIO-
based estimators. The filtered trajectory does not use any
information from future measurements and is computed in
real-time. However, similar to a Kalman filter, the Delta-filter
requires a motion model, which is also considered unreliable.
In our implementation we filter only two trajectory estimates
with a given motion model, yet the Delta-filter is theoretically
suitable for an arbitrary number of estimators.
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Fig. 2: Timelines showing two sensors publishing pose data
at different rates. The sensor having the slower rate is
defined as the “measurement”, the other trajectories Xk get
interpolated at measurement time tq .

A. Proposed filter design

Suppose we have multiple 6-DoF pose estimators
X = [R,p]

τ ∈ SE(3), where R is a 3×3 rotation matrix
and p is a vector in R3. The pose of the k-th estimator at
time t is denoted by Xk(t) = [Rk(t),pk(t)]

τ
: R → SE(3).

Note that all poses from all estimators must first be transfered
in a shared global coordinate frame. As the poses arrive at
different time stamps, it is necessary to interpolate between
measurements to capture all estimates at the same point
in time. Thus, the Delta-filter computes an estimate at the
rate of the slowest estimator, denoted as X0 , yielding
a query time tq. We call the resulting pose X0(tq) the
“measurement”. All other estimators Xk are queried at time
tq , by interpolating between two measurements at given
timestamps tq±1, as shown in Figure 2. Note that rotation
matrices and unit quaternions are isomorphic, thus we use
qk(t) and Rk(t) interchangeably as they represent the same
elements in SO(3). Then, the interpolation is constructed
using quaternion slerp and linear vector interpolation as
described by Equations (1) - (5):

Xk(tq) = [Rk(tq),pk(tq)]
τ
, (1)

t̂ =
tq − tq+1

tq−1 − tq+1
∈ [0; 1] , (2)

Ω = cos−1 (qk(tq−1) · qk(tq+1)) , (3)

Rk(tq) = Slerp
(
qk(tq−1), qk(tq+1), t̂

)
(4)

=
sin((1− t̂)Ω)

sin(Ω)
· qk(tq−1) +

sin(t̂Ω)

sin(Ω)
· qk(tq+1),

pk(tq) = (1− t̂) · pk(tq−1) + t̂ · pk(tq+1) (5)

The idea of the Delta-filter is to track the changes between
given timestamps t1 and t2 (also known as “deltas”) of the
measurements and interpolations

∆X =
[
R−1(t2) ·R(t1) , p(t2)− p(t1)

]τ
(6)

and estimate a new delta that is more meaningful. That is
to say that the Delta-filter estimates the most likely pose
change between given timestamps. Therefore, the filter first
estimates a model delta

∆Xm = [∆Rm,∆pm]
τ (7)

= f (∆X0 , {∆Xk : k ∈ N})

where f denotes the motion model that estimates the true
motion given the measured and interpolated deltas, ∆X0

and ∆Xk. In a later section we will give an example for the
motion model f when implementing the filter on a spherical
robot.

1) Measurement, interpolation, and model: The measure-
ment, interpolation, and model deltas ∆X0, ∆Xk, and
∆Xm respectiveley, are all considered unreliable. They are
used to estimate the filtered pose Xe(tj) by iterativeley
applying an estimated filtered delta ∆Xe that happened
between tj−1 and tj :

Xe(tj) = ∆Xe ·Xe(tj−1) (8)
= [∆Re ·Re(tj−1),∆pe + pe(tj−1)]

τ
.

We separate the rotation and translation parts by assuming
that the measured and interpolated orientations are suffi-
ciently reliable estimates, i.e., they do not drift or jump
during a short time period. This assumption is valid for most
inertial- and visual-tracking systems. To obtain the estimated
filtered rotation delta ∆Re, we compute

∆Re = Slerp

(
∆q0,∆qk,

1

2

)
(9)

Note that for more than two estimators, the Slerp in Equa-
tion (9) must be replaced with a different quaternion average,
e.g. [41]. Furthermore, we assume that the estimated transla-
tion deltas ∆p0, ∆pk, and ∆pm are not sufficiently reliable
to just average them, as inertial-tracking tends to drift and
visual-tracking tends to jump.

2) Probabilistic weighted geometric mean: Therefore, we
use a probabilistic approach that averages the translation
direction and then scales it.

∆pe =
d

|∑i ∆pi|
·
∑

i

∆pi (10)

where ∆pi refers to the measurement, interpolation, and
model deltas. An estimate of the true scale of the translated
distance d is given by a probabilistically weighted geometric
mean:

d =

(∏

ωi

|∆pi|ωi

)(∑i ωi)
−1

(11)

We calculate weights ωi for each delta that correspond to
the similarity of the deltas to their geometric mean, thus
outliers get a damped weight while similar values get a
higher weighting:

|p̂| =
(

n∏

i=1

|∆pi|
)n−1

, (12)

s =

√√√√ 1

n− 1

n∑

i=0

(|∆pi| − |p̂|)2 , (13)

wi = 1− s−1 · (|∆pi| − |p̂|) (14)
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Fig. 3: (Left:) Spherical mobile mapping system without its
protecting shell. (Right:) CAD model of the spherical system
with sensor frames.

B. Implementation on a spherical system

The implementation on our spherical robot uses two
estimators, the IMU operating at 125 Hz defines the mea-
surement X0, and the camera operating at 200 Hz defines the
interpolation Xk. For the motion model f of the spherical
system with known radius r = 0.145 m, we assume that
rotation leads to translation, thus we calculate the estimated
model delta using the arc length of rotation:

f(∆X0,∆Xk) =

[
∆Re, r · ∠ (∆Re) ·

∆p0 +∆pk

|∆p0 +∆pk|

]τ
,

(15)
where ∠ (·) denotes the angle around the axis described by
the rotation matrix. Note that we just defined the model
rotation ∆Rm from Equation (8) to be equal to ∆Re from
Equation (9), as the orientation estimation is considered
sufficiently reliable.

The simplicity of the filter design allows for the introduc-
tion of simple but effective design choices. As an example
we notice that our IMUs tends to drift without the use of
a magnetometer, especially in the yaw-axis, whereas the
tracking camera does not. Due to the background of our
spherical system, we do not want to use the magnetometers
by design. Thus, we must rely more on the camera esti-
mations for the yaw angle, which is why we exchange the
estimation of the rotation delta in Equation (9). Instead of
only using Slerp, which is more universal, we first use Slerp
and then replace the yaw-part of the resulting delta with the
interpolated camera yaw delta. Hence, the change in yaw is
only estimated via the camera.

IV. EXPERIMENTS AND EVALUATION

Qualitative results are presented in Figure 4, i.e., the re-
sulting point clouds when applying the trajectory estimates of
the different estimators. The IMU-based approach (a) suffers
from drift in the yaw axis and overestimates the scale of
the trajectory. The visual-inertial (b) tracking approach tends
to jump whenever the camera looses track, which happens
quite often given the unfavorable type of sensor motion. Our
proposed Delta-filter (c) combines both trajectories in real-
time at 125Hz on a Raspberry Pi 4, gets rid of the drift and
jumps, and estimates the scale of the trajectory better. The
following sections quantify the results using ground truth
trajectories and maps.

A. Error metrics

To quantify the quality of pose estimation, we use two
principal approaches: On the one hand, we measure ground
truth trajectories with an Optitrack system using IR reflec-
tors. On the other hand, we also compare the resulting
point clouds against ground truth measurements in larger
environments, when Optitrack is no longer available. We
denote the ground truth trajectory Xref = [Rref ,pref ]

τ , and
the other estimated trajectories Xest = [Rest,pest]

τ . For
each timestamp in the ground truth trajectory, we sample
the closest pose in time from the estimated trajectory for
correspondence. Note that all the trajectories must be aligned
with the ground truth trajectory. Therefore we align the
origins of the trajectories first, as we know that all trajectories
started from the same point. Afterwards we rotate around
the shared origin using a least-squares alignment according
to Umeyama [43]. Note that we only use the estimated
rotation of the Umeyama method, since we already aligned
the origins. From this point, we use Grupps [44] software for
trajectory evaluation. The resulting point clouds are aligned
to ground truth using the well-known Iterative Closest Points
(ICP) algorithm. We use 3DTK [45] for the processing of the
point clouds.

1) Absolute position error: The absolute position error
(APE) represents the error of the translation estimation and
is given by

APEi = |pest,i − pref,i| . (16)

2) Relative pose error: The relative pose error (RPE)
represents the error of the orientation estimation and is given
by

RPEi =

∣∣∣∣∠
((

R−1
ref,iRref,i−1

)−1 (
R−1

est,iRest,i−1

))∣∣∣∣ .
(17)

3) Point cloud error: The point cloud error represents
the root of the mean squared point-to-point errors (RMSE).
Suppose, after matching with ICP, there are N correspond-
ing model- and data-points in the same coordinate frame,
denoted mi,di ∈ R3 respectiveley. Then, the root mean
squared error is given by

RMSE =

√√√√ 1

N

N∑

i=0

|mi − di|2 (18)

B. Experiments

The experiments consist of three types of motion: rolling
a straight line slowly, fast, and driving curves at moderate
speed. In the first two experiments, an OptiTrack system is
available to capture ground truth trajectories, such that we
are able to use Equations (17) and (16). However, in the last
experiment (driving curves), the environment and trajectory
is larger, making the OptiTrack system unavailable. In this
experiment, we use a Riegl VZ-400 terrestrial laser-scanner
(TLS) with an angular resolution of 0.04◦ and accuracy of
5mm to provide accurate ground truth point clouds. As our
system is equipped with a laser-scanner (see Figure 3), we
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(a) Dead-reckoning IMU-only based pose estimation due to Zevering et al. [42]

(b) Visual-inertial tracking using an Intel RealSense T265 stereo-camera

(c) The proposed Delta-filter using (a), (b), and a motion model

(d) Ground truth point cloud available from a RIEGL VZ-400 TLS

Fig. 4: Resulting point clouds when using three different estimators (a), (b), and (c) are orthographically visualized. A
ground truth point cloud is shown in (d). Images in one column were shot from the same point of view. The colors in the
point clouds denotes height. The left column shows sliced views from the side, wheras the right column shows sliced views
from the birdseye perspective.

compare the resulting point cloud to the ground truth map
using Equation (18). Both setups are shown in Figure 5.

1) Fast motion: In this experiment, the sphere traversed
a distance of approx. 4m in about 10 s. Figure 6 shows the
APE (16) of all estimators over time. The T265 suffers from
the highest error due to tracking loss, which forces it to
rely solely on error prone double integration of acceleration
measurements. The IMU-based approach show a consider-
able increase of error due to the accumulated drift. The
error of the proposed Delta-filter are orders of magnitude
smaller compared to the IMUs and T265. Figure 7 shows
the comparison of RPE (17) over time. Note that the Savgol-
filter [46] is applied to the error signals. This is because the

ground truth orientations from the OptiTrack system contain
many outliers due to mirroring of the IR-reflectors on the
spherical shell. The Savgol-filter removes the effect of these
outliers but preserves the signal tendency. The RPE of all
estimators do not differ particularly from each other, which
is also evident from the error metrics in Table II. In fact,
the RMSE of the RPE of the Delta-filter is between the
INS- and T265-solution, which makes sense considering the
interpolation in Equation (9).

2) Slow motion: In this experiment, the sphere traversed
a distance of approx. 4m in about 45 s. Figure 8 shows the
comparison of APE over time. The Delta-filter compensates
for the linear accumulation of error of the IMU and the
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TABLE I: Comparison of the estimated translation of the trajectory produced by the Delta-filter with its two source estimators,
based on several statistical metrics. Each column compares three values where lower is better.

Error metrics to ground truth trajectories for fast and slow motion with respect to translation

Estimator RMSE [m] Mean [m] Std. [m] Max. [m]
Slow Fast Slow Fast Slow Fast Slow Fast

Dead-reckoning INS 1.713 1.736 1.447 1.291 0.917 1.160 2.882 3.001
Intel T265 Stereo-VIO 4.486 7.441 4.012 5.290 2.008 5.234 5.848 13.549
Proposed Delta-filter 0.114 0.248 0.103 0.193 0.049 0.165 0.189 0.428

TABLE II: Comparison of the estimated rotation of the trajectory produced by the Delta-filter with its two source estimators,
based on several statistical metrics. Each column compares three values where lower is better.

Error metrics to ground truth trajectories for fast and slow motion with respect to rotation

Estimator RMSE [deg] Mean [deg] Std. [deg] Max. [deg]
Slow Fast Slow Fast Slow Fast Slow Fast

Dead-reckoning INS 1.389 4.318 1.281 3.270 0.537 2.819 2.653 8.883
Intel T265 Stereo-VIO 1.374 4.213 1.264 3.190 0.541 2.753 2.701 8.852
Proposed Delta-filter 1.384 4.305 1.273 3.248 0.543 2.825 2.752 9.199

Fig. 5: (Left:) Laboratory test setup in a flycage equipped
with an Optitrack system. The sphere has IR reflectors
attached to its shell, which are detected by the cameras
(red circles). (Right:) Laboratory test setup in the Computer
Science building. A RIEGL VZ-400 TLS captures a precise
ground truth point cloud for comparison with the spherical
mobile mapping system. In both images, motion of the sphere
is initiated manually by hand.
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Fig. 6: The absolute position error of all estimators during
fast motion over time.

sudden jump of the T265, resulting in a lower overall
translation error. Table I confirms this observation. Figure 9
presents the comparison of RPE over time. As mentioned
above, the Savgol-filter is applied on the error signals. The
orientation errors of all estimators are similar to each other,
yet overall smaller compared to fast motion.

3) Curves: Figure 10 shows the result of the point cloud
analysis. The error to ground truth is visualized in a point-
to-point distance distribution histogram. Note that the large
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Fig. 7: The relative pose error of all estimators during fast
motion over time. The Savgol-filter is applied with a window
size of 51 and a polynomial degree of 3 to remove the effect
of outliers. In the background the noisy pre-filtered data is
shown with low opacity.
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Fig. 8: The absolute position error of all estimators during
slow motion over time.

errors at the pillars are caused by global filter drift. On
the other hand, the errors at the ceiling of the upper floor
are rather caused by missing points in the ground truth.
These points, however, are so few that they are only barely
visible in the histogram. The mean point-to-point error from
Equation (18), which is our accuracy estimate for mapping,
is 18.6 cm.
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size of 51 and a polynomial degree of 3 to remove the effect
of outliers. In the background the noisy pre-filtered errors
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histogram showing a distribution of point-to-point distances.
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color. The red dashed line in the histogram indicates the
mean point-to-point error, which is 18.6 cm

.

C. Discussion

The evaluation shows that the Delta-filter significantly
improves the pose estimation accuracy, reduces drift, and
eliminates jumps. However, despite reducing the drift, all
experiments show that the filter still suffers from global
drift regarding translation. Furthermore, in the resulting
point clouds, the walls appear to be thicker than in the
ground truth point cloud, which comes down to two factors:
First, the Livox Mid-100 used in the experiment has higher
measurement noise, especially when the laser goes through
the plastic shell. And second, the extrinsic calibration of
the sensors in the spherical system is rather poor, as all the
sensors assume to sit inside the center of the sphere.

V. CONCLUSIONS

In this paper we addressed the problem of precise, real-
time, and onboard localization in 6-DoF for spherical mobile
mapping systems. Usually on these systems, the large angular
velocities and constant aggressive dynamics when rolling
makes state-of-the-art approaches, e.g. INS- or VIO-based
solutions, more difficult. We therefore proposed the simple
yet effective Delta-filter, which is able to do real-time sensor
fusion of an INS- with a VIO-based solution. The filter needs
a motion model defined by the user, greatly decreases the
INS drift, and gets rid of the jumps caused by the VIO. We
showed that the filter is reliable in slow and fast motion,
as well as driving curves. Furthermore, we estimated the
mapping accuracy of the spherical mobile mapping system
to be 18.6 cm without the use of offline-SLAM, which is
considered to be an improvement to our previous work.
Having such a trajectory estimate brings real-time, highly
precise laser-based SLAM for spherical robots closer to
reality in the near future. However, needlessly to say, a lot of
work remains to be done. In the future, we need to address
a proper extrinsic calibration between all sensors to further
increase the accuracy. We will also incorporate the LiDAR
measurements into the localization by building a real-time
onboard laser-based SLAM algorithm designed for spherical
systems. This will also include the extension of the motion
model using environment data to account for slopes, uneven
terrain, or free falling for a short period of time.

REFERENCES

[1] F. Arzberger, “6-DoF Delta pose filter for sensor fusion.”
https://github.com/fallow24/delta_pose_filter,
2023.

[2] R. Armour, K. Paskins, A. Bowyer, J. Vincent, and W. Megill,
“Jumping robots: a biomimetic solution to locomotion across rough
terrain,” Bioinspiration & biomimetics, vol. 2, no. 3, p. S65, 2007.

[3] K. W. Wait, P. J. Jackson, and L. S. Smoot, “Self locomotion of a
spherical rolling robot using a novel deformable pneumatic method,”
in 2010 IEEE International Conference on Robotics and Automation,
pp. 3757–3762, IEEE, 2010.

[4] R. Mukherjee, “Spherical mobile robot,” 2001. US Patent 6,289,263.
[5] R. Chase and A. Pandya, “A review of active mechanical driving

principles of spherical robots,” Robotics, vol. 1, no. 1, pp. 3–23, 2012.
[6] D. Liu, H. Sun, Q. Jia, and L. Wang, “Motion control of a spherical

mobile robot by feedback linearization,” in 2008 7th World Congress
on Intelligent Control and Automation, pp. 965–970, 2008.

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

206



[7] J. Zevering, K. Braun, M. Hesse, K. Mathewos, D. Borrmann, A. ,
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Abstract— Visual navigation in unstructured environments is
one of the essential functions of autonomous mobile robots.
Most existing navigation methods are based on extracting
traversable regions, and the visibility of the traversable region
is crucial. However, in situations like plant-rich environments,
such visibility is not guaranteed. A possible option is to directly
infer the moving direction from images using deep learning
techniques. Although this approach is promising because of
a wide variety of application environments, obtaining a high-
quality, large dataset will be an issue. This paper describes
a data acquisition system that can easily collect various types
of sensor data and a dataset generation method. We evaluate
the generated datasets in several aspects. We also release the
datasets, including image-path pairs and various raw sensor
data.

I. INTRODUCTION

Autonomous navigation has been a core research topic in
robotics and transportation. One of the essential functions
is to recognize the surrounding environment and plan an
appropriate motion. Many of the existing approaches rely on
local geometrical mapping (i.e., obstacle detection and path
planning) [1], traversable region segmentation [2], [3], or
road boundary detection [4], [5], [6], [7], [8]. Furthermore,
they deal with structured or semi-structured environments.
Those methods assume that navigational features such as
traversable regions and road boundaries are visible. However,
in unstructured environments, such as the ones shown in
Fig. 1, this assumption does not hold, and navigation relying
on such features will fail. Geometry-based approaches will
fail without semantic information, too, if plant regions are
considered obstacles.

Humans can traverse the environments, as shown in the
figure, probably based on learning from experience. We can
discriminate traversable plans from untraversable ones and

(a) Greenhouse. (b) Nature trail.

Fig. 1. Plant-rich environment examples.

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

directly choose feasible paths from a view. This paper deals
with the latter: end-to-end path estimation from an image.
Generating a dataset is crucial to adopt this strategy. Manual
annotation is tedious and time-consuming, so we develop a
system for quickly collecting data and automatically gen-
erating a dataset. We extend our previous work on dataset
generation [9] so that we can collect data in a more variety
of environments. We also evaluate the dataset with more
in-deep criteria and with autonomous navigation in several
environments.

The rest of the paper is organized as follows. Sec. II
surveys related papers. Sec. III explains our path estimation
and robot control approach. Sec. IV details the data collection
system and the dataset generation method. Sec. V shows
evaluation experiments. Sec. VI concludes the paper and
discusses future work.

II. RELATED WORK

A. Datasets for autonomous driving

With the advancement of autonomous driving and deep
learning, there have been many datasets for traffic scene
recognition, including Cityscapes [10], KITTI [11], and
nuScenes [12]. We can also use traffic scene simulators such
as CARLA [13] for simultaneously generating sensor data
and vehicle control commands. Such datasets cannot directly
be applied to unstructured and specialized scenes.

B. Datasets for unstructured environments

There are several datasets for navigation in unstructured
environments. Wigness et al. [14] made a dataset of RGB
and semantic segmentation images. Jiang et al. [15] used
various sensors such as LiDARs and stereo cameras for
constructing a dataset. Valada et al. [16] made a dataset in
forest environments using multispectral cameras. Although
these datasets include semantic segmentation images and
are helpful for traversable region detection-based navigation,
we cannot directly apply them to situations with frequent
occlusions of traversable regions.

C. Automatic dataset generation

Meyer et al. [17] used the vehicle trajectory for automatic
annotation. Onozuka et al. [18] took a similar approach
to choose preferred traverse regions for a mobile robot.
Wellhausen et al. [19] automatically selected traversable
regions from the footpoints of a quadruped robot. Giusti et al.
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Fig. 2. Moving direction estimation network.

[20] determine a label of three directions using images taken
from three wearable cameras. Sanchez et al. [21] constructed
a natural simulated environment in the Gazebo simulator and
used it for automatic annotation. Most of the existing works
deal with the annotation of semantic labels. Our proposed
approach enables the annotation of estimated path direction
applicable to the scene where traversable regions may be
heavily occluded.

III. END-TO-END PATH DIRECTION ESTIMATION AND
ROBOT CONTROL

This section briefly explains our approach to path direction
estimation and robot control [9]. We use a CNN model shown
in Fig. 2. The input is a 240× 128 RGB image, and the
output is a pair of the start and end points representing the
estimated path direction. The vertical positions of the points
are currently set at the bottom of the image and 20% of the
image height from the bottom, respectively. These positions
should be determined considering several factors, such as the
camera height and the field of view.

The condition of the training is as follows: the batch size
is 16; the number of epochs is 100; the initial training rate is
10−3 and decayed by the exponential learning rate scheduling
[22]; Adam [23] is used as the optimization method.

Once the path is predicted in the image, it is mapped onto
the ground plane using the camera’s extrinsic parameters.
A simple control law [9] is then applied to determine the
translational and the rotational velocity.

IV. DATASET GENERATION

A. Data collection system

We use an RGB-D camera with IMU for collecting data for
our purpose (i.e., image-based navigation). We additionally
use a GNSS sensor and a 3D LiDAR for possible future
comparison with other methods. Table I lists the sensors
used. We collected data in two ways (see Fig. 3). One way
uses a mobile robot for relatively planar terrains such as
outdoor roads or greenhouses, and the other is human-carried
for rough terrain such as nature trails.

In this research, we collected data for three different
locations: a university greenhouse (called greenhouse), a
university park (park), and a nearby natural trail (trail).
Example scenes of the locations are shown in Fig. 7. Table
IV-A summarizes the collected data.

TABLE I
SENSORS OF THE DATA COLLECTION SYSTEM.

sensor product manufacturer

RGB-D with IMU Realsense D435i Intel
GNSS ZED-F9P u-blox

3D LiDAR VLP-16 Velodyne

Fig. 3. Data collection system used in two ways.

B. Dataset generation method

Fig. 4 shows an outline of dataset generation. We apply
RTAB-Map [24], a visual SLAM (vSLAM) method, to a
stream of RGB-D and IMU data to estimate the camera’s
trajectory. Fig. 5 is an example SLAM result, showing a
3D map and the camera trajectory. The calculated camera
locations are mapped onto images such that a future camera
motion (i.e., a sequence of camera locations in the subse-
quent frames) can be viewed on each image. These mapped
points are used for annotating the motion direction in each
image.

TABLE II
COLLECTED DATA.

Location Data size [GB] Time of the day Duration [min]

greenhouse 28.3 daytime & 27
late afternoon

park 133.5 daytime 18
trail 610.6 daytime 70

Fig. 4. Outline of dataset generation.
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Fig. 5. Example vSLAM result.

Fig. 6. Path label calculation.

Mapping from a point in the scene to the corresponding
image point is given by:

s(u v 1)t = Kc
rT−1r

wT−1 (Xw Yw Zw 1)t ,

where (u,v) is an image point, (Xw,Yw,Zw) is a scene point,
K is the intrinsic parameter of the camera, c

rT and w
r T are

transformation from the robot coordinates to the camera
coordinates and that from the robot coordinates to the world
coordinates, respectively. K and c

r are calibrated in advance.
r
wT is obtained by the vSLAM.

We then approximate the projected trajectory by a line
segment, which is then used as a path label. Fig. 6 shows
the definition of the line segment’s start and end point.
As described above, the vertical positions of the points are
set at the bottom of the image and 20% of the image
height from the bottom, respectively. The x coordinate of
the points is calculated as the intersections between the bi-
linear approximated trajectory and the horizontal lines at
the two vertical positions. Fig. 7 shows several examples
of data collection, trajectory estimation and projection, and
path label annotation for the three experimental locations
(greenhouse, park, and trail).

We adopt image cropping as data augmentation to make
the model more robust to deviation from the ideal paths. The
images are cropped with a window with the size of 80% of
the original image, and the window is shifted horizontally
and vertically by a length of 10% of the width and the height,
respectively. Table III shows the numbers of training and test
images for each location after augmentation. In addition, we
manually annotate all images for evaluation purposes (see
Sec. V).

Fig. 7. Examples of generated data.

TABLE III
NUMBER OF IMAGES IN THE DATASETS.

greenhouse park trail

training 4338 2734 13179
test 213 341 543

V. EXPERIMETAL EVALUATION

A. Evaluation criteria

We evaluate the generated datasets using the following
four criteria:

• The time cost of dataset generation. Table IV compares
the time for manual and automatic annotation. The time
for automatic annotation includes trajectory estimation
by vSLAM, trajectory projection onto images, and line
segment approximation. Automatic annotation can save
about two-thirds of annotation time.

• The similarity of automatic and manual annotation
results.

• Accuracy of predicted path labels using the model
trained with the automatically generated datasets.

• Autonomous navigation. We control an actual mobile
robot using the model trained in the previous item.

TABLE IV
COMPARISON OF TIME FOR ANNOTATION.

Greenhouse [min] Park [min] Trail [min]

Manual 150 90 120
Automatic 40 30 50
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Fig. 8. Differences in horizonal position of endpoints.
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(a) Greenhouse dataset.
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(b) Park dataset.
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(c) Trail dataset.

Fig. 9. Distribution of horizontal differences in the start (left) and end
(right) point for the datasets.

B. Similarity between automatic and manual annotation

In criterion 2, we calculate the differences in the horizontal
position of the start and the end point of the manual
annotation and the automatic annotation (see Fig. 8) using
the images for training.

Fig. 9 shows the distributions of differences for the three
locations. The difference is small enough in the greenhouse
dataset because the path direction is almost always clear,
even under occlusions. The difference is also small for the
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(b) Park dataset.
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(c) Trail dataset.

Fig. 10. Distribution of horizontal differences in the predicted start (left)
and end (right) point using the model with automatically genereated dataset.

park dataset because the path direction is apparent even
with occasional unclear boundaries. In the case of the trail
dataset, however, the difference is significant; possible causes
are much unclear boundaries and difficulty in recognizing
the traversable regions only from images. The automatically
generated path labels could sometimes be more accurate than
the manually-annotated ones because the former is based on
actual human traversals. In addition, non-smooth traversal
paths of humans in uneven terrains might be another cause
of significant differences.

C. Accuracy of predicted path labels

In criterion 3, we evaluate the performance of trained mod-
els. We train the model (see Fig. 2) with the automatically
annotated and manually annotated datasets. Fig. 10 shows the
accuracy of models trained with the automatically annotated
dataset. The accuracy is represented by a similar metric as
before, that is, the differences of the horizontal positions with
respect to the manual annotations of the test data.

For the greenhouse dataset, 80% of predictions provide
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(a) Greenhouse dataset.

(b) Park dataset.

(c) Trail dataset.

Fig. 11. Example prediction results by the models trained with
automaticallygen-erated datasets. White and yellow lines indicate the
manually-annotated and the predicted path segments, respectively.

accuracy within ±20%. Fig. 11(a) shows example prediction
results. This environment is regularly structured, and predic-
tion is stable. However, there are cases where the prediction
performs poorly due to an irregular path shape (bottom left
in the image) or a heavy occlusion (bottom right).

For the park dataset, 85% of predictions provide accuracy
within ±20%. Fig. 11(b) shows example prediction results.
The distribution of the start points is larger than that of
the endpoints (see Fig. 10(b)). This is probably because the
variation of the path width is large, and its effect on the
accuracy will be larger for the start point (e.g., top right in
Fig. 11(b)).

For the trail dataset, 70% of predictions provide accuracy
within ±20%. Fig. 11(c) shows example prediction results.
The results have a similar tendency with the park case but
with larger errors, as the scene is more difficult to learn.

Table V compares the datasets quantitatively. For each

TABLE V
QUANTITATIVE COMPARISON OF DATASETS.

mean error (variance)
location dataset start end

greenhouse manual -0.012 (0.134) -0.036 (0.159)
automatic 0.005 (0.134) -0.027 (0.157)

park manual -0.048 (0.098) 0.001 (0.001)
automatic -0.017 (0.123) -0.001 (0.150)

trail manual 0.047 (0.126) 0.029 (0.126)
automatic 0.080 (0.150) 0.092 (0.155)

Fig. 12. Navigation experiments in the greenhouse.

location, we trained two models, one with the automatically
generated dataset and the other with the manually annotated
dataset. The table summarizes results for all combinations
of locations and datasets. The automatic dataset generation
method is a reasonable option considering the reduced gen-
eration cost (see Table IV).

D. Autonomous navigation

We conducted online path following experiments in the
greenhouse and the park locations. Fig. 12 shows two snap-
shots during the experiments in the greenhouse; prediction in
the image and the scene are shown. We conducted five trials
of navigation on different paths between crop rows with a
length of approximately 10 [m]. The robot completed the
navigation in all the trials. When approaching the end of a
row, the accuracy of path estimation degraded as the view
from there is very different from the one in the training set.

Fig. 13 shows four snapshots during the experiments in the
park; predictions in the images are shown. Navigation was
successful on unbranched roads under fair lighting conditions
(see Fig. 13(a)). The navigation was not successful under bad
lighting conditions (see Fig. 13(b)) or in unclear boundary
cases. We could improve the performance by adding more
training data with various road shapes and lighting conditions
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(a) Successful navigation.

(b) Failed path prediction.

Fig. 13. Navigation experiments in the park.

and adopting more data augmentation methods.

VI. CONCLUSIONS AND DISCUSSION

This paper described a dataset generation method for robot
navigation in unstructured environments. Considering the
possibility of the low visibility of traversable regions, we
adopt a strategy of directly estimating the path labels from
images using a CNN-based network. We developed a data
collection system and a method of automatically generating
path labels from the estimated camera trajectory obtained by
a visual SLAM method. What we have to do is to move
the robot or walk with the system for dataset generation. We
tested our approach in three locations, with evaluations with
four criteria, including autonomous navigation experiments.
The evaluation results show the feasibility of the proposed
approach. We also release the datasets, including image-path
pairs and various raw sensor data1.

The current method deals with only unbranched roads
and cannot generate path labels for the other types, such
as branches and junctions. As the path labels are based
on the actual trajectory of the camera, the system needs
to either recognize the other types or utilize some user’s
inputs to include road type variations. The navigation system
also needs to be extended to accept operational commands.
Increasing the variety of object appearance in the dataset
is desirable for more robust navigation. This would require
getting data under various weather conditions or introducing
various data augmentation methods.
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Towards camera parameters invariant monocular depth estimation in
autonomous driving

Karlo Koledić, Ivan Marković, and Ivan Petrović1.

Abstract— Monocular depth estimation is an effective ap-
proach to environment perception due to simplicity of the sensor
setup and absence of multisensor calibration. Deep learning
has enabled accurate depth estimation from a single image by
exploiting semantic cues such as the sizes of known objects and
positions on the ground plane thereof. However, learning-based
methods frequently fail to generalize on images collected with
different vehicle-camera setups due to the induced perspective
geometry bias. In this work, we propose an approach for camera
parameters invariant depth estimation in autonomous driving
scenarios. We propose a novel joint parametrization of camera
intrinsic and extrinsic parameters specifically designed for
autonomous driving. In order to supplement the neural network
with information about the camera parameters, we fuse the
proposed parametrization and image features via the novel
module based on a self-attention mechanism. After thorough
experimentation on the effects of camera parameter variation,
we show that our approach effectively provides the neural
network with useful information, thus increasing accuracy and
generalization performance.

I. INTRODUCTION
Scene depth is a key information in many three di-

mensional reconstruction and perception tasks in robotics,
autonomous driving, and virtual reality. While fusion of
different sensor modalities increases robustness and accu-
racy, depth estimation from camera data is effective due to
the richness of information and relative simplicity of the
sensor setup. Traditionally, scene depth is estimated within
geometric Structure-from-Motion or Visual Simultaneous
Localization and Mapping frameworks. Sparse or dense cor-
respondences are established across different camera poses,
enabling triangulation and subsequent optimization. How-
ever, such systems usually calculate depth for a limited
set of sparse correspondences with robustness issues due
to challenging scenarios such as occlusions and textureless
regions. Given that, deep learning-based methods have been
increasingly used for monocular depth estimation (MDE).
Even though depth estimation from a single image is an ill-
posed problem, neural networks leverage large amount of
data in order to learn semantic and geometric cues, such as
the size of known objects or position on the ground plane
[1], and use them to infer the scene depth.

Early MDE works [2], [3] establish a standard super-
vised learning procedure to directly regress a depth map

1Authors are with University of Zagreb Faculty of Electrical Engineering
and Computing, Laboratory for Autonomous Systems and Mobile Robotics,
Zagreb, Croatia {name.surname@fer.hr}.
This research has been funded by the H2020 project AIFORS under
Grant Agreement No 952275 and supported by the European Regional
Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS).

979-8-3503-0704-7/23/$31.00 ©20212023 IEEE

within an encoder-decoder architecture, often with residual
connections. Various attempts have been made in order
to improve the results, with addition of recurrent neural
networks [4]–[6], conditional random fields [7]–[10] or ad-
versarial training [11], [12] into the architecture. Recently,
with advancements of transformers [13] in vision tasks [14],
many methods take advantage of the global receptive field
of the transformer that naturally complements locality of
the convolutions, thus consequently achieving state-of-the-
art results [15]–[17]. However, the main drawback of such
supervised methods is the necessity of ground truth data
acquisition, which is often sparse and difficult to collect.
This constrains the training data to a narrow distribution
leading to overfitting and inaccurate generalization on unseen
environments. To that end, self-supervised methods [18]–
[21] use view synthesis of nearby frames as a supervision
signal, removing the requirement of ground truth data during
training.

Even though self-supervised methods make data collection
within distinctive environments relatively straightforward,
effects of different camera extrinsic and intrinsic parameters
during test time are often ignored. As the training data
is usually collected with a single vehicle-camera setup,
networks tend to overfit due to the perspective geometry bias
in gathered data [22]. Embedding of known focal length [23],
camera intrinsics [24] or camera extrinsics [25] within neural
networks, along with usage of diverse synthetic training data,
has shown to improve generalization capabilities. Although
synthetic data has been widely used for MDE in auto-
motive scenarios [26]–[29], variation in camera parameters
has been left largely unexplored. In theory, if trained on
diverse enough real-world data containing various camera
parameters, the network could learn to estimate depth for the
camera parameters within the training set; however, we argue
that the process of data acquisition with sufficiently diverse
camera parameters in distinctive environments is infeasible,
which is why we use synthetic data in the present work.

In this paper, we propose a novel approach for camera
parameters invariant MDE for automotive driving scenarios.
We demonstrate the effects of the camera parameters varia-
tion in MDE and design a novel architecture which enhances
the generalization capabilities of the system. We test and
train our method on synthetic data, while designing the
architecture to support further work for domain adaptation
to real data. Our main contributions are as follows:
• a novel parametrization of known camera intrinsic and

extrinsic parameters as depth of the ground plane, which
has a strong semantic and geometric meaning in MDE
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Fig. 1: Illustration of the proposed architecture. Our system embeds camera parameters as depth of the ground plane and
learns depth that generalizes for various camera-car setups. CPE refers to the Camera Parameters Embedding described in
Section II, while CADE refers to the Camera Adaptive Depth Estimation described in Section III.

for autonomous driving scenarios
• a network architecture with embedded parametrization

as visualized in Fig. 1, specifically designed for general-
ization and further work in sim2real domain adaptation

• a large-scale annotated autonomous driving dataset
within the CARLA simulator [30], created due to the
unavailability of data with sufficiently diverse camera
parameters2

• thorough experimentation on the effects of parameter
variation and efficacy of the proposed approach.

II. PROPOSED CAMERA PARAMETERS EMBEDDING

Autonomous driving datasets such as the KITTI [31],
Oxford RobotCar [32] or Cityscapes [33] frequently feature
a single vehicle-camera setup. This means that correct depth
values for certain pixels are almost identical across different
images, e.g., on the ground plane. Even though convolution
is an inherently positionally equivariant operation, convolu-
tional neural networks tend to implicitly learn absolute po-
sition information from commonly used padding operations
[34]. Additionaly, MDE networks have been shown to use
the ground-plane contact point for object depth estimation
[1].

In order for MDE to be practically used in automotive
scenarios, depth estimation should be accurate for different
vehicle-camera setups. However, if camera parameters during
inference differ from the parameters used in training, depth
estimation accuracy degrades significantly. For example,
networks learn from the training data that the pixel at
a particular position in the image tends to have certain
depth value, which remains largely the same throughout the
dataset. However, if the camera parameters are changed, this
assumption breaks. Fig. 2 demonstrates the effects that cam-
era parameters variation has on depth estimation accuracy.
Changes in camera pitch, camera height, and vertical field

2Dataset is publicly available at
https://zenodo.org/record/7899804#.ZFT0oJFBzJV

of view (which also changes vertical focal length) during
inference, compared to the training setup, significantly affect
depth estimation accuracy, especially on the ground plane.
On other hand, horizontal field of view and focal length
changes do not significantly influence the estimation, as long
as the context does not change dramatically.

In this work, we target the most plausible variations in
vehicle-camera setups which can disturb depth estimation:
camera height, camera pitch and vertical focal length. In
order to learn metrically accurate depth with varying focal
lengths, knowledge of the focal length should be embedded
in the network due to inherent ambiguity between the focal
length and depth [23], [24]. Additionally, while the network
could learn the effects of camera height and pitch on the
estimated depth, if trained with sufficiently diverse data, em-
bedding of extrinsic parameters was shown to be beneficial
[25]. Given that, we choose to embed all the three parameters
in the network. To do so, for every pixel coordinate (u, v) we
calculate the depth G(u, v) at which the optical ray intersects
the ground plane via the following constraints

nTRT(α)p+ h = 0,

p = G(u, v)
[ u−cu

fu
v−cv
fv

1
]T
,

(1)

where h is the camera height, R(α) is the rotation matrix
for camera pitch α, n is the ground plane normal, and
(fu, fv), (cu, cv) represent the camera focal length and prin-
cipal point, respectively. With the assumption of ideal ground
normal n = [0,−1, 0]T , depth G(u, v) can be calculated
as a function of (α, h, fv, cv). In this work, we set the
principal point at the center of the image plane, which is a
fair assumption for most cameras. Our embedding function
is thus a mapping

(α, h, fv) 7→ G ∈ [0,M ]H×W , (2)

where M is maximum depth specific to the dataset, and
(H,W ) are dimensions of the image. In Fig. 3 we show
the visualization of our camera parameter embedding G for
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Fig. 2: Depth estimation results given common variations of the camera parameters compared to the training setup.

(a) Baseline (b) Downward pitch

(c) Smaller height (d) Larger focal length

Fig. 3: Visualization of the embedded camera parameters as
ground plane depth G.

different camera parameters. Variations of camera parame-
ters (namely camera pitch, camera height and focal length)
compared to the baseline are reflected in the embeddings,
which provide the network with useful a-priori available
information about the camera setup.

Our motivation for such a choice of camera parameters
embedding is threefold:
• depth of the ground plane is a common and unique

parametrization for camera pitch, camera height, and
focal length, i.e., the mapping in (2) is injective

• embedding of G gives the neural network useful po-
sitional information, i.e., the network is explicitly in-
formed about the expected depth for current camera
parameters at a certain pixel position, if the ground
plane is not occluded

• neural network can be forced to estimate depth as a
function of G, which leads to learning more robust
features and better generalization accuracy for unseen
camera parameters.

III. PROPOSED NETWORK ARCHITECTURE

Depth estimation networks often follow a standard
encoder-decoder architecture with residual connections be-

tween encoder and decoder layers. Encoder learns spatially
coarse features of higher dimensions, which are then con-
tinually upsampled towards original image resolution in
the decoder. Our method is designed to work with arbi-
trary encoder-decoder architecture. While recent works use
transformers for feature extraction and fusion [15]–[17],
we choose to use a ResNet18 [35] encoder and a decoder
combining convolutional and upsampling layers, thus recov-
ering the feature map F ∈ RC×H×W . Instead of directly
regressing the depth map D from F, we forward it along
with the map of embedded camera parameters G into the
Camera Adaptive Depth Estimation (CADE) module.

A. CADE module

CADE transforms image features and camera parameters
embedded as ground plane depth into the depth map, i.e., it
performs the mapping (F,G) 7→ D ∈ [0,M ]H×W . We fuse
G and F inside a novel transformer architecture visualized
in Fig. 4, as we want to exploit the global receptive field of
the attention mechanism.

Firstly, we rearrange F and G into

Z′F =



z′f1

...
z′fN


 ∈ RN×D

′
f ,Z′G =



z′g1

...
z′gN


 ∈ [0,M ]N×D

′
g ,

(3)
where N = HW

p2 , D′f = Cp2, D′g = p2, with p being patch
size. After layer normalization, these are then processed
through a linear layer with addition of learnable positional
embedding, resulting in sets of image feature tokens ZF ∈
RN×Df and ground plane depth tokens ZG ∈ RN×Dg :

ZF = Z′FWF + pF,WF ∈ RD
′
f×Df , (4)

ZG = Z′GWG + pG,WG ∈ RD
′
g×Dg . (5)

Afterwards, we proceed with calculation of query, key and
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Fig. 4: Structure of the CADE module. Ground plane depths ZG are processed through d successive transformer layers,
with image features ZF used in the calculation of attention weights.

value matrices needed for attention calculation:

Q = ZFWQ (6)
K = ZFWK (7)
V = ZGWV (8)

where WQ,WK ∈ RDf×Dh and WV ∈ RDg×Dh are
projection matrices. Attended output is determined as

A = softmax
(
QKT

√
N

)
V, (9)

which is calculated for multiple heads and then fused via
the linear layer. Notice how we calculate queries and keys
from features tokens and values from ground plane depth
tokens. This means that our attended output for particular
token is a weighted function of ground plane depth tokens,
with weights calculated as a self-attention of feature tokens.

We propagate tokens ZG through d successive trans-
former layers consisting of multihead attention (MHA) and
multilayer perceptron layers (MLP), along with residual
connections where Z1

G is initialized via (5):

ZiG = LayerNorm(ZiG), (10)

Qi = ZFW
i
Q,K

i = ZFW
i
K,V

i = ZiGWi
V, (11)

ZiG = MHA(Q,K,V) + ZiG, (12)

ZiG = LayerNorm(ZiG), (13)

Zi+1
G = MLP(ZiG) + ZiG. (14)

Notice how through all CADE layers we use feature tokens
ZF only in calculation of attention weights. Depth estimation
is thus forced to be a function of the embedded camera
parameters G, with F serving as a clue on how to properly
combine embedding G into D. CADE module is purpose-
fully appended at the end of the network, which makes F
independent of G. In such a manner, network is incentivized
to learn F that are invariant to different camera parameters.

Finally, we use Rearrange(·) : RN×Dg → RC′×H×W

and a final convolutional layer with a sigmoid activation to

Dataset Size Description

B 20000 α = −5, h = 1.5, fv = 570

Uα 10000 α ∼ U(−15, 5), h = 1.5, fv = 570

Uh 10000 h ∼ U(1, 2), α = −5, fv = 570

Ufv 10000 fv ∼ U(260, 880), α = −5, h = 1.5

Uα,h,fv 40000 (α, h, fv) ∼ U(−15, 5)× U(1, 2)× U(260, 880)
Dα,h,fv 40000 α ∈ {−15, 5, 5}, h ∈ {1, 1.5, 2},

fv ∈ {260, 570, 880}

TABLE I: Camera parameter specifications used in col-
lected datasets. B – baseline dataset, parameters are constant
throughout the dataset, Uα,Uh,Ufv – single varying param-
eter sampled from continuous uniform distribution, Uα,h,fv
– all varying parameters sampled from continuous uniform
distribution, Dα,h,fv – all varying parameters sampled from
discrete uniform distribution of 3 possible values. Values
for α, h, fv are expressed in degrees, meters and pixels
respectively.

regress depth map D ∈ [0,M ]H×W :

D = σ(Conv(Rearrange(ZdG))) ∗M. (15)

For the training loss, we follow [15] and use Scale-
Invariant loss (SI). With the logarithmic distance gi =
log(d̂i) − log(di) between ground truth depth d̂i and esti-
mated depth di at pixel location i, SI loss is:

L = α

√√√√ 1

|D|
∑

i

g2i −
λ

|D|2

(∑

i

gi

)2

, (16)

where we use λ = 0.85 and α = 10 as in [15].

IV. EXPERIMENTAL RESULTS

A. Datasets

Due to unavailability of autonomous driving data with
sufficiently diverse camera parameters, we created our own
dataset using the CARLA simulator [30]. We simulate au-
tonomous driving scenarios within urban, rural, and highway
environments across 8 different maps Town01 - Town07 and
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Method Training Testing Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

a) Baseline B B 0.046 0.482 4.541 0.108 0.959 0.987 0.995
CPE + CADE B B 0.044 0.475 4.552 0.110 0.961 0.986 0.995

b) Baseline B Uα,h,fv 0.261 2.076 7.478 0.297 0.547 0.846 0.960
Baseline Uα,h,fv Uα,h,fv 0.064 0.437 3.549 0.102 0.960 0.991 0.996

CPE + CADE Uα,h,fv Uα,h,fv 0.039 0.387 3.382 0.085 0.970 0.991 0.997
c) Baseline B Uα 0.244 1.248 5.748 0.198 0.699 0.931 0.989

Baseline Uα Uα 0.041 0.310 3.445 0.078 0.973 0.991 0.997
CPE + CADE Uα Uα 0.035 0.301 3.410 0.076 0.975 0.992 0.997

d) Baseline B Uh 0.214 1.245 6.035 0.232 0.666 0.924 0.988
Baseline Uh Uh 0.038 0.319 3.600 0.085 0.971 0.991 0.997

CPE + CADE Uh Uh 0.035 0.312 3.581 0.083 0.972 0.992 0.997
e) Baseline B Ufv 0.254 1.746 7.286 0.268 0.563 0.868 0.987

Baseline Ufv Ufv 0.040 0.351 3.722 0.088 0.972 0.990 0.997
CPE + CADE Ufv Ufv 0.035 0.353 3.647 0.084 0.972 0.991 0.997

f) Baseline Dα,h,fv Uα,h,fv 0.102 0.633 4.655 0.148 0.889 0.987 0.996
CPE + CADE Dα,h,fv Uα,h,fv 0.067 0.458 3.920 0.110 0.945 0.991 0.997

TABLE II: Results of various model and dataset configurations. Baseline refers to the standard encoder-decoder architecture,
with ResNet 18 encoder and decoder from [20], where depth D is directly regressed from image features F, while CPE +
CADE refers to addition of our contributions. Results are expressed in standard MDE metrics [20], red – lower is better,
blue – higher is better.

Town10HD that include highly detailed and realistic textures.
The maps are populated with a diverse set of traffic actors,
which are then autonomously controlled while respecting the
traffic rules.

In order to capture the training and testing data, we mount
RGB and depth cameras in a way that no part of the car
is within the field of view of the camera. Advanced RGB
camera parameters such as distortions and postprocessing
effects are adjusted to mimic the KITTI dataset [31] as
close as possible. Camera sensors are repeatedly destroyed
and reinitialized with new extrinsic and intrinsic parameters,
thus avoiding the memory difficulties which are present
with multiple camera sensors working at the same time. We
collect several datasets with different distributions of camera
parameters, as described in Table I.

B. Implementation details

As our method is adaptable for various encoder-decoder
architectures, we use a simple convolutional residual net-
work. Our encoder is a ResNet 18 network which encodes
image features at a H

32 × W
32 resolution. Decoder then succes-

sively upsamples the features in 5 stages, each consisting of
a 3x3 kernel convolution which fuses encoder features via
skip connection and an upsampling layer followed by another
convolutional layer. Finally, decoder outputs image features
F ∈ RC×H×W , where we use C = 16, H = 320,W =
1024.

For our CADE module, we choose to use a light architec-
ture in order to prevent a significant increase in computation
time and memory consumption. We use a standard patch
size p = 16, with inner embedding dimensions Dg = 1024
and Df = 4096. We calculate the MHA with 8 heads and
a head dimension Dh = 64, which is then followed by a
MLP with one hidden layer which increases the embedded
dimension by two times. In order to keep our CADE module
lightweight, we choose d = 2 for a number of transformer
layers. Finally, following the standard practice in depth

estimation [20], we estimate depth up to a maximum value
M = 80m.

We train our network with an Adam optimizer [36] with
a batch size 12. We decrease the learning rate linearly from
4 × 10−5 to 4 × 10−6. All networks are trained and tested
on a single Nvidia RTX A5000 GPU.

C. Results

We conduct a thorough experimentation on the effect of
camera parameter variation and efficacy of our approach.
In Table II we present results for various combinations of
methods and dataset configurations. In order to test the
generalization of each approach, for each dataset we create
a 90%/10% training and testing split.

First of all, in Table II a) we perform the ablative ex-
periments on the baseline dataset, where we both train and
test the networks on the data collected with a single vehicle-
camera setup. As expected, despite the increase of the model
complexity due to the addition of our contributions, usage
of CPE and CADE does not improve performance compared
to the standard encoder-decoder architecture, since ground
plane depth G fused in CADE does not supplement the
network with useful information. This is a desired behavior,
considering that the camera parameters are constant through-
out the dataset. Ground plane depth is mostly the same across
all images, thus enabling the baseline model to easily learn
the information which is otherwise supplemented with G in
our approach.

Afterwards in Table II b) we test the performance on the
dataset with varying camera parameters Uα,h,fv . Naturally,
baseline method trained on a dataset with a constant vehicle-
camera setup performs poorly since it is biased to a partic-
ular perspective geometry induced in the training data. On
the contrary, baseline method trained on Uα,h,fv performs
surprisingly well, with good generalization performance on
unseen images. This shows that, when presented with suf-
ficiently diverse perspective geometry, network can exploit
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Fig. 5: Results of MDE trained and tested on the Uα,h,fv dataset with visualization of absolute relative error. Fusion
of embedded camera parameters within CADE significantly reduces the absolute relative error compared to the baseline,
especially on the ground plane.

Method Abs Rel Sq Rel RMSE RMSE log

Early fusion 0.051 0.401 3.401 0.090

Mid fusion 0.050 0.397 3.402 0.089

Late fusion 0.061 0.412 3.622 0.102

CADE 0.039 0.387 3.382 0.085

TABLE III: Results of the ablation experiments trained
and tested on Uα,h,fv , with fusion of G into convolutional
channels at a certain point. Early fusion – fusion in the
first encoder layer, Mid fusion – fusion in skip connections
between encoder and decoder, Late fusion – fusion in last
decoder layer.

semantic cues to infer depth for varying camera parameters.
However, the accuracy of the baseline network is signif-
icantly lower compared to the proposed approach. Fusion
of embedded camera parameters within the CADE module
notably improves the results for all MDE metrics, proving
the usefulness of information encoded in ground plane depth
G, and efficacy of its fusion within the CADE module.
Figure 5 shows significant reduction in absolute relative
error compared to the baseline, especially for inconsistent
estimations on the ground plane.

In order to examine the generalization capability for each
camera parameter separately, in Table II c) d) e) we repeat the
same experiment while selectively varying only one camera
parameter throughout the dataset. Again, while the model
trained on a single vehicle-camera setup performs poorly,
baseline network can learn to generalize when presented
with diverse data in the training set. However, in contrast
to results in Table II b), fusion of camera parameters in
CADE module does not significantly improve the results.
Since only one parameter is varied, network can learn to
focus on semantic cues specific to that camera parameters,
thus effectively reducing the need for embedding of G.

In Table II f) we examine the ability of our approach to
generalize for camera parameters not present in the training
distribution. To do so, for training we use a sparse discrete
distribution with 3 possible samples for each parameter,

positioned at the tail ends and the mean of the continu-
ous uniform distribution Uα,h,fv . In such manner, network
should learn to meaningfully predict the depth for camera
parameters between those discrete samples. We show that
our approach learns to generalize more effectively than the
baseline, which means that the network successfully learns
geometric relationship between embedded camera parame-
ters G and scene depth. To that end, our approach is feasible
to be utilized with real-world data, since the collection of
data with distribution similar to Dα,h,fv is feasible. However,
increase in accuracy is not as prominent as in Table II b),
which means that the semantic cues, such as the horizon
level, when varied throughout the training dataset provide
useful information for training of camera invariant depth
estimation, even when the network is supplemented with
embedded camera parameters G.

Finally, we assess the performance of various fusion
methods for embedded camera parameters G in Table III.
Early and mid fusion are similar to [25] and [24] respectively,
but with different choice of embedded camera parameters
and embedding function. The most meaningful result is
the difference between performance of late fusion within
convolutional layers and our CADE module. Even though
the fusion happens at the same point in the network, CADE
achieves better results by taking advantage of the global
receptive field of self-attention, and by strict enforcement
of estimating depth D as a function of G.

V. CONCLUSION AND FURTHER WORK

In this paper we have presented an approach for camera in-
variant monocular depth estimation for automotive scenarios.
After detailed examination on the effects of varying camera
parameters on depth estimation performance, we designed
a novel camera parameters embedding procedure in order
to supplement the network with useful information about
the perspective geometry and to force the network to learn
depth estimation as a function of embedded parameters, thus
effectively enabling learning of camera invariant features.
The proposed embedding is fused with image features within
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a novel module that exploits the global receptive field of
the self-attention. We assess the accuracy of the proposed
approach on various datasets with different camera extrinsic
and intrinsic parameters distributions, collected within a
simulated automotive environment. We show that the em-
bedding provides useful information about the perspective
geometry and enables better generalization on unseen data.
Our method is specifically designed for further work in
domain adaptation, where we aim to achieve camera invariant
depth estimation on real-world data.
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Synthetic Data-based Detection of Zebras in Drone Imagery
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Abstract— Nowadays, there is a wide availability of datasets
that enable the training of common object detectors or human
detectors. These come in the form of labelled real-world images
and require either a significant amount of human effort,
with a high probability of errors such as missing labels, or
very constrained scenarios, e.g. VICON systems. On the other
hand, uncommon scenarios, like aerial views, animals, like
wild zebras, or difficult-to-obtain information, such as human
shapes, are hardly available. To overcome this, synthetic data
generation with realistic rendering technologies has recently
gained traction and advanced research areas such as target
tracking and human pose estimation. However, subjects such
as wild animals are still usually not well represented in such
datasets. In this work, we first show that a pre-trained YOLO
detector can not identify zebras in real images recorded from
aerial viewpoints. To solve this, we present an approach for
training an animal detector using only synthetic data. We start
by generating a novel synthetic zebra dataset using GRADE,
a state-of-the-art framework for data generation. The dataset
includes RGB, depth, skeletal joint locations, pose, shape and
instance segmentations for each subject. We use this to train a
YOLO detector from scratch. Through extensive evaluations
of our model with real-world data from i) limited datasets
available on the internet and ii) a new one collected and
manually labelled by us, we show that we can detect zebras
by using only synthetic data during training. The code, results,
trained models, and both the generated and training data are
provided as open-source at https://eliabntt.github.
io/grade-rr.

I. INTRODUCTION

A large dataset that includes realism and diversity in
features is a fundamental building block for obtaining any
working and reliable deep-learning model. This is especially
true when dealing with visual tasks such as detection, seman-
tic segmentation and shape estimation. For these, variability
in both visual appearances and environmental conditions as
well as a high number of instances are required. A variety of
datasets have been introduced during the last decades to ad-
dress various image-based tasks like MNIST [1], COCO [2],
and PASCAL-VOC [3]. These have historically been based
on real-world data, be this either images or videos, manually
labelled by humans. Apart from being time-consuming and
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Fig. 1: An example image of our synthetically generated zebras in a Savanna
environment.

costly, this introduces errors such as missing and wrong
labels [4]. Examples of these can be visualized in Fig. 2
and Fig. 3. Furthermore, ground truth for specific tasks may
not be available either because it is hard to obtain, e.g.,
shape or skeletal information, or because it requires costly
manual labelling procedures. These limitations impede the
usage of these datasets in problems such as aerial human
pose estimation [5], animal pose estimation [6], [7], or aerial
wild-animal detection. For these reasons, methodologies
to generate synthetic data became more ubiquitous since
the advent of rendering engines such as Unity, Blender,
Unreal Engine and IsaacSim. These are advantageous in
multiple aspects since they allow generation and automatic
labelling of ground truth data through full customization
possibilities and with minimum human effort [8]. Indeed,
synthetic data has been used in a variety of tasks such
as human detection [8], [9], pose and shape estimation of
humans [5], and semantic segmentation [10]. However, they
usually lack the visual realism necessary to generalize well
to real-world data if used alone. Thus, a combination of
real and synthetic data is often utilized [8], [9]. Moreover,
these datasets are usually application-specific and hardly
generalize to different scenarios, tasks, or data. For example,
wild animals are widely under-represented in datasets such
as COCO or PASCAL-VOC [11], [12], [13]. Indeed, apart
from a limited number of labelled images and videos of
uncommon animal species such as zebras, hippopotami, and
giraffes, there is also a general lack of variety of scenarios in
which those are recorded. Taking zebras as an example, there
are only 1916 training and 85 validation images containing
at least one instance of them in the COCO dataset. To solve
this problem, we generate a new synthetic dataset using
our GRADE [8] framework, a publicly available animated
zebra model and environments from the Unreal Engine
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marketplace. An example of the generated data can be seen
in Fig. 1 and Fig. 4. We use this data to train a YOLO-based
detector and perform evaluations with an extensive dataset of
zebras captured by drones consisting of 104K images and the
APT-36K [14] dataset. With this, we show that training with
our synthetic data outperforms the baseline models trained
on real-world datasets. In this paper, we take zebras as an
example as it is an endangered species, which is greatly
under-represented in currently available datasets. However,
the proposed method can be generalized to other animals as
well.

The rest of the paper is structured as follows. In Sec. II
we review the current state-of-the-art in simulated worlds
and animal datasets. Our method is described thoroughly in
Sec. III. In there, we give a general overview of the system
and explain how we generated our data. We then present
the results of our experiments in Sec. IV and conclude the
work with Sec. V with comments on known limitations and
possible future work.

II. RELATED WORK

In this section, we focus on two areas: animal-based
datasets, and simulation engines.

Animals. There are not many animals-based datasets
available in the literature [15], [12], [11], especially consid-
ering full 3D-vertices information and precise segmentation.
This is clearly related to the difficulties of collecting and
labelling ground truth data in outdoor scenarios. Various
approaches have been applied to overcome this problem,
ranging from using toy models [6], [7], merging different
datasets [12], or using synthetic data [15], [16]. However,
all of them fall short in some aspects like lack of animal
species variability, size, pose and shape information, skeletal
joints location, or limited capturing settings. For example,
Horse-10 [17] has only horses moving left-to-right. The
authors of the SMAL model [6] do not release the generated
data. The Grévy’s zebra dataset [18] consists only of 900
low-resolution images that do not contain either correct
bounding boxes or labels for all animals. An example of
that is provided in Fig. 2. AnimalPose [11] focuses on a
limited set of animals, in which zebras are not included. The
4DComplete dataset [15], although it contains various animal
animations, it fails on releasing textures or textured FBX files
making it impossible to customize. They do provide rendered
RGB+D images and scene flow but, still, the renderings are
provided without any background information. Other syn-
thetic datasets, such as the one from Mu et al. [19], contain
data which cannot be used to train a successful detector
since they are generated with unrealistic backgrounds and
textures [19]. These also suffer from the low viewpoint
variability and diversity of scenarios, such as the data from
COCO. We must also note that, as shown in Fig. 3, COCO
is not exempt from wrong or imprecise labelled data.

Simulation engines. Gazebo [20] is currently the standard
for robotic simulation. High reliable physics and tight inte-
gration with ROS are its key advantages. However, the lack

Fig. 2: Examples of missing bounding boxes and keypoints from the Grévy’s
zebra [18] dataset. Image ids 869 (left) and 882 (right).

(a) ID: 20164, missing bounding boxes (b) ID: 22149, toy labeled

(c) ID: 32206, wrong bounding box (d) ID: 533961, imprecise bounding box
Fig. 3: Four examples of wrongly labelled zebras from the COCO [2]
dataset.

of visual realism and customization possibility, makes it un-
usable for generating visual data to be used in learning tasks.
Indeed, alternatives emerged in the last years, such as [21],
[22], [23], [24], [25], [26], along with several datasets [5],
[9] that use Unreal Engine, Unity, and Blender for rendering.
The combination of AirSim and Unreal Engine has been
widely explored to generate multiple datasets focused on
specific tasks such as human pose estimation [5] and visual
odometry [27]. Simulators focused on robotics are usually
limited by the type of the environment, e.g. indoor [24], [22],
or the task, e.g. self-driving car [26]. Clearly, generalizing
them to outdoor scenarios with animated animals is not
trivial. GRADE [8] is a recently introduced method to
generate synthetic data built directly upon Isaac Sim. It is
a framework that includes both data generation and general
robotic testing capabilities thanks to its integration with
ROS and the use of ray- and path-tracing. In this work, we
leverage the flexibility of GRADE to generate new synthetic
data of outdoor scenarios with randomly placed zebras.

III. APPROACH

Using the system introduced in our previous work
GRADE [8], we generate an outdoor-environment dataset
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focused on zebras. GRADE is our synthetic data generation
framework based on Isaac Sim. Thanks to the flexibility of
GRADE, this approach will be easily applicable also to other
animal species or setups. The details about the GRADE
framework and the simulation management are thoroughly
described in [8]. We proceed here highlighting any major
difference with respect to the already introduced system.

A. Synthetic data

1) Environments: We selected nine commercial and one
freely available environments from the Unreal Engine mar-
ketplace. We used the Unreal Engine Omniverse connector1

to convert them to the USD file format. We list the envi-
ronments with the corresponding shortened URL in Tab. I.
For each environment, we used directly the available demos
and pre-built scenarios. Then, we proceeded to remove the
original sky sphere and fix textures when necessary. The
connector indeed does not yet support full export of the
terrains from Unreal Engine, resulting in a lower level of
detail, e.g. missing 3D grass, some textures, and level of
details. We replaced the textures with some taken from
IsaacSim itself, resembling the color of the grass.

Environment Name URL
Bliss https://bit.ly/3HD3zYP
Forest https://bit.ly/3mYQv8Z
Grasslands https://bit.ly/3HD3zYP
Iceland https://bit.ly/3Ax8zKi
L Terrain https://bit.ly/3V6H7MU
Meadow https://bit.ly/3Hgxk1n
Moorlands https://bit.ly/3oHT1ku
Rural Australia (Free) https://bit.ly/3i5j6Hi
Windmills https://bit.ly/3AvVTDK
Woodland https://bit.ly/3mYQv8Z

TABLE I: Names and shortened URLs of the used environments.

2) Dynamic assets: We use a freely available zebra model
from SketchFab [28]. This model consists of 34 different in-
place animation sequences, i.e. without root translation or
rotation movements, for a total of 888 animation frames.
We converted each animation sequence to the USD format
using Blender and its Omniverse connector. Then, we post-
processed the sequence to obtain per-frame vertices position
and skeletal information. This allows us, for every generated
frame, to have corresponding ground truth information about
these two characteristics. The vertices are used to compute
oriented bounding boxes that are then employed for the
placement procedure.

3) Placement of zebras: Zebra placement is based on
an ad-hoc procedure that is repeated every time a frame
is generated. For every environment we select a specific
mesh as ‘terrain’, which represents the area in which we
will then place the zebras. The placement consists then of
four main steps: i) selecting a random rectangular area of
the terrain, ii) randomly selecting a set of zebras, iii) for
each zebra select frame of its animation sequence, a scaling
factor and a global orientation of the zebra, iv) place the

1https://bit.ly/3X82sph

zebra in the rectangular area considering the bounding-box
occupancy. The sides of the rectangle are randomly selected
to be between 40 and 120 meters, while the scaling factor
ranges between 40% and 100% and allows us to obtain a
higher degree of variability. The placement is an iterative
procedure that considers one zebra model after the other. Any
model that cannot be placed following a detected collision is
removed from the simulation. The final results depend mostly
on the resolution of the terrain mesh for both collisions
between meshes and contact of the zebras with the ground.
In general, we noted that collisions are rare and that contacts
with the ground are good. Note that, as opposed to [8], we
do not consider the full animation sequence since we lack
any root translation information.

4) Data collection methodologies: Contrary to what is
done for indoor environments in [8], here we focus on image
generation rather than video sequences. We also perform a
series of randomization for each captured frame, i.e. the i)
time of day, ii) number of zebras in the environment, iii)
their scaling factor, iv) their specific animation frame, and
the v) placement of three cameras that will record the scene.
Specifically, given any environment, we set up three aerial
cameras and randomly pre-load 250 zebras at the beginning
of each experiment. We then uniformly select the number of
zebras that will be placed in the next frame. This number
is set to be between 2 and 250. Note that this is not the
number that will appear in each frame, nor is the final number
of zebras that are actually placed. As explained above, the
placement strategy may remove some of the zebras and
the camera may not observe all the zebras given a point
of view. Once the placement happened, we randomize the
location of the cameras and the time of days three times.
The time of day will be 90% of the time between 5 am
and 8 pm, which results in good lighting conditions given
our current settings, and 10% of the time in the remaining
hours, resulting in dusk-to-night light settings. This further
randomizes the appearances of both the generated frames
and the shadows. Cameras are placed using the average
location of the zebras as a pivot point. For the placement of
the cameras, we distinguish between two slightly different
image-generation procedures: one more general and one
more focused on capturing zebras from a nearer viewpoint.
We first describe the former and then identify the minor
modifications that we applied to the latter. From the pivot
point, we randomize the distance in the x-y plane and the
height of the camera. The height is set to be between 5 and
20 meters more than the average of the zebras, while the x
and y are set to be between -/+ 100 meters. Once the position
is fixed, we can compute and randomize roll, pitch, and yaw.
Roll is set to be within [−10,10] degrees, yaw is set to be
the ray that connects the camera and the pivot point with
an additional random [−30,30] degrees. Pitch is computed
as θ = atan2(pivotz − camz,d(pivot,camera))+15 degrees,
where d(pivot,camera) is the distance in the x, y plane.
The modifications applied to this methodology during the
second image-generation procedure are as follows: the x
and y positions are set to be within 5 meters of the virtual
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Fig. 4: An example of the generated data following the pipeline described in Sec. III. On the first row, from the left, we can see the rendered RGB image,
depth data, 2D bounding boxes, and semantic instances. On the second row, from the left, we can see 3D-oriented bounding boxes, the vertices of each
mesh drawed over a black background, and the second and third views of the same scene as taken from the other drones. Best viewed in color.

bounding box containing all zebras, the yaw has an additional
[−15,15] degrees component instead of the [−30,30]. This
results in images that are closer to the zebras than the ones
obtained from the former camera placement strategy.

For each environment, we randomly place the zebras 200
times, resulting in 600 frames per experiment per camera, i.e.
1.8K frames in total. After the generation process is complete
for all ten environments, this totals to 18K frames captured
with the first camera placement strategy, and 18K with the
camera set to be more nearby, totalling 36K frames. For
each frame, we save the pose of the cameras, zebra skeletal
pose and meshes vertices, ground truth depth and instance
segmentation.

B. Real-world data

We performed several data collection experiments in a
controlled scenario within the Wilhlema Zoo in Stuttgart
(DE). An example of the collected data can be found in
Fig. 5. We used two manually flown DJI Mavic 2 Pro drones,
recording images at 29.97 fps at a resolution of 3840×2160,
and three GoPro Hero8, also with a resolution of 3840×2160
at 59.94 fps. None of the GoPros had fixed locations between
experiments. The data has been manually synchronized by
using a recorded light signal visible by all cameras at the
same time. We then extracted one frame every five seconds
from all the videos. Out of these, 905 images were ran-
domly selected and annotated manually and precisely. These
annotations were then used to train an SSD multibox [29]
detector, which, with Smarter-Labelme [30], allowed us to
obtain bounding boxes on our video sequences with ease. Out
of all the data available, we finally selected three collections
during which the zebras were visible by both drones. The
boxes on those sequences were then manually refined in
a final step. This procedure thus resulted in 905 precisely
annotated images, and 104K frames annotated with [30].
Within this work, we release the data used during our training
experiments, i.e. the 905 precisely annotated images and 200
automatically labelled ones from one of the experiments (see
Sec. IV for details).

IV. EXPERIMENT AND EVALUATIONS

Here we seek to demonstrate that the synthetic data
generated by our method can be used effectively for a vision-
based task which is highly related to image features and
context, such as the detection of zebras in outdoor wild
environments from an aerial point of view. Our hypothesis is
that, by training a model using only synthetic data acquired in
a realistic simulation environment, we can achieve detection
performance on real images comparable to a model trained
on a manually and very-precisely labelled set of real im-
ages. Our goal is to prove that synthetically generated data
alone can be used to train a network capable of detecting
zebras with high accuracy in real-world images. To that
end, we decided to perform various tests on YOLOv5s. We
train the networks from scratch and with mixed datasets to
test the performance and provide a complete overview. All
the training runs are made from scratch with the default
hyperparameters and for the standard 300 epochs. We do
not introduce any additional data augmentation technique
different from the one applied by default by the YOLOv5
code. This consists of some randomization in the scale,
horizontal flip, translation and HSV colour space factors. We
do not modify these values to have a fairer comparison across
the models that would not require parameter grid searches
or other steps when compared to the baseline pre-trained
model. We save the best model, as evaluated on the specific
validation set, and compare it over multiple datasets. We
evaluate the performance with the COCO standard metric
(mAP@[.5, .95], AP in this work) and the PASCAL VOC’s
metric (mAP@.5, AP50 in this work). We also report the
average and weighted average of these two metrics. We
weigh based on the cardinality of each one of the evaluated
datasets. With these comparisons, we demonstrate that, with
our synthetic data, we can successfully capture real-world
features. This, while also obtaining trained models which
show, in general, improved performance when compared to
the pre-trained ones.

Synthetic Full dataset (SF) is the dataset containing all
the 36K synthetically generated images. These are then
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(a) R1 (b) R2

(c) R3 (d) RP

Fig. 5: An example of our real-world collected images used for testing. Three aerial and one ‘ground-level’ views. Best viewed in color.

randomly shuffled and split into 80/20 train/validation sets.
Synthetic Closeby (SC) is the synthetic data generated only
by the second strategy, as described in Sec. III-A.4, i.e.
18K images for which the camera is within 5 meters of the
bounding box containing all the zebras. This data is also
divided randomly with an 80/20 ratio. With COCO we refer
to the images of the COCO dataset [2] which contains zebras,
i.e. 1916 training and 85 validation examples. Due to the
small size of the validation set of the COCO dataset, we
do not perform any training on this data alone. With APT-
36K we indicate the set of images from the APT-36K [14]
dataset which contains zebras, i.e. 1.2K samples. We then
have, R1, R2, and R3 which are three sets of real-world
data which is not precisely labelled, as described in Sec. III-
B. To distinguish between which drone captured the given
sequence, we use the suffixes D1 and D2. R1 consists of
19.7K images, R2 of 23.4K, and R3 of 8.8K, for each drone.
Finally, we use RP to indicate the set of the 905 real-world
images precisely labelled by us, sampled from representative
images from the previous Rx datasets and additional images
captured with the GoPros as described in Sec. III-B. Of them,
720 are randomly used in training and 185 for validation.
An example of the bounding boxes of our real-world data is
provided in Fig. 5. We also provide two zoomed-in examples
of imprecise labels in Fig. 6. Note that also other datasets,
e.g. COCO (see Fig. 3), present such approximations.

Our baseline for comparison consists of the network pre-
trained on the full COCO dataset. We perform some training

Dataset Description Train imgs. Val imgs.
SF Our full synthetic data 29K 7K

SC A subset of our synthetic data
focused on camera poses closer to the zebras 14.5K 3.5K

R1 Aerial capture experiment 1 — 19.7K
R2 Aerial capture experiment 2 — 23.4K
R3 Aerial capture experiment 3 — 8.8K
R3100 100×2 images randomly chosen from R3 100 100
RP Preciselly labelled images from R1/2/3 and GoPros 720 185
COCO COCO-zebras 1916 85
Rx D1,2 Either 1st or 2nd drone capturing during experiment Rx
∗-1920 Same dataset but using 1920 image size during training
∗ + ⋄ Trained by merging ∗ and ⋄ corresponding train and validation sets

TABLE II: Zebras datasets legend and training/validation sizes

Fig. 6: Two zoomed-in examples of imprecisely labelled data. The bounding
boxes can either be slightly too loose or too tight on the zebras.

tests on both the default 640 × 640 image size and the
increased 1920 × 1920, identified in our table with the ‘-
1920’ suffix. Once established that the bigger image size
yields better results, we trained the network with mixed
datasets. These are i) SC+COCO-1920, which combines
SC training and validation sets with images from COCO’s
corresponding splits, ii) SC+COCO+R3100-1920, which adds
100 train and 100 validation images randomly sampled from
R3, and iii) RP+COCO-1920, which merges RP and COCO
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APT-36K [14] R1 D1 R1 D2 R2 D1 R2 D2 R3 D1 R3 D2 RP (validation) Weigthed avg. Avg.
Training Dataset mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP
SF 0.072 0.029 0.770 0.488 0.756 0.490 0.224 0.130 0.597 0.393 0.142 0.092 0.203 0.127 0.104 0.074 0.498 0.318 0.359 0.228
SF-1920 0.103 0.055 0.853 0.568 0.958 0.646 0.873 0.540 0.957 0.616 0.608 0.443 0.651 0.484 0.287 0.191 0.853 0.563 0.661 0.443
SC 0.121 0.046 0.714 0.455 0.830 0.529 0.147 0.084 0.513 0.316 0.156 0.097 0.375 0.202 0.092 0.061 0.482 0.299 0.369 0.224
SC-1920 0.150 0.053 0.907 0.605 0.971 0.664 0.939 0.593 0.968 0.652 0.649 0.476 0.819 0.580 0.331 0.228 0.901 0.604 0.717 0.481
RP 0.260 0.092 0.865 0.487 0.935 0.550 0.808 0.479 0.946 0.593 0.772 0.380 0.922 0.548 0.805 0.453 0.873 0.512 0.789 0.448
RP-1920 0.161 0.066 0.937 0.615 0.980 0.663 0.989 0.653 0.982 0.666 0.801 0.532 0.986 0.680 0.914 0.636 0.950 0.636 0.844 0.564
SC+COCO-1920 0.709 0.386 0.943 0.624 0.976 0.676 0.932 0.599 0.977 0.659 0.637 0.481 0.867 0.635 0.350 0.253 0.918 0.621 0.799 0.539
RP+COCO-1920 0.837 0.526 0.967 0.639 0.984 0.681 0.980 0.656 0.968 0.684 0.768 0.493 0.981 0.674 0.911 0.626 0.956 0.650 0.925 0.622
SC+COCO+R3100-1920 0.704 0.378 0.975 0.655 0.994 0.707 0.963 0.636 0.991 0.691 0.986 0.733 0.961 0.708 0.432 0.308 0.975 0.676 0.878 0.602
SC+COCO+RP-1920 0.705 0.383 0.988 0.688 0.994 0.714 0.988 0.652 0.990 0.709 0.869 0.614 0.988 0.756 0.921 0.639 0.976 0.685 0.930 0.644
Pretrained-COCO 0.879 0.566 0.576 0.376 0.529 0.354 0.421 0.274 0.379 0.258 0.331 0.215 0.551 0.390 0.173 0.123 0.469 0.312 0.480 0.320

TABLE III: Results of the evaluations of the trained models. We report mAP50 and mAP for each dataset as well as both the average and weighted
average of these metrics. We divide between models trained on mixed datasets, vanilla ones, and the model pre-trained with COCO. In bold the best results.
We underline the best model not using the RP dataset during training in the corresponding validation column.

sets. Note that all models trained with RP have been exposed
to representing data coming from Rx Dx, giving them an
advantage in these evaluations. The full description of the
datasets, including the training a validation set sizes, is
reported in II.

All our results are reported in Tab. III. Additionally,
we present randomly sampled images from the COCO,
APT-36K, R2, and RP datasets for the main models in Fig. 7.
Now, we proceed to analyse the results that we report in
the table. First, we can notice that the models trained on
the bigger image size show higher performances across all
datasets and metrics. This is true both for synthetic, i.e. SF
and SF-1920, SC and SC-1920, and the real data, i.e. RP
and RP-1920. The only exception is the model trained with
RP which in the APT-36K performs ∼ 10% better than RP-
1920. Overall, the model pre-trained on the COCO dataset
works well only on the APT-36K dataset with a mAP50 of
∼ 88%, further showing the low variability of these datasets
and the incapability to generalize to both different points of
view or scenarios. Indeed, the YOLO model pre-trained on
COCO achieves at most ∼ 58% accuracy on our data, with
an overall weighted average of ∼ 47%. The fact that the
COCO data is representative of the APT-36K dataset can
be evinced also by the performance obtained by the model
trained with RP+COCO-1920 dataset. Considering now the
synthetic data, i.e. SF-1920 and SC-1920, we can see that
the best model overall is SC-1920 which achieves ∼ 5%
higher mAP and mAP50 across all tests, with a peak of
∼ 15% on the R3 dataset. This is probably related to the
first of the two generation procedures, which resulted in long
distances between the zebras and the cameras (see Sec. III-
A.1). Our real data instead comprises mostly zebras that are
reasonably nearby the drone as seen from the pictures in
Fig. 5 and Fig. 7 in the third and fourth rows. The synthetic
models may perform poorly on RP validation set and APT-
36K due to the generation process. These sets have diverse
images, including zebras near the camera in a side view or
hidden behind bushes and trees, e.g. second and fourth row in
Fig. 7. Moreover, by comparing SC-1920 with the model pre-
trained on COCO, we can see how, across all data excluding
APT-36K, we obtain higher performances on both metrics of
considerable amounts, ranging between ∼ 20% and ∼ 45%.

We can now compare the differences between the models
trained on synthetic data and real data. For this, we will focus
on comparing SC-1920 and RP-1920. The weighted average
gap is only 4.9% in the mAP50 and 3.2% on the mAP. The

big difference in the simple average is mostly linked to the
results obtained in the validation set of RP, which was to
be expected. Indeed, we can notice how the model trained
on synthetic data performs considerably worse in the RP
dataset, with a ∼ 58% reduction in mAP50 and ∼ 41% on
mAP. A similar result is depicted when we consider tests on
the R3 Dx data, with reductions of ∼ 16% and ∼ 6− 10%
for the two considered metrics. Nonetheless, with all other
datasets, the model trained on synthetic data is comparable to
the one trained on real-world captured images of just 1−5%.
Recall that the RP model was trained on the RP dataset itself,
composed of images from the Rx experiments and additional
images from point-of-views not generated by our procedure.
This clearly demonstrates that, on the considered datasets,
the model trained solely with the synthetic data generated
using the pipeline described above is perfectly capable of
detecting zebras by achieving similar performance on all
but two datasets when compared with RP, and significantly
overcoming the model pre-trained on COCO in all but APT-
36K dataset.

Finally, we consider the mixed models. Unsurprisingly, the
one based only on real data, i.e. RP+COCO-1920, performs
well on all datasets. The slight reduction in performance
in the R2 and R3 datasets is well compensated by the
generalization in the APT-36K. This is also the model with
the highest average mAP and mAP50. We believe that this
is mostly linked to how the dataset was built, with RP that
contains data from all Rx experiments combined with the
1916 training images of COCO. Despite that, it is interesting
to notice how the models trained with a mixture of synthetic
and real data are capable of generalizing across all the
datasets as well. Specifically, combining SC and COCO,
i.e. SC+COCO-1920, resulted practically in a significant
improvement of the performance solely in the APT-36K
dataset. Minor improvements are noticeable in the other
datasets as well, If to this we add 100 samples from R3,
i.e. SC+COCO+R3100-1920, we then achieve considerable
improvements in the performance w.r.t. SC-1920 on all
datasets.

The most noticeable are the ones on APT-36K, of around
55%, and on the RP dataset, of around 10%. The improve-
ment in the R3 is to be expected since we mixed 100
images from that set. Nonetheless, it is remarkable that just
a small change in the data brought a ∼ 34% increase in the
mAP for this validation test. The SC+COCO+R3100-1920
is the model with the highest weighted average precisions
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(a) Ground-truth (b) COCO (c) RP-1920 (d) SC-1920 (e) SC+COCO+R3100-1920

Fig. 7: Sampled detections. We show in column (a) the ground truth and then the results obtained from (b) the default model (pre-trained on COCO), and
the ones trained on (c) RP-1920, (d) SC-1920, and (e) SC+COCO+R3100-1920. The images are randomly taken from the COCO (first row), APT-36K,
R2, and RP (last row) datasets. Best viewed in color and zoomed-in.

and is the second best when considering the average mAP
and mAP50. We believe that this model would be further
improved by having more samples from the COCO dataset
in the validation set or, overall, a better-balanced set of
samples. Considering that SC is made of 18K images, and
both COCO and R3100 make up for 2K training images
and only 300 validation ones, we can expect an ‘overfit’ of
the final selected model towards scenes which are strongly
represented by the synthetic images. Also, in this case, the
significant difference in the average mAP and mAP50 is
mostly linked to the gap in the results in the RP validation
set. For completeness, we also trained the SC+COCO+RP-
1920 model, i.e. using the closeby synthetic data, the coco
data, and the small set of real data which was precisely
labelled. As expected, this is the model which performs best
in the majority of the tests, excluding the APT-36K dataset,
where the pretrained model performs best, and in R3 D1.
However, we must note that RP contains data from all R1, R2
and R3 datasets in both the training and validation sets. Thus,
the results in these case are clearly driven by this information.
What is interesting to notice is that all mixed models perform
similarly in the APT-36K dataset, with ∼ 70% of mAP50
and ∼ 38% mAP, further indicating that a better balancing
in the validation set might further boost the performance of

these models. Alternatively, a more representative generation
strategy could be employed, by including camera locations
relative to the zebras more similar to the ones that we can find
in the APT-36K or in the COCO dataset. The results suggest
that such an approach would be effective as well, perhaps in
conjunction with a minimal amount of annotated real data.
Finally, considering that zebra stripes are notoriously specific
to the individual, it is interesting to notice how, despite the
fact we use the same texture for all our generated zebras,
we are still able to generalize to different individuals well.
This suggests that the network does not focus and learn
specifically the pattern it is shown, but rather the general
appearance of the animal itself.

V. CONCLUSIONS

In this work, we first demonstrated that the currently
available datasets do not generalize well to the task of
detecting zebras captured from an aerial point of view. To
solve this, we generated a large-scale synthetic dataset of
zebras by using GRADE, a state-of-the-art framework for
synthetic data generation. The dataset, which is the first
of its kind both in terms of size and visual realism, has
been released for the benefit of the community. By using
that, we performed extensive evaluations by training and
testing YOLO with a wide range of combinations of real
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and synthetic data. This provides strong evidence that the
visual realism of the data generated is very high, because
our models showed performances which are as good as the
one obtained by a detector trained on real-world labelled
data alone. Using synthetic information we can surpass the
process of collecting and labelling data in controlled scenar-
ios, thus avoiding the probable introduction of errors. Further
testing by using combined synthetic and a small amount of
real data showed that we can successfully generalize to a
wide variety of scenarios. A known limitation that we need
to address is the realism of the adopted environments and
more precise placement strategies, which we believe could
solve both the generalization problem and the usage of high-
resolution images by the network. Future works include the
generation of videos instead of just static images, testing with
different network architectures like SSD [29] or RCNN [31],
and using the synthetic data for different tasks such as
keypoints detection.
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Navigating in 3D Uneven Environments through Supervoxels and
Nonlinear MPC

Fetullah Atas 1 Grzegorz Cielniak 2 Lars Grimstad 1

Abstract—Navigating uneven and rough terrains presents diffi-
culties, including stability, traversability, sensing, and robustness,
making autonomous navigation in these terrains a challenging
task. This study introduces a new approach for mobile robots
to navigate uneven terrains. The method uses a compact graph
of traversable regions on point cloud maps, created through
the utilization of supervoxel representation of point clouds. By
using this supervoxel graph, the method navigates the robot
to any reachable goal pose by utilizing a navigation function
and Nonlinear Model Predictive Controller (NMPC). The NMPC
ensures kinodynamically feasible and collision-free motion plans,
while the supervoxel-based geometric planning generates near-
optimal plans by exploiting the terrain information. We con-
ducted extensive navigation experiments in real and simulated 3D
uneven terrains and found that the approach performs reliably.
Additionally, we compared resulting motion plans to some state-
of-the-art sampling-based motion planners in which our method
outperformed them in terms of execution time and resulting
path lengths. The method can also be adapted to meet specific
behavior, like the shortest route or the path with the least slope
route. The source code is available in a GitHub repository. 1.

Index Terms—Uneven Terrain Navigation, Outdoor Robotics,
Motion Planning.

I. INTRODUCTION

The use of robots in large outdoor environments with
uneven terrain has become increasingly popular, with appli-
cations ranging from delivery robots to legged robots nav-
igating unstructured terrains and mobile robots performing
agricultural tasks. While autonomous navigation in 2D indoor
environments has been well-established, the navigation of
outdoor uneven terrains poses various challenges that require
further investigation. These challenges include the need for
robust terrain traversability analysis to prevent stability issues
such as tipping over, efficient motion planning that avoids
collisions, and adaptability to dynamic environments. An
additional challenge is that different robot platforms have
different traversability capabilities, depending on their design
and locomotion mechanisms. Thus, developing a unified and
abstract navigation strategy for uneven environments that
meets the requirements of different robot models without
significant architectural or code modifications to the navigation
framework is a nontrivial task.

To address the challenges mentioned above regarding un-
even terrain navigation, this paper proposes a compact ap-

1 Norwegian University of Life Sciences {fetullah.atas,
lars.grimstad} @nmbu.no

2 University of Lincoln gcielniak@lincoln.ac.uk
1https://github.com/NMBURobotics/vox nav

Fig. 1: The figure illustrates the Thorvald II robot’s capability to
operate in various rough uneven terrains. To fully utilize the robot’s
strengths in these terrains, it is crucial to have a reliable navigation
strategy.

proach using pre-built or online point cloud maps. The ap-
proach first identifies traversable regions based on the geomet-
rical features of the point cloud by constructing a supervoxel
representation of the point cloud, with this, the approach
determines the robot’s geometric motion plan towards a de-
sired reachable goal. The geometric plan is then executed
by a Nonlinear Model Predictive Controller (NMPC) that
adjusts the robot’s actions based on real-time feedback and
environmental changes (e.g. dynamic obstacles).

A. Related Work

1) General 3D Navigation: Several works for 3D navi-
gation have been proposed based on 2D processing such as
in Wang et al. [27] and Pütz et al. [21]. However, these
methods are limited as they do not exclusively consider rapid
elevation changes as shown in Atas et al. [2]. Pütz et al.
[20] proposed a mesh-based navigation where they created
triangulation of underlying point cloud. The idea is spiritually
similar to what we propose, however, our approach works
as anytime, meaning that the method calculates supervoxels
for each new navigation request while still meeting real-time
constraints as supervoxel construction is efficient. More recent
work by Fan et al. [4] uses e Conditional Value-at-Risk (CVaR)
based terrain traversability analysis to navigate in uneven
terrains. Additionally, Jian et al. [8] proposes a plane-fitting-
based navigation framework, PUTN for uneven terrains. Our
work is similar to that of PUTN, a major difference is that
for the global geometric path generation they propose plane-
fitting-based RRT*, however, the proposed motion planning al-
gorithm is not compared to more recent work in the sampling-
based planners that are highlighted in the next subsection of
related work. Additionally, Atas et al. [2] proposed a surfel-979-8-3503-0704-7/23/$31.00 ©2023 IEEE
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based framework for uneven terrain navigation; however, the
work did not deal with dynamic obstacles and assumed static
environments.

2) Geometric Motion Planning: Sampling-based motion
planning has been demonstrated as an effective strategy to deal
with planning for robots in uneven environments in various
works such as in Jian et al. [8] and Atas et al. [2]. In the
following, we provide a brief review on sampling-based mo-
tion planning. The PRM Kavraki et al. [10] and RRT Lavalle
and Kuffner [12] algorithms and their dozens of variants
have paved the way for sampling-based motion planning. The
authors in Karaman and Frazzoli [9] investigated sampling-
based planners’ completeness and optimality properties to
understand formal guarantees further. Some sampling-based
planners were later improved to account for non-holonomic
constraints Palmieri et al. [18]. A library called Open Motion
Planning Library (OMPL) Sucan et al. [26] contains imple-
mentations of many sampling-based planners. The majority
of these planners are based on RRT* and PRM* Karaman
and Frazzoli [9] planners (e.g., RRTX Otte and Frazzoli [17],
LazyPRM* Bohlin and Kavraki [3], InformedRRT* Gammell
et al. [5], and so on), but a newer collection of planners
uses a structure that contains both graphs and trees (e.g.,
BIT* Gammell et al. [6], ABIT* Strub and Gammell [24],
AIT* Strub and Gammell [25]). Some methods utilize par-
allelized approaches (e.g., CFOREST Otte and Correll [16],
AnytimePartShortening (APS) Luna et al. [13]), in which
many planners execute concurrently on different threads while
planners inform each other of milestones reached, leading to
better performance overall.

3) NMPC for Collision-Free Control: Numerous studies
have established the effectiveness of Nonlinear Model Predic-
tive Control (NMPC) in achieving optimal control of diverse
robotic systems including mobile robots Salimi Lafmejani and
Berman [22], unmanned aerial vehicles (UAVs) Mansouri et al.
[15], and autonomous vehicles Yu et al. [28]. These systems
share a common trait, which is the presence of multiple
constraints that must be accounted for in each control cycle.
These constraints may include limitations on state dynamics,
non-collision requirements, and limits on state variables such
as velocity or acceleration, among others. The approach we
propose shares similarities with the work of Yu et al. [28],
who also present an NMPC scheme for obstacle-aware uneven
terrain navigation. However, our method offers two distinct
advantages over their work. Firstly, we validate our approach
through experiments on an actual robot, in addition to simu-
lations. Secondly, our method demonstrates a faster run cycle
of approximately 20Hz, whereas their reported control loop
runs at approximately 3Hz. The NMPC scheme proposed in
PUTN Jian et al. [8] also holds relevance. However, the authors
of this scheme have used a 2D kinematic model and the speed
of the control loop has not been explicitly reported.

B. Contributions

The specific contributions of our work include the follow-
ing:

• We introduce a new navigation strategy that utilizes
supervoxels and NMPC, which have been shown to be
effective in real uneven terrain navigation.

• Through a series of experiments in simulated and real-
world uneven terrains, we demonstrate that the proposed
method’s planning module outperforms existing state-of-
the-art sampling-based planners in terms of efficiency and
flexibility.

• We provide an open-source implementation of our ap-
proach.

II. APPROACH

A. Problem Statement

A successful navigation task will produce a discrete motion
plan defined by state s̃ and control ũ sets at the final stage t.
The state and control sets are as follows:

s̃ = (s1, s2, ..., st), ũ = (u1, u2, ..., ut). (1)

Based on Eq. 1, we define the following components for
feasible navigation:

1) A finite state space X .
2) A control space U(s) for each state s ∈ X .
3) A state transition function f that produces next state

f(s, u) ∈ X .
4) A set of stages denoted by t that begins at t = 0 and

continues indefinitely, and a goal set XG ∈ X .
A successful navigation task is achieved by the function Υ

that maps every state to control; X −→ U .

B. General Overview

Our approach is divided into three stages. First, we develop
a method for evaluating the traversability of a point cloud
map by analyzing the geometric characteristics of local ter-
rain patches. The second stage involves the construction of
supervoxels on point cloud maps with quantified traversability
values, the supervoxels are then used to calculate minimal cost
paths either with the Dijkstra or A* graph search algorithms.
The Final stage utilizes the calculated geometrical path to
determine the optimal and kinodynamically feasible control
commands until a termination condition is met (e.g. goal
reached, collision detected, etc.). In the following sub-sections,
we will delve into the specifics of each stage of our approach.

C. Traversability Assessment via Local Geometric Features

Suppose that an environment is represented with a point
cloud map. We discretize this point cloud map through uniform
sampling with a voxel size of ds, resulting in a subset of
j points referred to as the sampled point set PS . From
this sampled point set, we extract local terrain features such
as roughness, tilt, and maximum height by analyzing the
geometrical relationship between the sampled points and their
neighboring points from the original point cloud map.

To obtain geometric features, we search for the radial
nearest neighbors of each sampled point in the original point
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Fig. 2: A comprehensive overview of our approach is presented. The first step involves the calculation of the traversability of a given point
cloud map, taking into account the specific capabilities of the robot (e.g. max tilt angle, min distance for ground clearance, etc.). Secondly,
utilizing the obtained traversability map, the traversable regions are segmented into compact supervoxels. Finally, the NMPC optimization
process is employed for path tracking by producing optimal control values that are kinodynamically feasible.

cloud, which forms disk-like structures. Points within each
disk are then used to extract several geometric features.

The normal vectors for these disk-like structures are deter-
mined by fitting a plane to its points using RANSAC plane
fitting. This plane fitting is expressed in Eq. 2.

Ax+By + Cz +D = 0,

ns = (nsx, nsy, nsz) = (A,B,C)
(2)

The coefficients A,B,C,D represent the scalar equation of
a plane. The normal vector for this plane (of a disk) is given
by ns.

We use the following cost critics to assign a traversability
cost to each disk.

• Tilt of the slope within the disk, represented by td.
• Average deviation of points from the plane of the disk,

represented by pdd, to measure roughness.
• Maximum height difference of points within the disk,

represented by hdd.
• Ground clearance for the bottom chassis of the robot,

represented by gcd.
These criteria aim to evaluate the terrain patches based on the
robot’s physical limitations, such as the maximum tilt (roll or
pitch) angle, the roughness of the terrain, ground clearance,
etc. The resulting cost values will reflect these constraints and
indicate the disk’s suitability for traversal. The cost values for
each disk are computed using the following equations, which
are based on the geometrical properties of the points within
disks. The cost values are then distributed to all points in the
global point cloud map.

td = argmax(| arctan(ndx, ndz)|, | arctan(ndy, ndz)|) (3)

Fig. 3: Cost values are encoded with RGB channels to the terrain
point cloud maps.

Fig. 4: The impact of varying parameters on the traversability map
is shown. In (a), (b), and (c), the effect of using different disk
radii is depicted. In (d), (e), and (f), the effect of choosing different
max ranges for the tilt cost is depicted. Just as the tilt cost critic
can be adjusted, the range and weight of other cost critics can
also be customized, providing flexibility to accommodate robots
with different traversability capabilities. The RGB values encode
traversability cost values. See Fig. 3.

here, arctan(ndx, ndz) and arctan(ndy, ndz) represent the roll
and pitch of the disk, respectively.

pdd = 1/n

n∑

k=1

|APx +BPy + CPz +D√
A2 +B2 + C2

| (4)

where n denotes the number of points within the disk. The
roughness of a disk is determined by the average point
deviation from the disk plane, pdd. This value is calculated
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by summing up the distances from each point within the disk
to the disk plane and then dividing the result by the number
of points in the disk.

hdd = argmax
0:n

(Pz1, .., Pzn)− argmin
0:n

(Pz1, ..., Pzn), (5)

The max height difference hdd is computed as the difference
between the highest and lowest points in the disk.

gcd = ∀k ∈ {1, .., n},max(APkx +BPky + CPkz +D√
A2 +B2 + C2

).

(6)
Ground clearance of each disk, gcs, is calculated as the

maximum distance from the disk plane to any point within
the disk, along the normal vector direction. This value must
be less than the distance from the bottom of the robot chassis
to the ground to ensure safe navigation. We combine the value
of each critic with their corresponding weight factors αt, αpd,
αhd, αgc to produce the final traversability cost value cs for
each disk:

cs = (αt · td + αpd · pdd + αhd · hdd + αgc · gcd) (7)

where αt, αpd, αhd, αgc are the weighting factors that deter-
mine the relative importance of each cost critic in the final
traversability cost value. The weighting factors are adjustable
parameters to weigh each critic according to the desired
behavior. Refer to Fig. 4 to see the impact of some cost critics
and other parameters (e.g. disk radius) on the traversability
map.

D. Supervoxels for Connected Safe Regions

Our approach explores supervoxel phenomena of point
clouds as a way of marking reachable regions for navigation
over uneven 3D terrains.

Supervoxels were proposed as an intermediate representa-
tion for a dense underlying point cloud to lower the compu-
tational requirements by segmentation algorithms, which are
analogous to superpixels for image segmentation. Supervoxels
are suitable for navigation as they provide a connectivity graph
over the underlying point clouds. It is ensured that the super-
voxels are evenly distributed within the actual observed space
rather than being confined to the projected image plane. This
is achieved through the implementation of a seeding method-
ology based in 3D space and a flow-constrained local iterative
clustering algorithm that incorporates both color and geometric
features. Furthermore, the supervoxels can be utilized directly
on raw point clouds that are generated by combining multiple
calibrated RGB+D cameras or LIDARs, thereby providing
a full 3-dimensional supervoxel graph, which is capable of
meeting the demands of robotic applications in terms of speed.
We refer you to Papon et al. [19] for further details on
supervoxel construction for point cloud segmentation.

In the previous subsection, a traversability measure was
regressed across the point clouds, allowing reachable por-
tions (non-red areas) of the point cloud to be derived. The
traversability of each local terrain patch was quantified by
regressing the cost values to each patch.

Fig. 5: Top view of path tracking over point cloud supervoxels. The
local reference path, which is used as input for the NMPC algorithm,
is composed of linearly interpolated path segments, with a time step
of T between consecutive states in the path.

In Fig. 4, red points on the left picture are designated as
non-traversable regions, and no supervoxels are created on
these regions. Given the connectivity graph of supervoxels,
it is straightforward to compute cost-optimal paths over state
space X with graph traversal algorithms such as Dijkstra or
A*. The area covered by a supervoxel is controlled with two
parameters, seed resolution psr and resolution pr. These two
parameters determine the resolution of the resulting geometric
path.

E. NMPC for Optimal Control Policy

In this study, we employ the NMPC-based method to track
trajectory while ensuring compliance with dynamic constraints
and addressing potential collisions with stationary or moving
obstacles that are represented with 3D ellipsoids. It is impor-
tant to note that detecting obstacles is not a focus of this study.

The state dynamics are represented with a typical discrete
dynamic system;

sk+1 = f(sk, uk), sk ∈ X,uk ∈ U (8)

where the state vector is sk = [xk, yk, zk, ψk, θk, ϕk, v].
This includes the robot’s x, y, z position, the robot’s yaw,
pitch, and roll denoted by ψk, θk, ϕk, and finally v as the
robot’s linear velocity along x− axis of its local frame. The
control vector, uk = [v̇k, ψ̇k], includes linear acceleration v̇,
and angular velocity ψ̇. The continuous kinematic model is
described by the following equation:




ẋ
ẏ
ż

ψ̇

δ̇

ϕ̇
v̇




= v




cos(ψ)cos(θ)
sin(ψ)cos(θ)

cos(θ)
0
0
0
0




+




0 0
0 0
0 0
0 1
0 0
0 0
1 0




[
v̇

ψ̇

]
(9)

The Fig. 5 illustrates the path tracking over the terrain. The
goal of the NMPC strategy is to keep the system as close as
possible to the reference path while ensuring kinematic and
dynamic constraints.
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The NMPC optimization is formulated as;

u∗0:h−1 = argmin
0:h−1

(Jt(s0:h, u0:h−1) + Jir(u0:h−1)

+Jobs(s0:h, O))
(10)

subject to,
sk+1 = f(sk, uk),

B(sk) ∩O = ∅,
Umin ≤ U0:h−1 ≤ Umax

(11)

• The cost term Jt(s0:h, u0:h−1) is used to ensure that the
system follows the global path as closely as possible to
the Euclidean path between supervoxels. This cost term
also guarantees that the system’s kinematic constraints are
met since sk+1 = f(sk, uk) is a hard equality constraint.

• The term Jir(u0:h−1) represents the input rate cost, which
aims to minimize the jerky movements of the control
outputs.

• The term Jobs(s0:h, O) takes into account the cost associ-
ated with the proximity of the system to obstacles, which
are represented as time-varying ellipsoids. Collision-free
control policies are guaranteed with B(sk) ∩O = ∅.

Specifically, the tracking cost Jt and the input rate cost Jir
are defined as follows:

Jt(s0:h) =

h−1∑

i=0

(si − srefi )Q(si − srefi )T ,

Jir(u0:h) =

h−1∑

i=0

(ui − udvi )R(ui − udvi )T

(12)

Q and R diagonal matrices are used to penalize specific
state errors and input jerks.

Finally, the obstacle costs are defined as follows:

Dobs(s0:h) =

h−1∑

i=0

n∑

j=0

(xi − xobsj )2/(aobsj /2.0 + r)2,

+

h−1∑

i=0

n∑

j=0

(yi − yobsj )2/(bobsj /2.0 + r)2,

Jobs(s0:h) = e(1.0/Dobs(s0:h))

(13)

As shown in Eq. 13, the cost is inversely proportional to
the distance between the robot and obstacles. The variable n
represents the number of obstacles in O, h is the time horizon
considered in the NMPC setup and r is the robot radius. Each
obstacle Oj is represented by a vector [xobsj , yobsj , aobsj , bobsj ],
which are used in Eq. 14 to define the ellipse, see Fig. 2.

(xobs)2

(aobs)2
+

(yobs)2

(bobs)2
= 1 (14)

We implement the NMPC using CasADi Andersson et al.
[1], a software framework that specializes in nonlinear opti-
mization and optimal control. Although the NMPC algorithm
can handle an arbitrary number of obstacles, to improve the
speed of the control loop, we limit the number of obstacles
considered by the algorithm to those that are within 20 meters
of the robot’s current position.

Fig. 6: The figure presents the sample navigation scenes in a
simulated environment with uneven terrain and obstacles. The starting
position of the robot is indicated by a checkered flag.

III. EXPERIMENTS

We conduct experiments in 3D uneven terrains with varied
slopes and roughness in both simulated and real environments.
Buildings, poles, trees, and other items are examples of objects
in the environment. The maps are around 300x300 meters
in size. The simulated environment consists of more steep
hills and more significant variance in terms of inclination. Our
method relies on point cloud maps for the occupancy informa-
tion of environments. Hence we construct point cloud maps
of real environments with a SLAM method named LIO-SAM
by Shan et al. [23]. For building maps in real environments,
we use the Ouster OS1-64 LiDAR and MTi-30-2A8G4 Xsens
IMU. In the simulation, we rely on the Gazebo simulator
and simulated sensors and extract point cloud maps from the
simulated environment through a software plugin Koenig and
Howard [11]. The onboard localization was performed through
a combination of ICP-based LIDAR, wheel odometry, and
IMU. The autonomy system is run on a ZOTAC ZBOX with
an Intel Core i7 CPU and an Nvidia RTX 2060.

For the robot platform, the Thorvald II modular robot was
used Grimstad and From [7]. The software specifically de-
signed for Thorvald runs on an Intel NUC computer equipped
with a Core i7 CPU, and the communication between all
components is managed by ROS 2 Macenski et al. [14].
In evaluating the motion plan generated, two metrics are
considered: the length of the path and the computation time.
Tab. I is created based on these two evaluation metrics.

A. Qualitative Performance Evaluation

In Fig. 8a, the robot arrives at the destination successfully;
the path depicted in blue is the resultant feedback plan, the
start pose is marked with a checkered flag. Similarly, in Fig. 8a
the robot navigates from a similar start pose (as in Fig. 8b) but
to a closer goal pose, resulting in a near-optimal path depicted
in blue color. For Fig. 8a and Fig. 8b, we refer to optimality
in sense of Euclidean distance. However, with the availability
of traversability costs (represented with RGB colors in point
cloud maps, seeFig. 3) we can re-adjust the sense of optimality
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to refer to the traversability cost in point cloud maps. Hence
the method can be configured such that it can navigate the
robot with one of the following properties:

• least inclined path.
• shortest path.
• least rough path.
In Fig. 7 (a), we configure the cost term such that it

accounts for traversability costs. The resulting motion plans
avoid higher-cost regions, resulting in an optimal motion plan
where less-inclined, less-rough terrain segments are preferred
rather than a short distance. Hence the resultant motion plans
tend to navigate through greener regions. This allows the robot
to navigate through inclined terrains safely by avoiding steep
hills and rough terrain patches.

B. Tuning the Method

The tuning of our algorithm is straightforward as it involves
adjusting only a small number of configuration parameters.
Specifically, two parameters, known as seed resolution (psr)
and resolution (pr), are used in the construction of supervoxels.
The seed resolution (psr) is responsible for identifying the
radius of nearest neighbors that are used to compute the
supervoxel boundaries, while the resolution (pr) determines
the actual size of the supervoxel. Smaller values of pr result
in finer resolution of the global path, but we recommend using
values in the range of [0.1, 0.25] for large-scale outdoor robot
navigation. In our reported results, we set psr = 1.0 and
pr = 0.2. The general rule is that pr should be large enough
to cover a number of points.

Q = Diag(10, 10, 10, 0.1, 0, 0, 0.1),

R = Diag(10, 100)
(15)

In Eq. 12, we introduced tracking cost and input rate
gain matrices Q and R. In this paper, we do not propose a
methodological approach to tune these gain matrices optimally.
However, from the experimental observation, we realize that
the angular rate needs to be penalized higher as otherwise,
the robot oscillates. From the optimality perspective, it is best
to control the robot as close as possible to the coarse plan
since the optimal property is explicitly contained within graph
traversal by Dijkstra or A*. Therefore in Q, we penalize posi-
tional errors on x, y, z heavier than the controllable heading ψ
and velocity v. In the presented results, Q and R were chosen
as in Eq. 15.

We also provide customizable objective selection in our
software implementation to optimize ensuing feedback plans,
allowing us to achieve plans with the various characteristics
itemized in Subsec. III-A.

C. Comparison to Sampling-based planners

In this subsection, we evaluate the geometric plan produced
by our approach. As baselines, we choose some of the state-
of-the-art sampling-based planners. We compare the proposed
method to various planners such as AnytimePathShortening
(APS), CFOREST, AIT*, and others. We create a benchmark

of planning problems consisting of 20 unique planning prob-
lems in the map depicted atFig. 7. Each planner is requested
to solve 20 different planning problems five times, resulting
in a total of 100 runs. The results of 100 runs are presented
in Tab. I.

Our method produced shorter paths in significantly less
time. Optimal sampling-based planners require a timeout pa-
rameter where they use all allowed time to construct a valid
path with minimal cost, in this case, the shortest length. To
observe the behavior of sampling-based planners with different
time constraints, we set the timeout to 10 and 20 seconds
consecutively. The planners can improve their performance
due to the available time in the 20-second setup. To establish a
baseline, we run the APS planner for 60 seconds; our method
almost achieves APS’s performance in less than one second.
Based on the results in Tab. I, our technique distinguishes
itself from sampling-based planners by its short execution
time and deterministic nature. Compared to sampling-based
planners, our method has the lowest final plan length deviation
in both setups (10 and 20 seconds), indicating consistency in
the obtained results.

Planners Length Mean (20 sec.) Length Mean (10 sec.)

RRT* 65.2± 9.6 75.7± 13.9
PRM* 51.2± 2.2 67.0± 12.0
AIT* 52.0± 3.7 58.8± 8.3
CFOREST 51.6± 3.2 58.3± 6.9
APS 50.7± 1.8 54.1± 6.1
APS (60 sec.) 48.7± 0.5
Ours (0.65 sec.) 49.5 ± 1.3

TABLE I: Means of acquired path lengths with 10 sec—timeout
from 100 runs. A lower mean value indicates that planners achieve
better performance for both metrics (shorter path in a shorter time).

The results in Tab. I show that the proposed approach is
able to produce shorter paths in a significantly shorter amount
of time compared to other planners. Specifically, the approach
generated 8.56% shorter paths than the next best planner (APS)
while only taking 6.68% of the time consumed by APS. It
was also observed that the best-performing baseline planner
(APS) required more than 40 seconds to surpass the proposed
method. Additionally, it should be noted that the proposed
method is an anytime planner that re-computes supervoxels
efficiently for each planning request and the reported times
also include the time spent for supervoxel creation.

Our method is able to generate plans at a significantly
faster rate than sampling-based planners. This is because
our method leverages the underlying terrain information in
an active manner, whereas sampling-based planners do not
take advantage of this information by default. As a result,
generating a feasible plan for uneven terrain (e.g. no jump-
overs above buildings) for a ground robot in uneven terrain can
be a time-consuming process using sampling-based planners.
This highlights the efficiency of the proposed method.

IV. CONCLUSION

In this paper, we presented a novel approach for navigating
uneven terrains based on geometric traversability analysis,
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Fig. 7: A comparison of the performance of the proposed approach with an objective set to the inclination cost (a) and Euclidean distance
(b), to that of the APS planner (c). The APS planner provides a longer path than the proposed approach despite taking more than ten times
longer to compute.

(a)

(b)

Fig. 8: Example optimal motion plans resulting from the proposed the
approach in a real uneven environment. The chequered flag indicates
the robot’s start pose, while the robot’s icon indicates the robot’s final
pose.

supervoxels, and NMPC. Our experimental results on a real
robot operating in a 3D environment demonstrate the method’s
efficiency. Specifically, our approach generated better-quality
geometric plans in less time than state-of-the-art sampling-
based planners on a benchmark. Additionally, the method
enables a robot to navigate uneven 3D terrains with various
objectives, such as finding the shortest or least-inclined path
while dynamically avoiding obstacles.

One potential limitation of our proposed method is that it
does not explicitly model uncertainty that may arise from the
interaction between the robot and the uneven terrain. This
is due to the lack of sensors on the robot platform that
can perceive terrain parameters, such as soil compaction and
slippage estimation. In future work, we plan to extend our
approach to address this limitation and handle uncertainties

that arise from the robot and uneven terrain interaction.
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Ant Colony Optimization for Retail based Capacitated Vehicle Routing
Problem with Pickup and Delivery for Mobile Robots

Agha Ali Haider Qizilbash1 Anoj Kumar Yadav2, Kevin Bregler3, Werner Kraus4

Abstract— Mobile Robots have been the key for automation
in various applications including picking and placing items in a
retail store. Capacitated Vehicle Routing Problem with Pickup
and Delivery(CVRP-PD) is widely used in similar applications
like package delivery vehicles and mobile robots in retail,
where mobile robots have a capacity limit such as weight and
have to pickup and drop multiple items during their tour in
an optimized manner. However, Retail application comes with
more challenges where there could be multiple fixed deposit
locations for particular pickup items such as packing counters
and after delivering some items mobile robots can again regain
capacity and be able to pickup more items during the same
run. In this paper, we consider these constraints for retail
applications and optimize retail orders for all mobile robots
present in the environment, where the order requests for pickup
and delivery of products at various locations while mobile
robots have different maximum load capacities and robots can
regain their capacity once they have dropped some items at
their particular delivery locations. In this paper, we propose a
method to solve this retail based CVRP-PD using Ant Colony
Optimization(ACO). We take an industrial use-case and test
the method with different order sizes and robot parameters.
The results have been promising and used to solve the use-case
under consideration. In addition, we also evaluate the results
and propose future prospects.

I. INTRODUCTION

Automated Guided Vehicles (AGV) and Autonomous Mo-
bile Robots (AMR) have entered in almost all areas of
applications whether it is warehouse logistics or agriculture
precision farming. Among them is Retail, which has one of
the most automation potential and since covid-19 pandemic,
one of the most affected ones in terms of manual labor.
This has paved its need of AGVs and AMRs in retail
applications. Use of these mobile robots allows humans to
reduce their efforts by having items picked up and delivered
to deposit locations in retail environments similar to close
warehouse logistics. This application of mobile robots fill
the labor shortage gap for warehouses and retail applications
as well as overcome the limitation of humans to work for
long periods of time thereby minimizing efforts to maximize
work. But even these mobile robots have some limitations
such as battery life, collision-free movements, high costs
and maximum payload. These mobile robots also demand

1Agha Ali Haider Qizilbash is Research Associate at Fraunhofer IPA,
Stuttgart, Germany. qizilbash ali@yahoo.com

2Anoj Kumar Yadav Ravensburg-Weingarten University of Applied Sci-
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4Werner Kraus is Department Leader Robotics and Assistive Systems at
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high investments and may also require skilled expertise for
the installation and further development of software for the
mobile robots in any application. In research by Sabattini
et al., describe the adoption of mobile robots, to make
it cost-effective with accurate localization systems, better
routing plans, and traffic management systems (e.g., traffic
caused by other robots and the ability to work interactively
with humans). As a result, it is critical to have optimized
technology for mobile robots in any industrial application in
order for them to be cost-effective [17]. So to efficiently use
a fleet of mobile robots in retail or warehouse applications,
optimized routing is of foremost important. So considering
the capacities of the robot, the orders are to be completed
while optimizing for the distance traveled by the robots. This
will ensure orders being completed in shorter time and in
result, be able to obtain return of investment faster.

The main objective of the paper is to efficiently use the
fleet of mobile robots in a retail application such that the
orders placed are completed by robots by minimizing the
total traveling distance and minimizing the number of robots
required to complete the order. Orders placed for pickup
and delivery in a retail applications, where multiple items
are going to be picked from various locations within an
environment and delivered to fixed delivery locations. Every
item that is going to be picked up will have a specific
delivery location where it should be dropped off and have
some specific weight. Whereas mobile robots also have a
maximum limit to how much they can carry. Randomly
allocating the orders to robots would lead to redundancy
where the same location is visited multiple times, or visiting
a location by a robot where another robot has just passed
by. Also, it might lead to circumstances where some robots
are overloaded or worse, moving mostly without much load.
Manually calculating the possible routes and assigning the
orders to the robots demands high calculation and time.
Approaches like greedy algorithms are often used for smaller
similar applications where nearest pickup item is assigned to
nearest robot. But this is also not useful as it takes no account
of fixed delivery location and weight thresholds. Therefore,
this paper aims to optimize routes for mobile robots so that
the distance traveled is minimized and all the orders are
completed considering all the constraints related to the order
and robot capacities in a retail setting.

II. BACKGROUND

Ant Colony Optimization (ACO) is an optimization tech-
nique which is inspired by the foraging behavior of of ants.
Ants do not have developed sense of sight so they do not
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use it for navigation. Instead they use pheromones which
is a chemical substance having a very strong scent which
the ants deposit while traveling in search of food and way
back home and later other ants can follow the smell to trace
the food. Bülent Catay et al.[1] explains the behavior of ant
colonies to find food sources and also communicate with
other ants by laying a chemical on the trail called pheromone.
The pheromones are laid by the moving ants on the path
they take. However, not every ant will take the path on
which they sense the pheromone. Some ants take random
paths to generate different solutions and also to escape the
local optimality. The ants normally take the path that has
the higher pheromone level. The shorter the path, the higher
the pheromone deposited on the path because the path is
visited by more ants compared to a path that is longer. The
pheromone deposited will evaporate with time from the paths
if they are not revisited by the ants anymore.

The ACO algorithm was first introduced by Marco Dorigo
in his thesis [4]. Since then this approach has been used
widely in publications for solving various problems in di-
verse applications of science and technology. Researchers
used ACO in routing problems such as the Traveling Sales-
man Problem (TSP) [3] and [19] and Vehicle Routing
Problem (VRP) [5] and [10]. It has also been used in multi-
robot task allocation and path finding problems by Kulatunga
et al. [7] and Qizilbash et al. [14].

The Routing Problem is one of the most important appli-
cations of combinatorial optimization, in which the goal is
to find the best routes with the constraints or demands of
several geographically scattered customers/nodes, with the
least total distance or minimizing the overall costs [13].
The most known routing problem is the Traveling Salesman
Problem (TSP). The problem is to find the shortest route to
visit all of the cities at different locations and return to the
starting point. TSP is said to be a NP-Hard problem, i.e.,
it cannot be solved in polynomial time [16]. The extension
of the common TSP with multiple vehicles is the Vehicle
Routing Problem (VRP). Dantzig and Ramser [2] proposed
the original version of the VRP, formulated as the ”Truck
Dispatching Problem,” to calculate the best routes for a fleet
of gasoline delivery trucks. The classical VRP has a set of
delivery customers and a central depot. An extension of VRP
is Capacitated Vehicle Routing Problem (CVRP) and, as the
name suggests, in this problem, each vehicle in the fleet has
some capacity and correspondingly each city or customer
has a certain non-negative demand weight. A route for all
particular vehicles need to be constructed such that the total
demand from all customers or pickup locations should not
exceed the vehicle capacity limit. In our paper we address
Capacitated Vehicle Routing Problem with Pick and Delivery
(CVRP-PD). As suggested by Min [12], we can see VRP
with Simultaneous Delivery and Pick-up (VRPSDP) variant
of the VRP problem where the pickup and delivery are
independent to each other. Eksioglu et al. discusses other
variants and sub-variants of VRP problems in detail in its
Taxonomic review [6].

ACO in particular has been used to solve CVRP has

previously been applied by Mazzeo et al. [11], Stodola et al.
[18], Ky et al. [8] and Tan et al. [20]. ACO has also been used
for cumulative capacitated vehicle routing problems where
minimizing the sum of arrival times is the objective function
[9]. This type of variant of CVRP is useful in applications
like supply chain in disaster areas where it is important for
the load to reach quickly rather than how much vehicles
are traveling. other applications such as waste disposal and
collection vehicles routing has given rise to compartment
vehicle routing problem as in the works of Reed et al. [15].
But as we will be considering ACO to solve CVRP-PD
version with an added constraint that the capacity of robots
can be regained during the tour once an item is dropped. This
is not mostly applicable for package delivery vehicles as in
most cases vehicles are filled up at a depot location and do
not need to refilled with packages again. Although in a retail
setting, this is of utmost usage for mobile robots as they can
choose to deliver some items to delivery locations while still
continuing their tour and continuously picking more objects
once some capacity is regained. This is what we call Retail
based Capacitated Vehicle Routing Problem and will be using
the term further on.

III. PROBLEM FORMULATION
The objective function for this problem will be minimum

total distance traveled by all fleet of robots. Also being
optimized here would be number of vehicles. The constraints
for the problem are mentioned as following:

• The current capacity of the robot should not exceed total
load on the robot.

• Each pickup node is visited by the robot only once.
• Each pickup location have some weight constraint.
• Pickup and deposit of the same item should be per-

formed by the same robot.
• All robots need to return to the pool/same station.
In figure 1, a brief illustration of the problem can be seen.

On the left section of the figure, green circles represent item
locations (pickup) and yellow number indicates weight of
the item. These items needs to be dropped at grey triangles
(depots) which is also indicated using red arrows, which
directs towards fixed particular drop locations for each item.
In the middle you can see the blue pentagon which represents
pool of robots where the robots start from. The Capacity for
the yellow robot is 12, capacity of orange robot is 15 and
capacity of green robot is 15. Finally, on the right section

Fig. 1. Capacitated Vehicle Routing Problem with multiple pickups and
multiple fixed deposit locations
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you can see the routes traced for each robot in specific color
along with the updated total capacity.

The fleet of robots is represented by R, set of all robots
with equation below and M is the fleet size of the robots i.e.
∥R∥ = M

R = {r1, r2, ...rn} (1)

C = {c1, c2, ...cn} (2)

And C represents set of all capacities of mobile robots:
Where c1ϵr1 , c2ϵr2 and cnϵrn

Each of the pickup nodes has a certain demand or weight.
Pickup nodes are represented by P and deposit nodes are rep-
resented by D. Total number of delivery nodes is represented
by ∥D∥ = N.

P = {p1, p2, p3...pn} (3)

D = {d1, d2, ...dn} (4)

D´ represents list of pairs of pickup and deposit locations,
corresponding to the directed edges in the figure 1.

D´ = [[p1, d1], [p2, d2], ...[pn, dn]] (5)

In equation 5, pn is the list of all pickup locations ϵP ,
which is to delivered to particular deposit locations dn and
nϵ[1, 2, 3, ...N ]. li represents the demand of item to be picked
from the list pn, pnϵP . dij represents the distance from the
location i to j, where i, jϵD. for the distance calculation
refer to Implementation. And W represents weight of items
corresponding to pickup locations such that pi for piϵP. And
as already mentioned in problem formulation, there would
be multiple pickup nodes corresponding to each deposit
location.

W = {w1, w2, w3, ...wn} (6)

Where w1ϵp1 , w2ϵp2 and wnϵpn
Further modeling involves to ensure one node is visited

exactly once, pickup and delivery of a request placed is
carried out by the same robot or the same route constructed.
Robots are also ensured to start from pool station and come
back to the same station once the order is completed and
that no robot exceeds its capacity.

IV. IMPLEMENTATION

As ACO is a population-based algorithm, there is an initial
parameter called ”colony size.” This parameter represents the
size of the colony, i.e. how many solutions are to be built in
each iteration of the algorithm. There is another important
initial parameter called the ”step size” of the algorithm.
This parameter tells us how many iterations the algorithm
should run. In each step, there are a number of solutions
equal to the colony size. In ACO algorithm, based on the
initial condition, the first solution is built, which is not
the desired optimal solution. The best solution is found as
iteration proceeds, based on heuristics and pheromone level
on each edge. The ACO algorithm mimics the simple rules
followed by the ants to find the food source. Initially, each
artificial ant randomly generates paths based on the initial

parameters. As the algorithm proceeds, ants generate the new
solution based on the amount of the pheromone deposited on
each edge. The algorithm selects the next node to visit, i.e.,
(i+1) from the node (i) based on the probabilistic function.
Once an individual ant in the colony has constructed a tour,
pheromones are updated on that tour, called local pheromone
update. The edge that is taken by more ants in their tour has
a high pheromone level. A global pheromone rule is applied
in the algorithm to avoid the algorithm convergent towards a
sub-optimal region. This process is done by evaporating the
level pheromone after every step of the algorithm, i.e. when
all the ants in the colony have constructed the tour. In other
words, the pheromone intensity on an edge that is no longer
taken by the ants will decrease with time unless it’s revisited
by the ants again.

The optimization problem is transformed into the problem
of finding the best or shortest path on a weighted graph
represented by arcs. The length of the arc is the distance
between the two nodes or cities, of the arc. The artificial
ants, in our algorithm, build solutions incrementally based
on artificial pheromones and heuristic distance. For simplic-
ity, this distance is calculated based on euclidean distance
between the two cities which is given by equation 7. While
testing the scenario, this distance can easily be replaced in
the algorithm by the global plan distance calculated by the
robots using the simulation environment.

dij =
√
(x2 − x1)2 + (y2 − y1)2 (7)

In our approach, we will not directly use the probability
function to find the next best fit node, but rather use the
roulette wheel selection process. The roulette wheel selection
process generates randomness to prevent the solution to get
stuck in the local optimum. In the literature, the roulette
wheel selection process for the nearest node is used in the
genetic algorithm to solve the VRP problem. In this paper,
we use this approach to construct the tour. The selection
process will make use of inverse distance between two
nodes and pheromones present on the edge. Naturally, the
pheromone evaporates over time as a result, reducing the
probability of other ants taking the path. The evaporation of
pheromone is directly proportional to the distance, i.e. the
longer the distance, the greater the pheromone evaporation.
Therefore, the shorter path has a higher pheromone level. So
in our approach we used the pheromone update process at
each step size. We have used (1 − ρ) as a factor to control
the pheromone update, where ρ is pheromone evaporation
constant. As we are dealing with capacity constraints of items
as well so we make sure at every selection that total load on
the robot does not exceed the maximum load a robot can
carry. The flow of algorithm can be understood using the
pseudo-code in algorithm 1.

V. EXPERIMENTATION
In this section, we perform multiple experiments to solve

the pickup and delivery problem in retail application for a
fleet of mobile robots with different capacities. These exper-
iments are performed for different order sizes and different
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Algorithm 1 CVRP-PD with ACO
CVRP (ColonySize, StepSize, α, β, RobotParameters,
Nodes, PickDropList)
SequenceList = (RobotParameters)
for each Robot in SequenceList do

for each Step in StepSize do
for each Ant in ColonySize do

while RobotCapacity ≥ weight of pickup do
Node = SelectNode (TourList, α, β )
TourList.Append(Node)
AddPheromone(Tour, Distance)
Update.RobotCapacity(TourList.ItemDrop)

end while
GlobalPheromone(All Nodes)

end for
return BestTourist, BestTotalDistance for each Robot

end for
end for

scenarios where there are multiple delivery locations and
for different capacities of the robots. For the setup of these
experiments, an order list is created which has pickup and
delivery requests. In the order list coordinates of pickup
and delivery is specified (x, y), the demand or weight of
an item to be picked is assigned at random between 1 to
5 and as exception item number 2 is assigned 15. There
can be single or multiple items to be dropped at delivery
location. Since we are dealing with mobile robots with
different capacities, the size of the fleet and each robot
capacities in the fleet is specified as the initial parameter
of the algorithm. ACO algorithm, as discussed previously,
has its own parameters such as colony size, step size, alpha
and beta for the probabilistic function, rate of evaporation
of pheromone, initial pheromone level and distance matrix
of robot pool station, pickup points and delivery points. In
experiments we will discuss the results of different order list
length, and varying parameters of ACO algorithm.

A. Experiment 1

In this experiment the algorithm constructs the tour for
order list of size equal to 9 as shown in table I. In this
experiment the robot capacity is not regained after dropping
the picked items with certain load. For the experiment in
consideration, the Number of robots used is 3, the step size
is 50 and colony size is 5. Weight capacities of the first robot
is 15, second robot is 20 and third robot is 30.

Results of the first experiment can be seen from the figure
2. The number of robots used were 2 and the Total distance
traveled was 307.9. This is one of the simplistic experiments

TABLE I
ORDER LIST FOR EXPERIMENT 1

Pickup Nodes Delivery Nodes Pickup and Delivery list
[1,2,3,4,8,9] [5,6,7] [1,9,7],[2,3,8,6],[4,5]

TABLE II
ORDER LIST FOR EXPERIMENT 2, 3 AND 4

Pickup Nodes Delivery Nodes Pickup and Delivery list
[1,2,3,4,8,9,11,12,13,..28] [5,6,7,10] [26,22,19,17,16,14,5],

[25,21,20,11,8,3,2,6],
[24,23,15,13,9,1,7],
[28,27,18,14,12,10]

with very manageable number of pickups for each drop off
so the figure 2 is easy to understand and one can trace robots
easily. In this figure 2, first robot is in blue color trace and
starts with 0 and continues to 4 to pickup the item, continues
to 9 and 1 for similar action and then proceeds to 7 for drop
off items picked from 1 and 9 and then proceeds to drop
the rest to drop location 5. Similarly we can see robot 2 in
orange trace also starting from 0 and proceeding to 2, 3 and
8 and then proceeding to 6 for drop off and finally returning
to starting point.

B. Experiment 2

In this experiment the algorithm constructs the tour for
order list of size equal to 28 as shown in table II. In this
experiment the robot capacity is not regained after dropping
the picked items with certain load. The number of robots
used along with the step size and colony size are same as
in the first experiment also specified subsection V-A. Weight
capacities of each robot are same as the first experiment also
specified in subsection V-A.

Results of the second experiment can be seen from the
figure 3. The number of robots used were 3 and total
distance traveled was 1025.16. But in this experiment some
of the pickup requests were not completed because the
demand weights of items exceeded the total robot capacities
constraints in total. In this experiment, we did not allow robot
to regain capacity and, therefore, robots had no choice to
deliver the ones they already picked and leave some items
unpicked. Therefore, in next experiments we allow for the
robot capacity to be regained when items are deposited at
delivery locations during the tour.

Fig. 2. Tours constructed for the robots in Experiment 1
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C. Experiment 3

In this experiment the algorithm constructs the tour for
order list of size equal to 28, similar to previous experiment,
as shown in table II. In this experiment the robot capacity is
regained once the item is dropped i.e. the weight or demand
of the items delivered is removed from the robot carrying
the total load. Number of robots used along with the step
size and colony size along with Weight capacities of each
robot are same as in the previous experiment also specified
subsection V-A.

Results of the third experiment can be seen from figure 4.
The number of robots used were 3 and Total distance traveled
was 1034.37. In this experiment, all pickup requests were
completed successfully as robots were regaining capacities
after dropping items to the respective delivery locations.

D. Experiment 4

In this experiment the algorithm constructs the tour for
order list of size equal to 28, similar to previous experiment,
as shown in table II. In this experiment the robot capacity
is again regained once the item is dropped i.e. the weight
or demand of the items delivered is removed from the
robot carrying the total load. Number of robots used along
with the step size and colony size are same as in the
previous experiment also specified subsection V-A. For this
experiment, weight capacities of the first robot is 15, second
robot is 28 and third robot is 15.

Results of the forth experiment can be seen from the
figure 5. The number of robots used were only 2 and total
distance traveled was 932.22. In this experiment, all pickup
requests were completed successfully and it was observed
that in comparison with experiment 3, this experiment was
completed by using only 2 robots and the total distance
traveled by the robots is less than experiment 3.

VI. EVALUATION

We observed after multiple experiments that sequence of
robots also impacts the tours of the robot. Reason for this
is that the algorithm iteratively generates the tour for each
robot in the given robot sequence and, therefore, is biased

Fig. 3. Tours constructed for the robots in Experiment 2

Fig. 4. Tours constructed for the robots in Experiment 3

towards the sequence of robots. It also makes it easy to get
stuck in local minima which is a common ACO problem. In
order to solve this, we propose two methods. First solution is
sorting, where we sort the sequence of robots in descending
order of capacities. It will make sure that the robot with
bigger capacity is assigned to pickup more items and hence,
reducing the total distance traveled by all robots. Second
method we propose is shuffling of the robot sequence and
running the algorithm for all combinations of fleet sequences
and returning the minimum total distance tour among these
combinations. This will ensure algorithm not to get stuck in
local minima. The con of this approach is that computation
time will increase by the factorial of fleet size.

We tested the shuffling approach with an experiment
keeping all the parameters same except that we shuffled
robots in the fleet according in all combinations of capacities
as we can see in table III. We can see that the two best tour
results we achieved (row 4 and row 7 on table III), were
from the sequences where largest capacity robot was first in
the sequence. This validates our initial method of sorting as
well. It can also be observed that the two best results use only
one robot to complete the tour whereas in other sequences
at-least two robots were used.

Fig. 5. Tours constructed for the robots in Experiment 4
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TABLE III
SHUFFLING ROBOT CAPACITIES METHOD

R1 R2 R3 Total distance traveled Total robots used
20 15 30 1031.85 2
15 30 20 964.42 2
30 15 20 731.6 1
20 30 15 938.08 2
15 20 30 1027.45 3
30 20 15 727.88 1

VII. CONCLUSION

In this paper, we propose a method derived from Ant
Colony Optimization(ACO) to solve for retail based Capac-
itated Vehicle Routing Problem with Pickup and Delivery
(CVRP-PD) for mobile robots. The method has been used
in multiple experiments and has been successful. The method
is also evaluated and has common ACO short-comings, of
which improvements have been suggested and initial tests
have been conducted. As a future work, we would like to
work upon decentralized routing of the mobile robots using
parallel computing.
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Direct Object Reconstruction on RGB-D Images in Cluttered
Environment

Mikołaj Zieliński1, Bartłomiej Kulecki1, Dominik Belter1

Abstract— Robots have limited perception capabilities when
observing the scene from a single viewpoint. Some objects on the
scene might be partially occluded and their 3D shape is not fully
available to the robot. Existing methods obtain object models
through a series of observations using RGB-D sensors or the
robot is trained to operate in the presence of occlusions. In this
paper, we directly address object reconstruction in the presence
of occlusions. We propose an image generation approach using
a neural network architecture to remove occluding objects and
other objects from RGB-D images and reconstruct the occluded
object that the robot is interested in. The proposed method
utilizes a cascade of neural networks trained to progressively
remove occlusions and reconstruct the RGB-D images of the
scene.

I. INTRODUCTION

Objects pose estimation [1], grasping [2], [3] and manip-
ulation [4] is challenging due to occlusions. In the typical
scenario with the autonomous robot working in an unstruc-
tured environment, the robot has to detect and estimate the
pose of the selected objects using the onboard perception
system (Fig. 1). Most of the perception systems of the
robots operating in the indoor environment utilize RGB and
depth cameras. As a result, the full scene model of the
scene is impossible to obtain from a single view due to
the limited observation angle and occlusions in the scene.
Careful scene scanning is time-consuming and very often
impossible because the robot does not have access to poses
that allow scanning of the occluded parts of the scene.
Similarly, when the robot grasped the object or performs in-
hand manipulation, the pose of the object should be estimated
from a single view to improve the performance of the robot.
However, this task is challenging because of the limited view
of the RGB-D cameras and the strong occlusions of the
selected object by the fingers of the robot.

Typical approaches to pose estimation and grasping ob-
jects based on the machine learning focus on training the
system in the cluttered environment [1], [5]. In this case,
the system is trained to solve various challenging tasks
like grasping, pose estimation, and simultaneously deal with
occlusions. Other approaches assume that the main task is
performed based on a series of time-consuming observa-
tions [6], [7], [8] or the robot actively plans the sequence
of actions and interacts with objects to remove occluding
objects [9], [10]. However, these approaches will not help if

The work was supported by the National Science Centre, Poland, under
research project no UMO-2019/35/D/ST6/03959.

1Authors are with Institute of Robotics and Machine Intelli-
gence, Poznan University of Technology, 60-965 Poznań, Poland
name.surname@put.poznan.pl

a

b c

Fig. 1. Example application scenario of the proposed method (a). The goal
of the proposed method is to remove the occluding object (black spring
clamp) and other objects from the scene (b) and simultaneously reconstruct
the occluded object (cracker box) (c) to improve the performance of robots
operating in a cluttered environment.

the robot has to estimate the pose of the object in the hand
occluded by the fingers.

In this research, we focus on direct scene reconstruction.
However, instead of directly reconstructing the 3D layout of
the scene and the 3D shape of the objects [11], [12], [13], we
formulate the problem as an image generation task. In this
task, the robot observes the scene using an RGB-D camera
(Fig. 1b). The images contain the partially registered object,
that is occluded by other objects on the scene or fingers of
the robot during grasping (Fig. 1a). The goal of the proposed
system is to generate RGB and depth images of the scene
and remove objects from the images except for the object
that the robot is interested in. The reconstructed images can
be later used by the pose estimation framework [1] or during
grasping objects [14].

Inspired by the methods that remove small objects from
the images e.g. raindrops removal from the windshield of
a car [15], we propose a neural network architecture that
removes unwanted objects from the RGB-D images. Because
the scene reconstruction problem is formulated in the 2-
dimensional space, we utilize standard encoder-decoder ar-
chitecture. The main challenge of this task is related to the
size of the removed objects. Reconstructing large parts of
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Fig. 2. Architecture of the proposed object reconstruction system on RGB-D images. The proposed system consists of three U-Net-based neural networks
that gradually remove the occluding objects and other objects from the scene and simultaneously reconstruct the occluded object.

the images is significantly more challenging than removing
small objects like raindrops. Thus, we focus on training a
cascade of neural networks that gradually remove objects
and reconstruct the images of the scene.

II. RELATED WORK

The primary goal of the proposed method is to reconstruct
the images with the occluded object on the scene. The
proposed solution allows “seeing through” occluding objects
and reconstructing the RGB-D images of the occluded object.
The problem that we formulate in this paper is different from
problems commonly presented in the literature like unwanted
objects removal from the images [15] or direct scene re-
construction [11], [12], [13]. The methods that remove the
objects from the images are based on image segmentation
with convolutional neural networks [16] or visual transform-
ers [17]. Then the holes in the images are reconstructed using
in-painting methods [18]. These approaches assume that we
know the category of occluding objects. In this research,
we assume that only the occluded object is known and this
object can be occluded by any other type of object. For this
reason, we can not directly utilize image segmentation and
in-painting methods in this task. Also, the popular problem
of raindrop removal is slightly different because the objects
that are removed from the image are in the same category
and they are small with respect to the image [15].

The proposed method reconstructs the depth and RGB
image of the selected object. Most of the methods that
reconstruct the scene operate directly in the 3D space. The
methods utilize 3D convolutions for shape completion of the
objects [13]. The methods that operate directly in 3D space
are computationally-expensive and in some cases, the infer-
ence may take several minutes even if standard fully Muliti-
layer Perceptron is applied to infer about the occupancy of
the 3D space [19]. Another scene and object reconstruction

method tries to match the 3D object CAD models from the
database [20] to the observed scene. This approach requires
estimating the poses of the objects on the scene. In contrast,
the goal of our method is to directly reconstruct the RGB-D
images. Thus, our method utilizes techniques that are popular
in view-dependent scene reconstruction [21], [11]. On the
other hand, our method does not reconstruct a full 3D model
of the object.

The method from computer vision that segment the images
of the 3D scene and represent them as a Layered Depth
Image (LDI) is used in [22]. These methods utilize semantic
segmentation. The method determines the spatial relation
between layers and with this information, it is possible to
remove the objects from the scene. The LDI determines
which objects are closer and which ones are farther from
the camera. Our method also segments the images but this
information is used during training only to improve the
convergence of the training. In contrast to our method, the
LDI does not reconstruct the parts of the objects that are
occluded on the images.

A. Approach and Contribution

In this paper, we propose a method that removes the objects
from the images and leaves and reconstructs the surface and
the texture of the object that is related to the task. The main
contributions of this paper include the following:

1) view-dependent definition of the scene reconstruction
problem that efficiently takes advantage of 2D convo-
lutions,

2) training loss formulation and a new architecture of the
neural network that utilizes three branches to remove
objects and reconstruct the scene,

3) experimental verification of the proposed method on
the images from the Kinect Azure and Asus Xtion Pro
Live.
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Fig. 3. Example random training scenes with the objects from the YCB
dataset: cracker box, a mustard bottle, tomato soup can, power drill, and
extra large clamp.

III. OBJECTS REMOVAL AND OBJECT RECONSTRUCTION

The main task of the proposed neural architecture is
to remove the objects from the scene and reconstruct the
occluded parts of the object that the robot is interested
in. In contrast to neural networks that remove small and
known objects from the images, the end-to-end solution
based on the U-Net-like architectures does provide accurate
results. Instead, we propose a cascade of neural networks
that gradually reconstruct the occluded objects on the RGB-
D images. The approach of training a cascade of separate
modules has many advantages. We can train each subsystem
independently using different loss functions. This strategy
allows each module to learn a given task better than in end-
to-end solutions because instead of training one network to
solve one complex problem, we train neural networks to
solve much simpler tasks.

The architecture of the proposed neural network is pre-
sented in Fig. 2. The proposed system consists of three main
modules: coarse RGB-D reconstruction, accurate color image
reconstruction, and accurate depth image reconstruction.
Each of these subsystems is based on deep neural networks
with a U-Net-type architecture [23] with the ResNet-34
encoder, named Res-U-Net, pre-trained on the ImageNet
dataset. The coarse construction module takes a pair of RGB-
D images as input with the reconstructed object occluded
by other objects. The task of this branch is to initially
remove the occluding objects, estimate the geometry of the
reconstructed object, and initially recover the texture of the
object. The generated RGB images are provided to the input
of the accurate color image reconstruction branch. It aims to
improve the quality of estimation of the actual appearance
of the reconstructed object. In parallel, the depth images go
to the input of the depth image reconstruction branch. This
subsystem is designed to improve the quality of depth image
reconstruction generated by the coarse processing module.

a b

c d

Fig. 4. Comparison between real depth images from Kinect Azure (a),
Asus Xtion Pro Live (c), and the example depth images from the training
set with artifacts generated using RGB-D camera model for Kinect Azure
(b) and Asus Xtion Pro Live (d).

A. Training
Each neural network from the architecture presented in

Fig. 2 is trained independently. The loss functions play a
crucial role in the training process. We use the reference
RGB image on the output with removed objects IRGB

ref , and
corresponding depth image Idref , scene segmentation image
Isref , scene segmentation image with removed objects Ioref ,
and image that contains normal vectors to the surfaces of
the objects Inref . Because we found the structural similarity
index measure (SSIM) sensitive to local minima, we utilize
the Mean Squared Error (MSE) to define the loss function
for training each neural network:

MSEǫ = eǫ =
1

n

n∑

i=i

(pi − p̂i)
2, (1)

where ǫ is related to the type of reference image and pi is
the i-th pixel of the image used to compute the loss value.

Even though we do not focus on segmentation, the coarse
reconstruction branch returns also a segmentation image. In
this case, we utilize the strategy defined in [24] that jointly
trains multiple images on the output of the CNN to improve
the consistency of the results compared to separate learning.
The first branch of the CNN is trained using the following
loss function Lc:

Lc = a1 ·eRGB+a2 ·ed+a3 ·es+a4 ·er+a5 ·eu+a6 ·eo, (2)

where eRGB , ed, es, er, eu, and eo are MSE values computed
for the RGB, depth, segmentation, depth of the reconstructed
object, depth of the union of removed and reconstructed
objects, and depth of the removed objects, respectively. The
coefficients are set to a = [2, 1, 1, 1, 5, 5] to increase the role
of the objects in the image with respect to the whole image.

The RGB reconstruction branch that returns the recon-
structed RGB image and takes the output RGB image from
the first branch is trained using the following loss function:
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a

b

c

d

Fig. 5. Example reconstruction results of various objects on the synthetic
dataset: input RGB (a), output RGB (b), input depth (c), and output depth
images (d).

LRGB = b1 · eRGB + b2 · er + b3 · eu + b4 · eo, (3)

where eRGB , er, eu, and eo are MSE values computed for
the RGB image, RGB image of the reconstructed object,
RGB image of the union of all objects, and RGB image of
the removed objects, respectively. The coefficients are set to
b = [2, 1, 1, 1]. The last branch that reconstructs the depth
image and takes the depth image from the output of the
coarse reconstruction branch is trained using the following
loss function:

Ld = c1 · es + c2 · er + c3 · eu + c4 · eo + c5 · en, (4)

where es, er, eu, eo, and en are MSE values computed
for the segmentation image, the depth image of the re-
constructed object, the depth image of the union of all
objects, a depth image of the removed objects, and image
of the normal vectors, respectively. The coefficients are set
to c = [1, 1, 20, 20, 0.1]. Again, we found that forcing the
neural network to return the segmentation image and using
the normal vectors during training even though the system
does not utilize these values improves the convergence of the
training and consistency of the results.

We train the three neural networks for 14/14/6 epochs
using the Adam optimizer. The obtained neural network
reconstructs a specific instance of the object. To reconstruct
various instances, we trained multiple CNNs.

B. Dataset

Learning a neural network using real data gives the best
results. In this case, training and inference are performed
on data that have similar characteristics. However, gener-
ating real training data for computer vision tasks is time-
consuming. For this reason, a synthetic data generator is used
in this work. The advantage of a synthetic dataset generator is
the ability to quickly generate new data in a fully controlled
environment. On the other hand, it is difficult to guarantee the
same properties of the generated and real images. This can
lead to the neural network not being capable to operate on

a

b

c

d

Fig. 6. Example reconstruction results of the cracker box on the images
from the Kinect Azure: input RGB (a), output RGB (b), input depth (c),
and output depth images (d).

real images. In this research, we use the Blender environment
and objects from the YCB [25] and shapeNet [26] datasets to
generate the training dataset. Moreover, we actively modify
the camera pose and configuration of the objects on the scene
to set the reference occlusion of the object. With this strategy,
we can uniformly generate the samples with the occlusions
changing from 10 to 90%.

We train our system to operate with Kinect Azure and
Asus Xtion Pro Live RGB-D cameras. We found that the
system performs significantly better if we model the proper-
ties of the depth images in the dataset generator. We mimic
a strategy similar to the method presented in [27] to generate
depth images for the Asus Xtion camera (Fig. 4). This
model does not fit the images returned by the Kinect Azure
because these sensors use different techniques to measure
the distance to objects. We noted that the depth images from
the Kinect Azure do not have data on the right side of the
objects. We conclude that this phenomenon comes from the
fact that the RGB and depth cameras are shifted, and the
depth measurements are transformed to the RGB camera
frame to have a direct correspondence between the RGB and
depth pixels. We simulate the shift between RGB and depth
cameras to mimic this phenomenon during generating the
training samples. We transform the depth measurements into
3D space and reproject them back on the RGB camera frame.
The results of camera modeling are presented in Fig. 4.

To show the results on the real images, we utilize the
YCB video dataset that operates on the Asus Xtion Pro
Live images [25]. To show the result on the Kinect Azure
camera we collected 100 RGB-D images of the scenes
containing YCB objects (cracker box) occluded by other
objects1. We also registered the ground-truth images in the
real environment by removing the occluding objects from
the scene. These images are later used for qualitative and
quantitative evaluation.

1The dataset is available at https://drive.google.com/file/
d/15zJp1F9ZQGhIRiyqc2pgAGCo1x1sQyWi
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Fig. 7. Example reconstruction results of the cracker box on the images
from the Asus Xtion Pro Live (YCB video dataset): input RGB (a), output
RGB (b), input depth (c), and output depth images (d).

TABLE I
MAE VALUE OBTAINED FOR THE OBJECTS FROM THE SYNTHETIC TEST

SET WITH THE ASUS XTION IMAGES.

cracker
box

mustard
bottle

tomato
soup can

power
drill

extra large
clamp

MAEd
r [mm] 12.52 18.52 27.84 18.26 18.52

MAEd
o [mm] 24.93 21.26 19.27 23.88 21.26

MAERGB
r 12.74 12.09 14.25 12.04 12.09

MAERGB
o 25.32 25.50 21.60 23.44 25.50

IV. RESULTS

A. Qualitative evaluation

First, we performed a qualitative evaluation of the gen-
erated images. Example results presented on the synthetic
dataset and the images from the real Kinect Azure and
Asus Xtion, are presented in Fig. 5, Fig. 6, and Fig. 7,
respectively2. The trained neural network properly recovers
the texture of the selected object, and at the same time
removes the remaining objects. Even though we pay more
attention to the reconstruction of the objects (weights in loss
(2)-(4)), the neural network also reconstructs the background
and the surface of the table. The texture is slightly distorted
but the details are well visible. More importantly, the neural
network trained on the synthetic dataset also works on the
data from the real sensor (Fig. 6 and Fig. 7). Qualitative
results show that the proposed method works better when
the images from the Kinect Azure are used. This result is
caused by the higher quality of depth images from Kinect
Azure that contains smaller numbers of artifacts and provides
a more accurate model of the objects on the scene.

B. Quantitative evaluation

To provide the measurable quality of reconstruction, we
compute the mean absolute error for the reconstructed
(MAEr) and for removed objects (MAEo) for the depth
MAEd and RGB images MAERGB. The MAE values for the
RGB images are computed for intensity values that are in the

2The video is available at https://youtu.be/EWMauSVTShA

Fig. 8. Relation between the depth reconstruction error of the occluded
object MAEd

r and the percentage of the object occlusion.

range between 0 and 255. The results are presented in Tab. I.
The results are computed for the synthetic images generated
for the Asus Xtion camera model so they contain artifacts
similar to those introduced by the real sensor. The obtained
MAE value for reconstructed objects changes from 12.52 mm
for the cracker box to 27.84 mm for the power drill. These
results suggest that the neural network better reconstructs
regular shapes. The reconstruction error for the occluding
objects is larger for RGB and depth images. This comes from
the fact, that we prioritize the reconstruction of the occluded
object. Moreover, a whole removed object is replaced by the
pixels belonging to the background and objects behind the
removed object while the CNN reconstructs only a part of
the occluded object.

We also check the dependency between the reconstruction
error depends and the object occlusion. If the reconstructed
object is slightly occluded, the task given to the neural
network is easy. On the other hand, the reconstruction
becomes more challenging when the occlusion increases. In
the next experiment, we gradually increase the occlusion of
five objects from 10% to 90%. The results for five objects
from the YCB dataset are presented in Fig. 8. When the
occlusion is small, the reconstruction error is almost three
times smaller than the average errors presented in Tab. I. The
presented experiments show that we can expect gradually
increasing reconstruction error when the occlusion of the
objects increases.

We also verified the proposed neural network on the data
from the Kinect Azure (Fig. 6). The mean MAE value for
the whole depth images is equal to 24.8 mm while the MAE
value for RGB images is equal to 5.66. When we use the
mask of the reconstructed object to compute the error, The
MAE value is equal to 53.8 mm for the depth images and
19.7 for RGB images.

C. Ablation study

We performed an ablation study to justify our design
choices. We have checked the popular Binary Cross Entropy
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TABLE II
MEAN µ AND STANDARD DEVIATION σ OF THE RECONSTRUCTION

ERROR FOR THE DEPTH Id AND RGB IRGB IMAGES OBTAINED FOR

VARIOUS STRATEGIES OF TRAINING THE NEURAL NETWORK.

method µd
r [mm] σd

r [mm] µRGB
r [] σRGB

r []
Binary Cross Entropy 52.67 56.04 14.25 20.09
End-to-end (2) 12.01 38.21 13.58 21.31
our (2)–(4) 12.52 24.93 12.74 25.32

a

b

c

Fig. 9. Experiment with the robot grasping a mustard bottle occluded by
the cracker box: initial robot configuration (a,b) and the robot grasping the
object (c).

loss for evaluating the segmentation results instead of using
MAE. We also verified the end-to-end approach to the
problem. Because end-to-end training from scratch does not
bring satisfactory results, we trained the neural network using
the proposed loss function. Then, we continue training all
branches of the neural network simultaneously using the
proposed loss function (2). The results are presented in
Tab. II. Training CNN using Binary Cross Entropy brings the
worst results. These results might be caused by the unequal
size of positive and negative masks on the images. Two-
staged learning brings significantly better results. It even
provides slightly better mean results for the depth images
but with a larger standard deviation. At the same time, the
proposed loss function returns good results for both RGB
and depth images.

We also checked the influence of the proposed sensor
model. The MAE value for the real images is equal to
29.8 mm when we use perfect synthetic data to train the
neural network. The error is reduced by 17% to 24.8 mm
when the model of the Kinect Azure camera is used to
generate training samples [28].

D. Grasping with object reconstruction

Finally, we have performed the qualitative evaluation of
the scene and object reconstruction on the real robot. In the
experiment, the robot observes the scene with two objects
on the table. The scene configuration is presented in Fig. 9.
The robot is going to grasp the mustard bottle that is strongly
occluded by the cracker box. The initial scene configuration
captured by the RGB-D camera is presented in Fig. 10a. The
robot utilizes the method presented in [29] to grasp the mus-
tard bottle. To this end, the grasping method detects objects

from the point cloud and determines the 3D bounding boxes
by computing the covariance matrix for the points belonging
to the object. Using the partial model of the object results
in the incorrect reference pose of the gripper (Fig. 10b). In
Fig. 10c, we compare the reconstructed mustard bottle with
the initial bounding box that shows that the obtained grasp
pose lies on the edge of the object and causes the grasp
failure. Our method directly removes the cracker box and
reconstructs the occluded mustard bottle that improves the
grasp pose that lies close to the geometric center of the object
(Fig. 10d). The robot grasping the mustard bottle is presented
in Fig. 9c.

V. CONCLUSIONS

In this paper, we deal with the problem of the occluded
objects reconstruction. We propose a method for direct
removing objects from RGB-D images and reconstructing
the occluded parts of the selected object to enhance the per-
ception system of mobile-manipulating robots. We developed
a novel approach for scene reconstruction that incorporates
a view-dependent definition of the problem, leveraging the
efficiency of 2D convolutions. We introduce a new neural
network architecture and formulation of a training loss that
utilizes a cascade of CNNs to effectively remove objects
and reconstruct the scene. Finally, the paper presents the
results of the experiments conducted to validate the proposed
method using images captured from the Kinect Azure and
Asus Xtion Pro Live devices. The obtained results show that
we can reconstruct the given object on the scene without
directly using an object detector or scene segmentation
methods. The reconstruction accuracy depends on the per-
centage of occlusion and the average error for most of the
reconstructed error is smaller than 20 mm.

The proposed method shows promising results in scene
reconstruction and in the future, we are going to use the
reconstructed objects to improve object detection, pose esti-
mation, and grasping methods. We are also going to work on
the neural model of the objects to separate the reconstruction
task from the internal object representation stored in the CNN
structure.
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Robust Perception Skills for Autonomous Elevator Operation by Mobile
Robots

Steffen Müller1, Benedict Stephan1, Tristan Müller1 and Horst-Michael Gross1

Abstract— Autonomous mobile service robots with trans-
portation tasks are often restricted to work on a single floor,
since remote access to elevators is expensive to integrate for
reasons of safety certification. Therefore, already ten years ago
first robots have been enabled to use the human interface for
riding an elevator. This requires a variety of perception and
manipulation capabilities as well as social skills when it comes
to interaction with other people who want to use the elevator
too. We summarize the progress in solving the specific tasks of
detecting and localizing the required buttons to press robustly.
A deep-learning approach for detecting buttons in images is
combined with a verification based on predefined knowledge
on button arrangements in the elevator’s control panels. Also
perception of the elevator’s state and our realization of the
robot’s elevator riding capabilities are discussed.

I. INTRODUCTION

Riding an elevator is a subconscious action for human
beings, even if there is a lot of time to think about it while
waiting for the cabin. For a mobile service robot in contrast
the process has to be decomposed into clearly defined steps
each requiring specific recognition and articulation skills.

To reach a destination on another floor, a robot must
first implement a path planner capable of managing multiple
floors. Already in 2007 Kang et al. [1] described navigation
skills necessary to plan on multi-story maps. In general, a
combination of topological and metric planning allows to
solve the planning problem [2].

Once the plan shows that a transition between floors is
needed, the robot can go to the lift on its current floor, and
then the elevator procedure starts.

There exists research about robots without manipulation
skills, which need the assistance of humans for operating the
lift. [3] as well as [4] described how a robot seeks a helping
hand and analyzes the people’s intent in helping the robot.
Other social studies [5], [6] analyze the effect of a robot’s
appearance and interaction behavior in a conflict situation
while waiting for an elevator.

On the technical side, an autonomous robot first needs to
call the elevator by pressing the respective button. For that
purpose, a robust detection and localization of the button
in the 3D operational area of the robot is needed. In the
early days, this has been achieved using classical approaches
in image space. For example SIFT-feature-based detection

*This research has received funding from the thuringian project of
innovation potentials as part of the thurAI project (grant agreement 2021
FGI 0008).

1Authors are with the Neuroinformatics and Cognitive Robotics
Lab, Technische Universität Ilmenau, 98693 Ilmenau, Germany
steffen.mueller@tu-ilmenau.de

979-8-3503-0704-7/23/$31.00 ©2023 IEEE

or template matching [7] have been used. Recent solutions
rely on neural-network-based detectors. Zhu et al. [8] trained
a Faster RCNN detector on elevator buttons. In order to
also handle situations with unconventional buttons, they
combined the Faster RCNN-based region of interest (ROI)
detection with optical character recognition (OCR) to read
the button labels. Once a 2D proposal for a button location
exists, the utilization of depth data either from 3D cameras
or LIDAR sensors can be used to project the image position
into 3D space. A button detection with a neural network in
combination with a LIDAR for 3D coordinate transform can
be found in [9].

The detection of individual buttons alone may fail or the
wrong label might be predicted in a real world application
where partial occlusions or other artifacts may disturb the
perception. Therefore, the geometry and arrangement of the
complete control panel has been used to disambiguate the
meaning and position of individual buttons. Abdulla et al.
[10] for example detect button panels and correct the exact
location by using artificial landmarks at the corners of the
panel. We adopted the idea of using knowledge of the
complete control panel to make button localization more
resilient.

Assuming that the correct 3D coordinate of the desired
button could be found, the next step is to push the button.
This is a straight forward task utilizing the motion planner
for the robotic arm. To decide if the cabin has arrived and
whether the robot can safely enter the lift, further perception
skills are necessary. Lee et al. [11] recognize the state of the
elevator by laser, and a neural-network-based classification
of the arrow signs is used to confirm success of the push
button action. Once the cabin is entered, the goal floor has
to be selected by means of another button operation. Then
the robot has to recognize the correct floor to leave the lift.
This can either be done by means of artificial landmarks for
localization on the goal floor [11], or the robot can rely on
acceleration sensor tracking [12] and reading the information
panel of the elevator [13]. In all cases, the robot needs to be
specialized on the present elevator, or the environment has
to be adapted to the robot’s needs.

In our work, we tried to avoid any modification to the
environment and used pragmatic solutions for controlling the
whole sequence only with feedback on the lift state extracted
from the SICK laser range scanner of our robot. By reducing
the number of different image-based detection systems to a
minimum, the potential points of failure should decrease as
well, which makes the whole system more robust.

In Literature typically only solutions for the individual
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Fig. 1: Robot platform Zeus as a combination of a SCITOS
G5 base by MetraLabs GmbH with an arm by Kinova

skills of the robot can be found. In practical application there
arise many challenges like short time spans to react when
the lift doors open or unforeseen interactions with people
occupying the robots way. We discuss these in the following
as well.

II. ROBOT PLATFORM AND BACKGROUND

This work is part of the research project RobInCare1

dealing with basic capabilities of mobile service robots to
enable autonomous navigation in nursing homes for the
elderly. When deployed to deliver mail and other items or to
pick up residents at their homes for group events, the robot
has to open and close doors and needs to use elevators with
its on-board manipulation skills.

The robot we use is a SCITOS G5 differential drive
platform equipped with an additional Kinova Gen II 7 DoF
arm for manipulation tasks. The wheels are big enough to
avoid getting stuck in the 4cm gap at the lift cabin entrance.
For perception of the environment, the robot has an Azure
Kinect and an ASUS Xtion depth camera on top of a pan-tilt
unit (PTU). Additionally, we use the three axes accelerometer
of the SCITOS G5 for recognizing the vertical movement of
the lift.

Navigation and localization of the robot platform relies on
a SICK S300 laser range scanner mounted in a horizontal
position. For self-localization in the environment, we apply
a Monte Carlo Localization [14], which uses laser to map
matching, and additional observations on button panel loca-
tions which have been mapped before. This will be explained
in Sec. V-B in more detail.

The navigation skills rely on [15] which allows maneuver-
ing in the lift cabin that is only a few centimeters wider than

1https://www.robincare.de/
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Fig. 2: Procedure of riding the elevator

the robot’s footprint. The planning of arm motions is done
according to [16], which allows us to consider perceived
obstacles in real-time.

III. OVERVIEW OF THE ELEVATOR RIDING PROCEDURE

The whole elevator riding process is integrated in
our behavior-based software architecture implemented in
MIRA2. The higher order behavior decides to use the elevator
when the plan to the goal requires changing the floor. Then
the ride elevator procedure of Fig. 2 takes over. Here the
robot at first navigates to a starting position in front of the
elevator. Then the press button procedure is triggered which
will be explained in Sec. IV. This returns control after the
push force has been recognized and the robot’s arm has been
retreated to its home position allowing for safe navigation.
An additional feedback on the success of the call button
action is not implemented, since the robot will notice the
effect when the elevator doors open within a reasonable time.
So, the analysis of the elevator by means of the laser scan is
continuously running in the background yielding information
on the cabin door’s state and the occupancy of the cabin. This
is further explained in Sec. VI.

Once the door opened, the robot can enter the cabin if it is
empty. Otherwise, it will give way for the people and retries
the whole procedure. This is commented politely via specific
voice outputs. In case that the robot reaches the goal position
inside the lift cabin, again the press button procedure can
take control. In our database, the semantics of the different
buttons of the control panel have been mapped and, thus, the
correct one can be selected according to the target floor. After

2https://www.mira-project.org
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pressing the button, the robot places itself in front of the exit
door, because the doors open for a short moment (6 sec) only.
Again an explicit feedback on the success of the button action
is not implemented. The robot will react on the opening door
and counts floors to decide whether the target floor has been
reached or an unexpected intermediate stop took place. If the
later case, when the door is opening the robot comments to
the people who have called the elevator that he is occupying
the cabin and asks for patience. If there are no people waiting
and the cabin is not going to move to the next stop, the button
for the target floor is pressed again, which is also the case
if the cabin does not start to move after the selection of the
target. In the normal case, the robot simply drives to a point
outside the cabin and control is returned to the higher level
behavior responsible for the navigation to the actual target
(e.g. the apartment of the resident to be visited). There are
several possible points of failure, which in most cases can be
handled by a retry. Only if the navigation path is blocked, or
the whole system gets stuck after a collision, the procedure
has to be aborted with an exception.

Challenges for the design of the procedure were the short
time intervals for maneuvering the arm in a safe position
for platform movements and the required time to plan the
movements. If the elevator is already at the current floor
when the robot presses the call button, he has only around
six seconds to enter the cabin before the doors close again.
This has been solved by finding an optimal position for the
robot when pressing the button. It has to be nearly centered
in front of the door, but on the other hand, this should not
be too close to the door to allow for robust button panel
perception and room for manipulation actions. Finally, the
robot is slightly angled such that it can enter the cabin with
a gentle arc movement. Additionally, the retreat motion of
the robot arm could not be executed with the motion planner
in the short time. Instead, we reversed the trajectory for the
pushing action and executed that at a higher speed assuming
that the scene is still free of obstacles in that region. The
same timing issues are present when the elevator already is
on the target floor, and the robot would presses the respective
button inside, which causes the door to open immediately,
and there is not enough time to leave the cabin. Luckily, this
case only can happen when the path to the outside of the
cabin is blocked by people and the robot has to retry to leave
the cabin after verbal communication to the people outside. A
solution for that problem is that if the robot is already on the
goal floor the button for another floor is pressed, causing the
elevator to take a detour, which gives time for maneuvering
inside the cabin. The original target floor then is reached
after another cycle of selecting the destination by button.

IV. PRESSING THE BUTTON

The actual procedure of pressing a desired button is shown
in Fig. 3. It starts with a navigation to a panel specific
interaction position, which allows for a good camera view
at the buttons as well as good reachability. Then the camera
is pointed at the control panel, while button detection and
panel localization run in background (see Sec. V-A). Once

drive to button

wait for stable button pose

approach button with hand

press button linear motion

retreat arm to
home position

force > treached end 
pose

retry
success

update hand
eye calibration

timeout

blocked

blocked

blockedretreat arm to
home position

blocked

failure

press button

Fig. 3: Procedure of pressing a button

the pose estimation stabilized, the manipulation starts by
bringing the robot’s finger 10 cm in front of the estimated
button. Since the target position of the button is estimated
in camera coordinates, and the camera is on a PTU, and
additionally the whole robot frame is not rigid, there is a
calibration offset from the internal robot model and the actual
position of the hand in respect to the camera. Depending on
the position in the reachable area, this deviation can be up
to 3cm, which is critical for hitting the button correctly. To
solve that calibration problem, we included an estimation
of the end-effector pose in camera coordinates by means
of an ArUco marker [17] detection. A hexagonal marker
arrangement has been mounted to the robot’s wrist, allowing
to see at least two non-co-planar markers at a time (see
Fig. 4). By means of the calibrated camera, the 6D pose
of the marker arrangement can be estimated, yielding an
offset to the internal model of the robot. This offset then
is used to correct the goal position for the next movement
to be executed. This is a linear motion to a virtual point
2 cm behind the button of interest. During the execution, the
collision check for the fingertip is disabled to allow for the
contact with the button, which otherwise would be avoided
because the wall is contained in the collision scene of the
motion planner. The success of the operation is monitored
by means of the end-effector force. If the force in movement
direction exceeds a threshold t of 6 N, the button is supposed
to be pressed and the arm can be retreated to the home
position. If the force has not been noticed before the end
point is reached, then the button is supposed to be missed
and the whole process starts over again.

Possible points of failure for the whole procedure are un-
reachable positions. Either the position for the robot platform
is occupied, or the robot’s arm can not reach the desired start
and end point of the push trajectory.
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Fig. 4: Localization of the robot’s end effector in camera
coordinates by means of ArUco markers used for online
hand-eye calibration.

V. BUTTON DETECTION AND LOCALIZATION

Detecting and distinguishing individual buttons either with
classical or machine learning methods always is prone to
confusion of labels or complete misses due to occlusion
for example (see Fig. 5). In order to make the button
pressing process more robust, we decided to incorporate
prior knowledge on the existing button arrangements in our
operational environment. The raw detections of buttons are
compared to previously mapped button panels in order to
optimize their position and correct labels. The recording of
panel configurations during installation is done using the
same detector as for online recognition but under optimal
recognition conditions without occlusions and from a per-
pendicular view.

Furthermore, to reduce the influence of occasional false
detections, the recognition process during application is not
only done once but runs in background at 4 Hz yielding a
stream of button panel locations that are filtered for outliers
by means of a geometric median.

On the first instance, the location of the button panel and
therefore the exact position of the individual buttons is used
for planning a push trajectory for the end effector of the
robotic arm, but the deviation of the panel’s relative position
in robot coordinates to the mapped panel position is also
fed into the MCL as additional cue for localization. This
allows a reduction of the typical laser-based localization error
from about 5 cm, which is related to the occupancy grid
map resolution, to a value in the 1 cm range. Therefore, also
static collision scenes can be considered by the robot during
manipulation, which prevents contacts to walls and surfaces
that are not visible in the depth camera directly.

In the following the realization of the neural-network-
based button detection is described before the actual local-
ization of button panels is explained, which uses the set of
detected buttons.

A. Raw Button Detection

For the recognition of individual buttons in color images
of our Azure Kinect, we trained a Faster-RCNN network on
the dataset of [8].

The aim is to distinguish 16 classes of buttons, which
are the special functions (open doors, close doors, alarm)

as well as most prominent floors B (basement), L (lobby),
G (ground floor), 1, ..., 9, and some wild card buttons with
unrecognizable labels called ’button’. The exact semantics of
the buttons is not necessarily to be detected by the network
since it is mapped to the buttons in the button panel as stored
in the robot’s database as described in the next section.

The network architecture we used is more lightweight than
in [8] since we use a ResNet-50 backbone instead of ResNet-
101 in order to save resources on our mobile hardware
(Nvidia Geforce RTX 2060). Additionally, we did not use
the OCR-RCNN approach proposed in [8] as the number of
floors and therefore the possible elevator buttons are within
the set of 15 classes. The slightly worse AP50 value of 85.8%
(compared to 90.1% of the ResNet-101) is acceptable due to
the further processing in the panel matching process.

Once the bounding boxes of candidate buttons have been
found, the next step is creating 6D poses for each of them
by means of projecting the boxes onto a point cloud of a
depth camera. We use the ASUS Xtion depth image due
to more reliable geometric properties of that active stereo
camera. The depth image of the Azure Kinect camera shows
material dependent depth offsets and other artifacts due to
the time of flight approach. From the 3D points inside the
bounding boxes, the surface normal and the xyz-coordinate
of the center can be extracted by means of a plane regression.
Using the vertical axis as granted, the full rotation matrix can
be easily computed for the normal and the z-unit vector by
means of three cross product operations, which completes
the 6D pose of the buttons.

B. Panel Matching

Having the incomplete set of button poses and respective
predicted labels, the association to known button panels can
be done. From the robot localization we can find the panel
of interest in our database and for that the relative position
of the buttons to the panel’s origin (at its center) is known.

The detection of the button panel’s pose in respect to the
camera is done by a Maximum Consensus approach. For that,
each pair of possible associated buttons, one from the known
panel in the database pi and one from the current detections
d j, is used to compute the relative 6D transformation between
them. This in the following can be used to project all the
detected buttons onto the known panel. For each detection,
we then search for the closest button p∗ on the known
panel and accumulate the distances. Here the match of the
predicted and the mapped label are taken into account. Label
mismatch yields a penalty offset ρ to the distance causing a
possible association to neighboring buttons that might be a
better match.

From that accumulated minimal distances to associated
buttons a matching score m(pi,d j) is computed to rank the
predicted transformation.

m(pi,d j) = e−(∑ j mini(|pi−d j |+l(pi,d j)))
2
/σ2

(1)

Here pi and d j are the xyz-coordinates of the panel
buttons and projected detected buttons respectively. The term
l(pi,d j) has a value ρ (free parameter) if the labels do
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Fig. 5: Examples of exact button panel localization in case
of occlusion (right) and in normal conditions (left). top: raw
detections from the Faster RCNN; bottom: estimated 6D pose
of button panels and respective buttons

not match and 0 otherwise. This ensures that geometrically
ambiguous arrangements of buttons can be resolved by
means of the associated labels. See Sec. VIII for selection
of ρ . The parameter σ has been set to 0.03 m, which defines
the matching radius to the order of a single button’s size.

The pairing of detection and panel button with the max-
imum matching score yields the final hypothesis for the
panel’s pose estimation.

Fig. 5 shows some examples of the detection, which is
robust even if more than half of the panel is occluded by the
robot’s gripper.

VI. ELEVATOR ANALYSIS

Once the lift call button has been pressed, the robot needs
to detect when the cabin is ready for boarding. Therefore,
the laser range scan is analyzed, while the robot is waiting in
front of the door. Individual scan rays’ line segments in map
coordinates are intersected with a virtual line 5 cm behind
and parallel to the door. Then the left most and right most
intersection point on that door line define the traversable
gap. A threshold on the gap’s width allows to distinguish
door open and door closed state.

This method also works from inside the cabin, but in this
case the virtual line is offset 5 cm to the outside of the door
in order to become tolerant against localization errors.

Once the door is open, the robot needs to decide whether
the cabin is empty or occupied. Due to safety reasons, we
do not allow the robot to enter an occupied cabin, as people
could be blocked to leave the lift. To check the cabin, again
the laser range scan can be used. If the number of scan end
points inside the polygon of the cabin exceeds a threshold,
the cabin is considered to be occupied. To compensate for
small localization deviation the polygon has a safety margin
of 10cm to the actual walls of the cabin. Also people in front
of the elevator need to be recognized when the robot has to
decide whether to wait outside the lift or when leaving the
cabin. To that end a square of 1.5m by 1.5m in front of the
elevator’s door has been defined as the waiting area. This area
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traveling one floor up, two floors down, three up, two down.
The time intervals between the acceleration peaks indicate
the floor difference. Top: integrated acceleration (velocity)
and integrated velocity (position) show a drift (red curve
should end at start level).

can be checked in the laser range scan similar to the inside
of the cabin. Usually, there are no other dynamic obstacles
in that region other than people.

VII. FLOOR RECOGNITION

After the robot finally has entered the cabin and the
destination floor has been selected by means of another
button action, the system needs to detect the current floor
in order to leave the cabin at the right one.

While other implementations try to read the indicator
screen inside the cabin [11], we rely on the built in acceler-
ation sensor of the SCITOS G5 robot.

We found that simply integrating the vertical component
of the acceleration two times is not reliable enough. Even
after careful calibration, the resulting distances drift rapidly
over more than the height of one story. Fig. 6 (top) shows
that drift in the red curve, which in practice should end at
the same level as it started. Instead, we found that in most
elevators the duration for changing from one specific floor
to each other are more or less constant (see Fig. 6 (bottom)).
This is especially true, if the weight of the cabin is constant
which is guaranteed since the robot will ride the elevator
alone. Therefore, by using the acceleration sensor, we simply
detect the acceleration event of the cabin at the start and the
deceleration event at the end by a simple threshold on the
low-pass-filtered vertical acceleration value. The low pass
filter shown in Fig. 6 ensures that little bumps at the entrance
of the lift do not trigger floor change recognition when the
robot enters or leaves the lift. This approach may reach its
limits, when the number of stories increases. The potential
deviation of the travel time increases with the overall distance
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Fig. 7: Ratio of correct panel localization depending on the
amount of misclassifications of the button labels (top) and
in dependency of the label mismatch penalty parameter ρ
(bottom). Both were evaluated over a sequence with heavy
occlusions of two button arrays.

and finally reaches the duration of a single floor transition
with an increasing number of stories. In our test facilities we
only had access to a four story elevator. Therefore, during
our real world application the floor recognition did not fail
a single time.

VIII. EXPERIMENTAL EVALUATION

We use the proposed methods in two installations of the
autonomous assistance robot. One is operating in our uni-
versity building and the other in the target facility, a nursing
home for elderly in Ilmenau Germany. First, the results of
a quantitative evaluation of the button panel localization is
presented before the insights into the development process
and the results of a one week application test are discussed.

A. Evaluation of the Button Panel Localization

In the following, we report the analysis of the button panel
localization which is a prerequisite for the precise robot
localization and button interaction.

In order to evaluate its robustness, we have recorded a
video sequence of the robot observing the button panels of
two different elevators. This dataset shows occlusions to parts
of the panel due to the robot’s hand operating on the buttons
in 35% of the images.

First, we wanted to show the panel detection results
in presence of misclassified buttons in the raw detections.
Unknown buttons will effect the panel localization in the
same way. This would be the case in a building with more
than 10 stories since we only use the 16 button classes as
described in Sec. V-A. For the experiment, the predicted
labels in the video sequence have been artificially invalidated
randomly for a variable amount of raw detections in each
image. The label match parameter ρ has been set to 1.0 for
that experiment. Fig. 7 (top) shows that for the given setup
the panels have been localized correctly in more than 97%
of the frames with label drop out rates of up to 30%. The

position of the detected panels has been count as false if it
snapped to another grid position, which means that there was
a position offset of more than 5 cm in 3D world coordinates.
Note, that this is not the accuracy of the localization in
camera coordinates since it includes the localization error
of the moving robot platform.

The position accuracy of the correctly detected panels in
camera coordinates inherits directly from the accuracy of
the raw button detection and has been evaluated as follows.
Knowing the size s of the buttons in the real world, the
position accuracy could be evaluated by comparing the offset
d of the detected box to the ground truth box and the ground
truth box dimensions w.

ē =
1
N

N

∑
n=1

sn
dn

wn
ê = max

n∈[1,N]
sn

dn

wn
(2)

Using the test dataset of known buttons, the average and
max position offset has been found to be ē = 0.16 cm and
ê = 0.33 cm. This small offset is increased slightly when the
3D position is evaluated from the point cloud data but at the
end it is reasonable for hitting the button with the robot’s
finger.

A further evaluation deals with the free parameter ρ of the
panel matching algorithm. Although, it is possible to find the
correct matching buttons pairs without any label information
if the corners of the panel are not occluded, in cases with
the arm in front of the panel the correct pairing based on the
label makes the localization of the panel more robust. Fig. 7
(bottom) shows the influence of the parameter ρ . When label
matches are not rewarded at all (ρ = 0), then due to occlusion
25% of the frames yield a panel detection that is snapped to
the wrong grid position. When ρ reaches 0.2, the association
mistakes can be reduced and the false panel detections drop
to about 3%. The error that might be introduced by a ρ that
is too high depends on the actual misclassification rate of the
raw button detector. For our practical application that rate is
so low that no negative effects of a big ρ could be observed.

B. Application Test and General Findings

The development of the elevator procedure took place
in the said facilities leading to a functional transportation
service that has been tested in our office building for a week.
There were 96 transportation tasks that required changing the
floor. In three cases a human intervention was necessary to
recover the robot from a deadlock. In one case the robot got
stuck when leaving the cabin. The drive system was not able
to overcome the gap. In the other cases the robot stopped
assuming to be in a collision with the static environment,
which actually was not the case. This can happen when the
platform gets moved passively or the localization system
changes the position without an actual movement of the
robot. In the later case the robot model virtually is placed
inside e.g. a wall, which causes the collisions.

During the application no problems with the floor recog-
nition could be recorded. The travel-time-based tracking of
floors seems to be robust against all jerks happening.
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There was a total number of 305 press button procedures,
of which seven missed to hit a button at all. That means
the force threshold has not been exceeded, which could be
caused by a unfavorable positioning of the robot in relation to
the button panel of a wrong localization of the panel (distance
estimated too large). The unexpected high number of button
operations is caused by repeatedly calling the elevator when
it is occupied or busy. The timeout for a retry was only 20
sec. When the lift is stopping at other floors this often is not
long enough.

During development, the robot occasionally pushed away
itself while pressing the call button in front of the lift. Then
the changed orientation caused difficulties with the following
detection and cabin entering movements. This misbehavior
could be mitigated by means of active breaking when the
push trajectory is executed with the arm.

A further, more critical point of failure was related to
the navigation while entering the cabin. When the robot
struggles to get over the doorstep it can get stuck when the
cabin doors close and hit the robots bumper. In that case
the hardware needs 3 seconds until safety stop is released
and the door closes again soon. A fallback strategy for this
situation has been implemented, which consists of a manual
drive command for going backwards for 10 cm in order to
escape from that loop.

IX. CONCLUSIONS
In this paper we present a complete pipeline for automated

operation of an elevator by a mobile robot. We introduce our
button localization approach based on the complete panel,
which makes it robust to detection errors made by the button
detector. Additionally, by localizing the panel our approach
can handle occluded buttons during push operation allowing
us to continuously track the button’s position.

We evaluated the panel localization and the complete
pipeline through real world trials with two different elevators.
While most of the problems remaining are caused by strict
time constraints caused by the small time frame in which the
elevator doors are open, our pipeline is effective enough to
be used in real world applications.
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Scalable Evaluation Pipeline of CNN-based perception for Robotic
Sensor Data under different Environment Conditions

Naeem Iqbal1, Mark Niemeyer1, Jan Christoph Krause1, Joachim Hertzberg1,2

Abstract— Deep learning impacted a wide variety of per-
ception applications for autonomous mobile robots. In classic
computer vision benchmark tests, new algorithms keep appear-
ing that outperform each other. However, these benchmark
tests cannot be generalized, so that the specific application
must be considered for the selection of sensors and algorithms.
Especially in the agricultural domain, environmental conditions
like weather and vegetation significantly influence the reliability
of sensor systems. Therefore, it is essential to test different
sensor modalities and algorithms in the operational design
domain. This motivates the need for an evaluation framework
which has the flexibility to compare and validate various
perception algorithms, sensors suites, and data samples with
a focus on different conditions.

This paper proposes a pipeline combining a test environ-
ment (AI-TEST-FIELD), a semantic environment representation
(SEEREP), and an inference server (Triton) for an automatic
evaluation of different CNN-based perception algorithms under
various environment conditions. Recurring and comparable
recordings of raw sensor data with identical scenarios and
objects can be performed on the test field, with the only
difference being the environmental conditions. The inference
results are inferred once and stored alongside the sensor data
in SEEREP. Thus, they can be queried efficiently based on
the environment conditions to generate (partially overlapping)
subsets of the whole dataset. It is demonstrated how this
pipeline can be used to apply the CNN-inference just once
on the data, and how the queried subsets can subsequently
be used to evaluate the performance in different environment
conditions.

I. INTRODUCTION

Nowadays, various algorithms for semantic environment
perception benchmark suits such as KITTI [1]–[3] and
NuScenes [4]–[6] exist. For these benchmarks, different per-
ception algorithms are evaluated against the corresponding
fixed dataset. This results in an overall performance metric.
Though, there is no option to test the same algorithm against
different sensor suites or specific subsets of the datasets
with specific environment conditions. However, these specific
evaluations are of interest when designing new perception
modules for autonomous systems. They enable an extensive
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search for the best combination of sensor setup, perception
algorithms, and field conditions. Especially in the agricultural
domain, this is needed because of the wide variety of field
conditions such as dust, fog, clouds etc.

Similarly, it is also of interest to evaluate various per-
ception models and compare their performance on different
benchmarks to get the best model for a specific perception
task (like human detection). A model evaluation can imply
several kinds of evaluations, ranging from evaluation in terms
of model robustness against adversarial attacks, inference
speed, or in terms of accuracy on a carefully designed
test dataset that covers all the corner-cases. While there
are many datasets available for different perception tasks,
they are mostly focused on developing state-of-the-art neural
networks for those tasks. For example, how one network can
better detect a set of objects in the given dataset compared to
any other network. This helps in advancing neural network
architecture research. Each dataset has its own accompanying
benchmark as well as perception challenge, and all these
datasets are either recorded with the same sensor setup [3]
or acquired without any sensor information available [7]. In
contrast to that, it is as well of interest how a neural network
behaves in a specific perception task when the dataset is
changed from one sensor to another (also known as domain
gap) or when the field conditions change (see fig. 1).

(a) sunny (b) cloudy

Fig. 1: Example images from the AI-TEST-FIELD with
different environment conditions (sunny and cloudy) demon-
strating the qualitative differences due to environment con-
ditions. The bounding boxes of the ground truth (green) and
the detections of the YOLOv5m trained on the COCO dataset
(red) are drawn in the images. Notice that the person here
is a dummy and not a real person.
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This paper addresses the evaluation of CNN-based percep-
tion for robotic sensor data from different sensors and under
different environment conditions. In contrast to the common
evaluation workflow of (1) having a dataset, (2) performing
the inference for the complete dataset, and (3) evaluating all
inference results, this paper proposes a methodology which
allows the creation of specific subsets of data based on user-
defined parameters such as field conditions (e.g., rainy or
clear weather), sensor modality (e.g., LiDAR or camera), and
other spatio-temporal-semantic information in the data. For
this, the sensor data is stored in the semantic environment
representation SEEREP by Niemeyer et al. [8]. With the help
of SEEREP one can use spatio-temporal-semantic queries to
create subsets of data. This feature can be used to evaluate
perception models on different subsets of a larger dataset
with specific characteristics. This can be very beneficial in
agricultural domains where the field conditions diverge by
such a large degree (also known as domain gap) that neural
networks do not generalize well enough.

In the next section, the related work is discussed, and
our methodology is presented in section III. To demonstrate
the benefits of our methodology, exemplary evaluations are
demonstrated in section IV. Finally, this paper concludes and
gives an overview of future work in section V.

II. RELATED WORK

In this section, related work regarding perception datasets
and benchmarks as well as the storage solutions for those
datasets are discussed. An overview of CNN-based environ-
ment perception approaches and performance evaluation of
the perception results is also given.

The development and evaluation of AI algorithms for en-
vironment perception are based on a broad set of sensor data
equipped with ground truth. To provide a general overview
of the performance of different algorithms, challenges, and
benchmarks have been announced, e.g., ImageNet [9], Pas-
calVOC [10], COCO [7] and KITTI [3]. In general, this
includes datasets, that contains everyday scenes with a focus
on urban and driving scenarios. The corresponding datasets,
especially COCO and ImageNet, were often used to train
AI Models like YOLO [11] or models from the Detectron
Model Zoos [12], [13].

Running object detection algorithms on images results in
2D bounding boxes that mark the area in which an object was
predicted. As pointed out in Zou et al. [14] a large number
of object recognition algorithms like R-CNN [15], SSD [16]
and YOLO [17] have been developed recently, so that the
performance level is continuously surpassed. Such an object
detection task can be evaluated both in terms of speed and
accuracy. For human detection and tracking, Godil et al. [18]
proposed a set of detection and tracking metrics. Besides the
real-time capability of an object detection algorithm, Average
Precision (AP) is the most known metric for evaluation. For
the different benchmarks, there are comparable but essen-
tially different ways of calculating the AP [19]. In general
the authors of the benchmark suites provides tools or an
API like the PyCoCoTools [7], KITTI’s object development

kit [3] and the PASCAL VOC2012 Development Kit [20].
The IoU describes the closeness of two bounding boxes.
Based on a threshold, a prediction results in a True or False
Positive. Missed object are counted as False Negatives. For
multiple thresholds, the Precision-Recall-Curve is generated
from these values. The area under that curve is called
Average Precision (AP), a key indicator for the performance
of object detection algorithms. For a universal and flexible
evaluation workflow, it is essential that different metrics from
different APIs are applicable.

Especially for safety reasons, a detection system has to
operate reliably in their field of application. For autonomous
vehicles, the definition of the operational design domain
(ODD) describes all conditions, scenarios [21]. To evaluate
the performance of a perception algorithm in certain domains
like off-road and agriculture, datasets focused on that special
domain are needed. Available datasets such as Marulan [22],
RELLIS-3D [23], NREC [24] and FieldSAFE [25] in par-
ticular cover the typical harsh and changing environmental
conditions, but are not comprehensive. Thus, a mixture of
these datasets with a composition of self recorded data is
needed.

MSeg [26] provides tools for accessing handling a selec-
tion of datasets as well as for fusing and mapping their
corresponding class names. Although scripts for accessing
the datasets are provided, a separate download for each user
is still required. For handling the individual datasets, still
different APIs are used.

Typically, the sensor data is provided in huge file archives
with image files and attached .txt- [27], .xml- [10] or .json-
files [7] that contain the annotations. Kragh et al. [25] provide
time series data in rosbags and corresponding ground truth
by masking different colors in orthophotos.

In datasets, different categories for filtering like occlusion
or truncation [3], [24], object’s motion or pose [24] or
environmental conditions like day and night [22] are added
to the attached descriptions files. Thus, the developer must
first download the entire dataset for a specific performance
evaluation and then generate the specific subset using the
filter criteria provided. This effort and the related resource
requirement is avoided by querying the data available on a
centralized storage solution with filtering capabilities. Data
Version Control (DVC) [28] is used for data pipelines and
accessing the data, especially to track the change in datasets
and model files [29]. DVC is a suitable tool for providing
and fetching the data. This is very useful for the development
of an AI algorithm with expanding data. For the evaluation,
tracking changes of datasets in terms of versioning is not the
focus. It is much more about calculating evaluation metrics
for different sets and subsets. And the data to be used for
this are to be composed by filtering.

A user can potentially fetch the data from a file server
and feed it to an inference node that is, for example, a
python program. For that a broad number of deep learning
frameworks like PyTorch [30], TensorFlow [31], TensorRT
[32], OpenVINO [33] etc.) exist. However, this workflow
has the disadvantage that for each neural network trained
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Fig. 2: Architecture overview. This diagram visualizes the architecture of the proposed methodology. It shows the data flow
from the data acquisition setup (A) to SEEREP (B), the connection to the Triton inference server (C), and a data query for
an evaluation from the user’s perspective (D).

on a different deep learning framework, the pipeline has
to be modified and version control gets increasingly com-
plicated. This is where Triton Inference server proves very
helpful. Triton [34] is one packaged open-source software
by NVIDIA where the deep learning frameworks are served
as backends. With this capability, Triton can digest models
from all the major training frameworks without changing the
inference API, making it more flexible and scalable. Among
other benefits, it is possible to store multiple versions of
the same model and play with input resolution vs. accuracy
trade off. With Triton, one can easily maintain the version
consistency with all the backends in an automated fashion.

For the evaluation of perception systems, flexible and
freely composable datasets are needed as a basis. Different
emphases in the evaluation goals are to be addressed by
selection of special subsets. For evaluation purposes, a data
holding system is needed that allows filtering and querying
of evaluation data. It is mandatory that the queried evaluation
data can be given to different algorithms for evaluation via an
interface that is as identical as possible. Various metrics may
be relevant in the evaluation. Therefore, an interface with a
flexible integration of the metrics is relevant here as well.
With the proposed Evaluation Pipeline, the benefits of each
area are incorporated. The datasets that fit the evaluation
task best, the algorithms that are most promising, and the
metrics and tools that are appropriate for assessing viability
are brought together here via a unified pipeline system.

III. METHODOLOGY

The proposed methodology which handles the sensor
data, annotates the data with inference results, and serves
everything for evaluation consists of four major parts (see
figure 2):

(A) A data acquisition setup which captures sensor data and
provides ground truth annotations. A system like the AI-
TEST-FIELD carrier system [35] can be used for this.
The carrier system can capture sensor data of the test
field with a flexible sensor setup, and it can generate
ground truth annotations automatically due to the known
environment.

(B) A spatio-temporal-semantic environment representation
(SEEREP) that stores the sensor data, the ground truth
annotations, the inferred annotations, and further seman-
tic information such as weather, lighting, sensor setup
etc. [8].

(C) A Triton inference server with several neural networks
(for object detection, instance segmentation, and the
flexibility to add more) which can infer semantic an-
notations for the provided data on-demand.

(D) A user or in general a querying system that receives the
sensor data with ground truth and inferred annotations
for evaluation.

Given that the data acquisition setup provides sensor data
with ground truth annotations, the semantic environment
representation creates spatial (based on the sensor position
and the spatial extent of the data), temporal (based on the
point in time of the sensor reading) and semantic (based on
the annotations) indices. Using the spatio-temporal-semantic
information of the data, a user can query a specific subset
of the complete dataset. This dataset can be of a specific,
challenging region (spatial query), of a specific point of
time (temporal query), or with a specific semantic anno-
tation (semantic query). The semantic annotations can be,
for instance, that there is a human visible in the data or
that a specific weather condition is perceived in the data.
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Additionally, combinations of the three modalities in one
query are possible.

In addition, the user can define the neural network from
which the inferred annotations should be present in the data.
For the same data, multiple inference results from different
models can be stored alongside the sensor data in SEEREP.
If the data matching the query contains the annotations from
the specified model, the query can be answered immediately.
Though, if the data does not contain the annotations, they
have to be inferred. For this, the data is sent to the Triton
inference server. If the specified model is not deployed on
the Triton server, no data can be used to answer the query.
Though, if the specified model is deployed, it is used to
infer the annotations. The inferred annotations are then stored
alongside each data sample in SEEREP. If the same subset
of the data and same model are requested in a subsequent
run, the predictions will be fetched from the SEEREP server
directly and the follow-up inference run will be skipped. This
makes the reproducibility of the same query in subsequent
runs more time efficient.

Due to the storage of the inference results in SEEREP
alongside the data, the inference has to be performed only
once for the queried data. If the same query is performed
twice or if the results of a query intersect partially with
the results of a prior query, the inference results stored in
SEEREP can be used directly and there is no need to block
computing power of the inference server. Only the remaining
data, which matches the query and has no inference results
yet, has to be sent to the Triton server.

Finally, the data with the ground truth annotations and the
inference results are sent to the querier. Based on that, use-
case dependent evaluations, like the intersection over union,
can be conducted to assess the performance of a model. The
scenario for each evaluation can be defined by the spatio-
temporal-semantic query to fetch specific subset of a dataset
from SEEREP.

IV. APPLICATION EXAMPLE

For highly automated machinery, a reliable perception of
the environment is crucial. In agricultural applications, in
particular, not every object in the vicinity of the machine,
like plants in front of a harvester, is necessarily an obsta-
cle. Therefore, classification of objects in the working area
is needed. In the research project AI-TEST-FIELD, sensor
systems for human recognition are evaluated. The focus is
on the influence of environmental conditions like weather
and vegetation. As an application example, the proposed
evaluation pipeline is used to evaluate algorithms that detect
humans in images during agricultural processes. For that,
three different models (YOLOv5m [36], RetinaNet [37], and
Faster RCNN [38]) trained on the COCO dataset [7] are used
in this application example. All models have a single-scaled
input size of 800 x 1333. Any images that do not fit the
model input aspect ratio, are resized and padded with zero
values until the aspect ratio of the padded image fits.

For a first checkup, the algorithms will be proven using
the COCO validation dataset from 2017. To enlarge the

validation data, the KITTI dataset is considered afterwards
and in order to show the performance in the agricultural
application domain, our own test data is added. For the data
acquisition of our own data, the rail-based AI-TEST-FIELD
sensor carrier [35] is used. It is equipped with a ZED2i
camera, and two 4activePA pedestrian test targets1 (an adult
and a child) are placed in surveyed positions on the field.

The COCO validation dataset and the KITTI dataset were
fed to SEEREP. 2693 of the 5000 COCO images have at
least one person in them. In the KITTI dataset, only 542
out of the 7481 images have a pedestrian in them. For this
example, the AI-TEST-FIELD carrier system acquired images
under the three weather conditions: 1) cloudy, 2) sunny, and
3) rainy. Two exemplary images can be found in figure 1.
This small dataset was manually labelled with CVAT [39]
and afterwards fed into SEEREP as well. The complete
dataset with all weather conditions has 196 images in total,
but only 108 images have a person visible in them.

In general, the SEEREP query interface enables the cre-
ation of various (partially overlapping) subsets of the overall
dataset based on the spatial, temporal, and semantic indices.
As a result, SEEREP only returns subsets of 2693, 542 and
108 images as an answer to the following queries:

1) person and COCO,
2) pedestrian and KITTI
3) person and AITF

These subsets are non-overlapping, as each query targets
another input-dataset. Thus, all images returned by the three
queries do not have any inference results stored during
previous queries, yet. Therefore, the images have to be sent
to the Triton inference server so that the deployed object
detector models can infer the detections.

When the querier receives the images with the ground-
truth and the inferred annotations, the evaluation can be
performed. There are many evaluation benchmark suites
available that can be used for the evaluation (like [3], [7])
and the evaluation API can be changed to any other API for
other perception tasks such as 3D pose estimation, instance
segmentation, etc. For this application example, the official
COCO API [40] is used to evaluate the precision of bounding
box based predictions. Table I shows the results of the
same models evaluated on the COCO person class, the
KITTI pedestrian class, and the AI-TEST-FIELD images with
dummy persons respectively.

TABLE I: Average Precision (AP@IoU=0.5:0.95) of three
Object detectors namely YOLOv5m, RetinaNet and Faster
RCNN evaluated on the subsets of images by SEEREP
queries 1) person and COCO, 2) pedestrian and
KITTI and 3) person and AITF.

Query Number of images YOLOv5m RetinaNet FRCNN
1) 2693 48.7 44.9 46.4
2) 542 21.4 22.1 21.9
3) 108 74.4 65.1 67.0

1https://www.4activesystems.at/
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Among many possible evaluations, an example evaluation
investigating the influence of lighting and environmental
conditions is carried out below, which can happen quite
often in an agricultural context. Thus, the following SEEREP
semantic queries are used to retrieve the subsets of the AI-
TEST-FIELD dataset for the evaluation of the person detector
under different field conditions:

1) person and cloudy
2) person and sunny
3) person and rainy

The inference results of the models already exist, because the
previous query 3) contains all images with persons. Thus,
all images were already sent to the inference server, the
inference results are stored in SEEREP and the queries can be
answered immediately. In the table II, the average precision
is shown for the different environment conditions.

TABLE II: Average Precision (mAP@IoU=0.5:0.95) of the
three Object detectors YOLOv5m, RetinaNet and Faster
RCNN evaluated on the subsets of images showing a person
dummy with three subsets of weather conditions. The dif-
ferent subsets of various weather conditions were obtained
using the SEEREP queries 1) person and cloudy, 2)
person and sunny and 3) person and rainy.

Query Number of images YOLOv5m RetinaNet FRCNN
1) 17 74.3 63.0 58.9
2) 18 54.1 51.3 49.4
3) 73 80.3 69.0 73.1

Based on these results, it can be seen that the models
are capable of recognizing humans. A first consideration
of the weather conditions shows that especially the sun
has a significant influence on the Average Precision. Based
on these results, the models might perform much worse in
sunny conditions than in cloudy or rainy conditions. For the
deployment of the algorithms in the agricultural context,
a deeper investigation with a larger database is therefore
essential, especially for this environmental condition. Even
though the domain specific data presented here does not yet
allow any in-depth conclusions about the applicability of the
algorithms, the suitability of the pipeline for making such
evaluation is shown.

V. CONCLUSION

This paper presented a new methodology for the evaluation
of perception systems for robotic sensor data. The sensor data
is stored in the semantic environment representation SEEREP
which enables the creation of subsets with specific spatio-
temporal-semantic properties. The ground-truth as well as
the inferred annotations are stored alongside the sensor data
in SEEREP, and they are used to create the semantic index,
which enables the semantic queries. Not only the inference
results from a single analysis algorithm, but from multiple
can be stored alongside the same data. If the inference
results of a specific analysis algorithm is not available in
SEEREP yet, the data is sent to the Triton inference server.
If the requested model is deployed there, the inference is

conducted and the results are added to SEEREP. Therefore,
the inference results are available to answer the current
and any future queries. Due to the storage in SEEREP, the
inference only has to be conducted once, which reduces
unnecessary usage of the inference computing power.

The example in section IV demonstrates how the query
interface can be used to retrieve subsets of the data to
evaluate the deployed detector models under different en-
vironment conditions. Even though, no real conclusion can
be drawn from the small dataset in this example, it shows the
benefits of the presented methodology for the evaluation of
a single machine learning model under various environment
conditions. As multiple models can be deployed on the
Triton inference server and multiple inference results can
be stored alongside the data on the SEEREP server, this
can easily be extended to compare multiple models under
various environment conditions so that the best model for
each environment condition can be found.

The presented results and the integration in the ongo-
ing research project AI-TEST-FIELD motivate further work
towards a fully automated data acquisition and analysis
algorithm evaluation pipeline. The future work may include:

• Developing the automatic labeling of the sensor data
of the AI-TEST-FIELD sensor carrier based on the
surveyed objects and the carrier position.

• Extensively demonstrating the benefits of querying par-
tially overlapping datasets using SEEREP.

• Adding the data type pointclouds to the evaluation
pipeline to support perception based on laserscanners.

• Evaluating multiple machine learning models with re-
gard to different environment conditions based on a
bigger dataset.

• Using spacial queries to evaluate for example the change
of accuracy with respect to the distances between sensor
and object.
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Teach and Repeat and Wheel Calibration for LiDAR-equipped
Omnidirectional Drive Robots

Sebastián Bedı́n1, Javier Civera2 and Matı́as Nitsche1

Abstract— In this work, we present a novel teach-and-repeat
(T&R) method for omnidirectional-drive autonomous ground
vehicles, based on the tightly-coupled fusion of LiDAR and
odometry readings in a relative representation. In addition
to robot localization, we perform online estimation of the
platform intrinsic parameters, which significantly enhances
the robustness and localization accuracy of the system. We
demonstrate the effectiveness of our approach, including the
performance of the platform parameters and pose estimation,
as well as the general T&R method, through simulation.

I. INTRODUCTION

Unmanned wheeled vehicles are utilized in various forms
across numerous application domains, including autonomous
vacuuming or transportation among others. Of particular rele-
vance is their application in warehouses and storage facilities,
where the goal is to achieve the highest degree of automation
possible. In this context, omnidirectional drive robots possess
a significant advantage due to their unrestricted 2D motion.
Teach-and-repeat (T&R) methods also hold great importance,
given the repetitive nature of the robots’ tasks and the conve-
nience of defining their trajectories through demonstration.
These various aspects serve as motivation for our work.

Although LiDAR sensors stand out in robustness com-
pared against visual ones, they are limited in certain geomet-
ric configurations such as long corridors or large scenes with
objects further than their range, which are common in ware-
houses. Wheel odometry is also limited in omnidirectional
drive robots due to slippage, and may present inaccuracies
due to changes in the robot load, wear or variabilities in a
large fleet.

In this work, we formulate a novel T&R method for om-
nidirectional robots that fuses, in a tightly coupled manner,
LiDAR and wheel odometry measurements into a relative
representation suited for the problem. By fusing the two sen-
sors we outperform the limitations of both of them. We also
include platform-specific parameters in the state, in order to
self-calibrate the odometry in the cases mentioned above. In
our simulation experiments, we demonstrate the effectiveness
of our approach in several challenging scenarios.

II. RELATED WORK

T&R navigation is a classical topic in autonomous
robotics, that has been addressed over the years from several
perspectives. Most research has focused on terrestrial robots

1Instituto de Ciencias de la Computación (ICC-CONICET) Universidad
de Buenos Aires, Buenos Aires, Argentina sbedin@dc.uba.ar,
mnitsche@icc.fcen.uba.ar

2I3A, Universidad de Zaragoza, Spain jcivera@unizar.es
979-8-3503-0704-7/23/$31.00 ©2023 IEEE

equipped with either LiDAR [16], [28], [19], [2] or visual
sensors [11], [23], [24], [7], [5], [15], [18], [6], [31], [17],
[26]. Works that address other types of locomotion, such
as underwater [14] or aerial [25], [30], [29], [9], [12], [21]
vehicles, are scarcer.

From the perspective of the onboard robot sensors, a
wide variety of them have been explored in the literature:
monocular [31], stereo [11], LiDAR [16], [28], [19], [2],
radar [27] and multimodal combinations such as LiDAR-
radar [2] or stereo-inertial [13], [21]. Up to our knowledge,
the approach we formulate in this paper using 2D LiDAR and
wheel encoders has not been addressed in the literature. In
particular, the simultaneous self-calibration of the platform
parameters, that we propose in this work, is also novel with
respect to previous work.

III. METHOD OVERVIEW

The proposed navigation method builds on the T&R
method presented in [20], [21]. In T&R, a target path
is first demonstrated during the teach phase and is later
autonomously followed by a vehicle during the repeat phase.
Incremental localization is used during both stages in order
to build a map composed of keyframes. During the teach
phase, these keyframes define the target path. During the
repeat phase, the live map is continuously localized against
the reference map built during the previous phase. The robot
can then be controlled to follow the target path.

In this work we extend the base T&R framework to
target ground robots featuring wheel encoders and a LiDAR
sensor, while following the same relative formulation of the
problem where the map is composed of chained relative
transforms. In this context, odometric information arising
from wheel encoders is included in the estimation following
the well-known preintegration approach [10], [8], which
seamlessly integrates with the relative formulation. Further-
more, to improve the odometric information we include
online estimation of wheel radii. For the LiDAR sensor we
choose a simple and effective approach based on the Iterative
Closest Point (ICP) [1], [4] scan-matching algorithm. By
computing the relative transform from a pair of LiDAR point-
clouds corresponding to consecutive keyframes we obtain a
relative-pose measurement. We also show how to obtain the
corresponding uncertainty of the ICP algorithm.

IV. INCREMENTAL LOCALIZATION

The goal of incremental localization is to estimate the cur-
rent pose of the robot relative to the most recent keyframe in
the map, while simultaneously recording a set of keyframes
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that describe the robot’s path, and calibrate the intrinsic
platform parameters. As mentioned earlier, we utilize a
relative approach, which means that the state to be estimated
is defined as the relative pose between the current keyframe
and the previous keyframe in the path

x =
{{

Ti+1
i

}
i=1...n−1

, r
}
, (1)

where

Ti+1
i =

[
Ri+1

i ti+1
i

0 1

]
∈ SE(3)

stands for the relative transformation between two consecu-
tive keyframes denoted as i and i + 1, and r ∈ R4

>0 stands
for the unknown wheel radii in our case of a four-wheel
omnidirectional drive robot.

A. Iterative Closest Point

Given a pair of point clouds P and Q in two different local
frames, the ICP (Iterative Closest Point) algorithm enables
us to find a relative transform L ∈ SE(3) that aligns P with
Q with minimal error. In other words, we aim to find the
transform L that satisfies the following equation

L = argmin
L′

C (Z,L′) , (2)

where Z =
[
P Q

]
and

C (Z,L) =

n∑

j=1

[(
Rpj + t− qj

)
nj

]2
(3)

corresponds to the point-to-plane error metric defined in [4].
The point clouds P =

{
pj

}
j=1...n

, Q =
{
qj

}
j=1...n

contain 3D points pj ,qj ∈ R3, and nj ∈ P3 stand for
the normal of a plane built from the k nearest neighbors of
qj .

B. LiDAR Residual

In the context of LiDAR-based robot localization, the ICP
algorithm can be utilized to determine the robot’s motion
from a pair of scans acquired from two distinct positions.
To establish the correspondence between the points in both
point clouds, a matching process is carried out by selecting
the nearest neighbor in one cloud from the other (where non-
matching points are ignored).

We model the LiDAR sensor residual as follows:

r∆L = log
((

∆Li+1
i

)−1
Ti+1

i

)∨
(4)

where ∆Li+1
i is obtained using the ICP algorithm (as

described in the previous section) from point-cloud readings
acquired on keyframes i and i + 1. As an initial seed for
the ICP minimization we use the relative transform obtained
from odometric readings integrated between i and i+1 (see
following section).

To model the uncertainty of ∆L (where we drop indices
for clarity), we adopt the approach outlined in [3]. Specifi-
cally, we take into account the initial uncertainty in LiDAR

readings by propagating their covariance through a first-order
approximation:

Σ∆L = J∆L
Z ΣZ

(
J∆L
Z

)⊤
, (5)

where ΣZ is the covariance of the point clouds, that is given
by the LiDAR sensor specifications sheet.

While ∆L does not present a closed form, as it is obtained
as a result of a minimization algorithm (2), ∆L and Z are
related by an implicit function. Furthermore, we know the
gradient of the cost function C is zero at L:

δC

L
= 0T (6)

As a result, as demonstrated in [3] we can apply the implicit
function theorem and finally obtain J∆L

Z :

J∆L
Z = −

(
δ2C (L,Z)

δL2

)−1
δ2C (L,Z)

δZδL

∣∣∣∣
L=∆L

(7)

C. Odometry Preintegration

To include odometric information to the estimation we
follow the preintegration approach originally proposed for
inertial measurements [10]. First, we define an encoder q
reading as

q =
[
φfr φfl φrl φrr

]T
(8)

where φfr, φfl, φrl and φrr represent the rotational incre-
ments for front-right, front-left, rear-left and rear-right wheel
respectively, as measured by the encoders.

We then define the kinematic model of the
omnidirectional-drive platform K(c) as:

K(c) =
1

4




rfr rfl rrl rrr
rfr −rfl rrl −rrr
0 0 0 0
0 0 0 0
0 0 0 0
rfr
d

−rfl
d

−rrl
d

rrr
d




(9)

with

c =
[
r d

]⊤

d =
d1 + d2

2

where d1 and d2 represent the horizontal and lateral separa-
tion of the wheels, respectively.

The incremental motion of the robot, denoted as O(q, c),
is then computed as follows:

O(q, c) = exp
(
b(q, c)

∧) ∈ SE(3) (10)
b(q, c) = K(c)q ∈ se(3) (11)

For successive encoder readings q1, . . . ,qn acquired be-
tween keyframes i and i + 1 we can then construct a
preintegrated measurement ∆Ti+1

i as:

∆Ti+1
i = O(q1, c) . . .O(qn, c) (12)

= On−1
1 O(qn, c) (13)
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Finally, the odometry preintegration residual can be defined
as:

r∆T = log
(
(∆Ti+1

i )−1Ti+1
i

)∨
(14)

D. Wheel Radius Estimation

To perform online estimation of the wheel radii r, we can
adopt a similar approach as described in [10] for estimating
IMU bias terms. Specifically, we can pre-integrate the odom-
etry readings using an initial value of r̄, and incorporate
a correction term to account for updates to r during the
estimation process. Thus, we can define:

c̄ =
[
r̄ d

]T
(15)

where d is obtained prior to estimation and kept fixed, as
it is not expected to change over time. Similarly to [10],
and dropping the indices on ∆Ti+1

i for clarity, we use the
following approximation for (13):

∆T(q, c) ≃∆T(q, c̄)J∆T
c (q, c− c̄) (16)

where c̄ is the value of c at the moment the preintegration
measurement is initialized and

J∆T
c = J∆T

On−1
1

J
On−1

1
c + JO

c (17)

where

J∆T
On−1

1
= J⊞

On−1
1

(18)

JO
c = Jr(b)J

b
c (19)

Jb
c =

1

4




φfr φfl φrl φrr

φfr −φfl φrl −φrr

0 0 0 0
0 0 0 0
0 0 0 0
φfr

d

−φfl

d

−φrl

d

φrr

d




(20)

with Jr(b) the right jacobian of SE(3) evaluated at b.

E. Odometry Covariance

We model the noise in incremental encoders as

q = q̃+ ϵq (21)

where q̃ is the actual encoder measurement and
ϵq ∼ N (0,Σq). Furthermore, since we assume a previously
estimated value for d, we also consider its contribution to
the propagated covariance as d = d̃+ ϵd, ϵd ∼ N (0, σd).

We can then propagate the covariance of a single integra-
tion step (16) as:

ΣO = JO
q Σq(J

O
q )⊤ + JO

c Σc(J
O
c )⊤ (22)

where Σc = I5 [0 σd]
⊤ and JO

q = JO
b Jb

q = Jr(b)K(c).
Note that the wheel radii covariance are not considered in
this step since these variables are part of the estimation, in
contrast to the wheel’s separations which is prior informa-
tion. The wheel radii covariance are obtained as a result of
the estimation process.

The covariance for a single increment can then be accu-
mulated to the complete preintegrated measurement (13) in
a similar fashion as done in [10].

F. Repeat

For the repeat phase, we adopt a similar methodology to
that outlined in [21], albeit with adaptations to accommodate
the different sensor modality and robotic platform involved.
We provide first a brief overview of the standard map
localization approach.

The repeat phase comprises two distinct localization pro-
cedures: 1) the incremental localization method, which has
already been described in the previous section, and 2) the
global localization process in the map estimated at the teach
phase. To perform global localization, we select the keyframe
Km from the teach map that is closest to the most recent
keyframe Kl in the repeat phase, which is then designated
as the map reference keyframe. This keyframe is subject to
continuous change as the robot moves and new keyframes
are generated during the incremental localization process in
the repeat phase.

By executing a scan-matching procedure that utilizes the
scans from both keyframes Km and Kl, we can determine
the relative transform Tl

m between them. Subsequently, to
establish the current pose of the robot with respect to the
earlier map, we combine Tl

m with the most recent transform
Tn

l in incremental localization at the repeat phase (last pose
in (1)) as:

Tn
m = Tl

kT
n
l (23)

This separation into two distinct localization threads al-
lows us to keep an updated pose Tn

k at all times, even during
temporary failure of the global localization. In such case, the
previously found pose T∗

k is extended (predicted) with newer
relative transforms Tn+1

n ,Tn+2
n+1, etc. This adds robustness to

the whole T&R framework and even allows for deviations
from the teach map if they were necessary (for example, to
avoid an obstacle not previously present).

From the set of keyframes close to the map-reference
keyframe a smooth trajectory is built which takes into
account the linear and rotational velocities recorded during
the teach phase. This allows to evaluate the trajectory at
any given time t and obtain a control setpoint in order to
smoothly follow the taught path (for more details see [21]).

As this work’s contributions primarily concerns the incre-
mental localization algorithm, we opted for a straightforward
control strategy based on a position/orientation PI controller
for our experiments. Such controller operates independently
on each of the three controllable axes of the robot.

V. RESULTS

A. Experimental Setup

To evaluate the performance of the proposed T&R frame-
work, we conducted a series of experiments in the Coppelia
V-Rep simulator. The robotic platform used was the KUKA
youBot, which features an omnidirectional drive platform
consisting of four mechanum-style wheels. Simulated wheel
encoder readings were obtained by converting wheel rotation
into 2000 discrete ticks. For the LiDAR we chose the Hokuyo
URG-04LX sensor which gives readings at 50 Hz, up to a
distance of 4 m, over a 240 ◦ angle. We introduce noise to the
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Fig. 1. Top view of the simulation environment and teach trajectory.
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Fig. 2. Relative pose errors (in dark blue) and estimated uncertaintes (in
light blue).

LiDAR scans by perturbing the distance of each reading with
Gaussian noise, with an uncertainty of 2 % over distance, as
proposed in [22].

The simulated environment corresponds to a model of a
region of the Marcum Conference Center of the University of
Miami (see Figure 1). The experiments consist of an initial
teach run over the environment and subsequent closed-loop
runs of the repeat phase.

B. Incremental Localization and Online Calibration

In this section, we assess the quality of the incremental
localization by evaluating the error of the latest estimated
relative transform against the ground truth as well as the
values of the estimated wheel radii (starting with an initial
error of 2mm for each wheel). Figure 2 displays the pose
error (in dark blue), along with the corresponding pose
covariance (illustrated with a 99% confidence interval in light
blue). Additionally, we present the relative pose ∆T and L,
along with their covariance (fig. 3(a), 3(b)), which provides
insight into the performance of each sensor modality over

0.010

0.005

0.000

0.005

0.010

x 
er

ro
r [

m
]

0.010

0.005

0.000

0.005

0.010

y 
er

ro
r [

m
]

0 50 100 150 200 250 300 350
t [s]

0.4

0.2

0.0

0.2

0.4

ya
w 

er
ro

r [
de

g]

(a) Relative pose errors (in dark blue) and estimated uncertainties (in
light blue) for odometry preintegration.
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(b) Relative pose errors (in dark blue) and estimated uncertainties (in
light blue) for ICP.

Fig. 3. Relative poses from odometry preintegration and ICP.

time and its relationship with the final estimated pose. Lastly,
Figure 4 illustrates the error and estimated uncertainties of
the wheel radii during online calibration.

The aforementioned results show that, in general, the
localization errors are small and consistent with the estimated
uncertainties. Upon analyzing the convergence of the wheel
radii, it can be observed that the initial error is quickly
reduced. Between the time intervals of t = 255 s and
t = 307 s, when the robot navigates through a long hallway,
the error in the x direction as well as the uncertainty of the
pose obtained from ICP significantly increases. Nevertheless,
since the pose obtained from odometry preintegration is
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Fig. 5. Box-and-whisker diagrams showing the Relative Pose Error
(RPE) on subsequences of increasing length, with and without wheel
radii estimation. Observe the substantial improvement when wheel radii
is estimated.

unaffected by this situation, the pose estimate after fusion
has a low error that is consistent with the low estimated
variance.

We conducted further analysis of the localization error by
measuring the Relative Pose Error (RPE), as defined in [21],
for subsequences of increasing lengths (Figure 5), for both
cases of having online estimation of wheel radii enabled and
disabled. Since our approach utilizes a relative method and
odometric reading integration accumulates error between a
pair of keyframes, this analysis enables us to observe the
rate at which error accumulates with respect to distance.
By doing so, we can make a trade-off between localization
and path accuracy when deciding at what distance to place
keyframes. From Figure 5 we can observe the impact on
odometry motion estimation arising from a relatively small
error in wheel radii as well as how the overall localization
performance improves when performing online estimation
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Fig. 6. Error (dark blue) and estimated uncertainties (light blue) between
relative poses in the repeat phase.
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Fig. 7. Teach and repeat trajectories. Observe that, using our approach,
the repeat trajectory closely follows the teach one.

of these parameters. This is true even for relatively short
distances and particularly for the translational component.

C. Repeat Autonomous Navigation

For the repeat phase we let the system control the robot
motion in order to analyze the localization against the prior
map built during the teach phase analyzed in the previous
section. For this we present the error between the robot’s
relative pose with respect to the prior map (as explained in
section IV-F, for more details see [20]) compared to ground
truth information, as well as its uncertainty (see figure 6).
We also compare the path followed by the robot compared
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to that of the teach phase in Figure 7.
Similarly to the results obtained for the teach phase we

can see that the error in the robot pose with respect to the
prior map is generally small and the estimated uncertainties
are consistent with it. Furthermore we can see that the robot
successfully follows the previously taught path.

VI. CONCLUSIONS

In this work we presented a novel T&R framework for
omnidirectional robot platforms, fusing information from
LiDAR and wheel encoder sensors under a relative formu-
lation. Our results demonstrate that the integration of both
sensor modalities not only enables robust localization in
environments where LiDAR sensors often struggle, but also
facilitates the real-time estimation of the platform’s wheel
radii. This, in turn, significantly enhances the accuracy of
motion estimation based on the odometric model.

As part of our future work, we plan to conduct live exper-
iments to validate our approach under real-world conditions.
Additionally, we aim to enhance our online calibration ap-
proach to accommodate changes in wheel radii that may arise
due to variations in cargo loads during transport operations.
We also intend to refine our robot control strategy to further
improve the method’s performance.
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Multidimensional particle filter for long-term visual teach and repeat
in changing environments. IEEE Robotics and Automation Letters,
8(4):1951–1958, 2023.

[27] Ştefan Săftescu, Matthew Gadd, Daniele De Martini, Dan Barnes, and
Paul Newman. Kidnapped radar: Topological radar localisation using
rotationally-invariant metric learning. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 4358–4364.
IEEE, 2020.

[28] Christoph Sprunk, Gian Diego Tipaldi, Andrea Cherubini, and Wol-
fram Burgard. Lidar-based teach-and-repeat of mobile robot trajecto-
ries. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3144–3149. IEEE, 2013.

[29] Michael Warren, Melissa Greeff, Bhavit Patel, Jack Collier, Angela P
Schoellig, and Timothy D Barfoot. There’s No Place Like Home:
Visual Teach and Repeat for Emergency Return of Multirotor UAVs
During GPS Failure. IEEE Robotics and Automation Letters, 4(1):161–
168, jan 2019.

[30] Warren Warren, Michael Paton, Kirk MacTavish, Angela P Schoellig,
and Timothy D Barfoot. Towards Visual Teach and Repeat for GPS-
Denied Flight of a Fixed-Wing UAV. In Marco Hutter and Roland
Siegwart, editors, Field and Service Robotics, pages 481–498, 2018.
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Adaptive Compliant Robot Control with Failure Recovery for Object
Press-Fitting

Ekansh Sharma†, Christoph Henke‡, Alex Mitrevski†, and Paul G. Plöger†

Abstract— Loading of shipping containers for dairy products
often includes a press-fit task, which involves manually stacking
milk cartons in a container without using pallets or packaging.
Automating this task with a mobile manipulator can reduce
worker strain, and also enhance the efficiency and safety of the
container loading process. This paper proposes an approach
called Adaptive Compliant Control with Integrated Failure
Recovery (ACCIFR), which enables a mobile manipulator to
reliably perform the press-fit task. We base the approach on
a demonstration learning-based compliant control framework,
such that we integrate a monitoring and failure recovery
mechanism for successful task execution. Concretely, we mon-
itor the execution through distance and force feedback, detect
collisions while the robot is performing the press-fit task, and
use wrench measurements to classify the direction of collision;
this information informs the subsequent recovery process. We
evaluate the method on a miniature container setup, considering
variations in the (i) starting position of the end effector, (ii)
goal configuration, and (iii) object grasping position. The re-
sults demonstrate that the proposed approach outperforms the
baseline demonstration-based learning framework regarding
adaptability to environmental variations and the ability to
recover from collision failures, making it a promising solution
for practical press-fit applications.

I. INTRODUCTION

The process of loading shipping containers with general
cargo typically involves a press-fitting task, wherein the
products are tightly packed with minimal clearance, as
depicted in Fig. 1a. Press-fitting eliminates the need for
additional packaging, such as pallets, which can be costly
and take up valuable space within shipping containers. For
dairy products, the task is usually performed manually in
artificially cooled environments to ensure product quality.
This manual process can, however, be physically demanding
for workers, who must repetitively stack and push milk
cartons. Furthermore, a shortage of skilled labor for this
type of work is a persistent challenge in the industry [1].
Automating the task using a mobile manipulator, as depicted
in Fig. 1b, can offer significant benefits in terms of efficiency
and productivity; in particular, robots can work continuously
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(a) Container filled with milk cartons through manual press-fitting

(b) Custom mobile manipulator developed at the Institute for
Business Cybernetics for automating the process

Fig. 1: Shipping container loading process

without fatigue in temperature-controlled environments, re-
sulting in a more reliable loading process.

Performing the task with a mobile manipulator for loading
shipping containers can be challenging due to the need
for contact-rich object manipulation and susceptibility to
environmental variations and collisions. Existing research
on the peg-in-hole assembly task can, however, provide
valuable insights for developing a strategy to overcome these
challenges and perform press-fit tasks. For instance, learning-

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

269



Fig. 2: Press-fitting of milk cartons by a mobile manipulator
using the proposed Adaptive Compliant Control with Inte-
grated Failure Recovery (ACCIFR). The system comprises
three key components: (i) the ILoSA framework for learning
and execution (green), (ii) press-fit monitoring via force
and distance feedback (yellow), and (iii) a failure recovery
mechanism to detect and recover from collisions (orange).

based approaches, such as reinforcement learning [2], [3],
[4], [5], learning from demonstration [6], [7], [8] and contact-
state recognition [9], [10] have been successfully applied to
learn and perform a peg-in-hole task. Such approaches can
be adapted to tackle the press-fit task, as press-fitting can be
seen as an instance of the peg-in-hole task. Most of these
methods require a large amount of data, however, which can
be difficult to collect in real industrial environments and,
furthermore, typically do not incorporate mechanisms that
enable failure detection and subsequent recovery. This, in
turn, limits the applicability of existing approaches to real-
world press-fitting scenarios.

This paper presents an approach that we refer to as
Adaptive Compliant Control with Integrated Failure Recov-
ery (ACCIFR) to learn and perform a press-fit task using
a mobile manipulator. Our approach, illustrated in Fig. 2,
is built upon the ILoSA framework [11] to learn variable
impedance policies from a single demonstration and subse-
quent user corrections, such that we incorporate a press-fit
monitoring system into our approach, which utilizes force
and position-based feedback to ensure the reliable press-
fitting of milk cartons. Furthermore, our approach extends
the ILoSA framework by integrating a failure recovery
mechanism that can automatically detect and recover from

collisions, inspired by [12]. Concretely, when a collision
event occurs, a classifier predicts the contact side using time-
series wrench1 data, while the recovery mechanism provides
corrective feedback based on the predicted collision side,
facilitating effective collision recovery. We demonstrate the
generalizability of the proposed approach by performing
press-fit tasks using a Franka Emika manipulator and a
small container setup, considering variations in the starting
position of the end effector, the goal configuration, and
the object grasping position. We also evaluate the accuracy
of our contact-state recognition classifier in predicting the
contact side over varying lengths of time-series history. The
results show that ACCIFR improves the performance of the
baseline ILoSA, thus suggesting that our approach enables
a robot manipulator to learn and perform practical press-fit
tasks with the ability to reliably generalize over different
environmental variations and recover from collisions using
its failure recovery mechanism.

II. RELATED WORK

The press-fit task is a challenging problem that has re-
ceived relatively little attention in the context of robotic so-
lutions; however, existing research on the extensively studied
peg-in-hole assembly task [13], [4], [14] can provide valuable
insights to address this problem. In theory, the press-fit task
can be considered as a variation of the peg-in-hole task,
where a carton is inserted into a confined space inside a
container. In [15], existing robotics peg-in-hole strategies
are classified into two main categories: contact model-based
and contact model-free approaches, where the former em-
ploy contact-state recognition with compliant control, while
the latter use learning through environment interaction or
learning from demonstrations.

Contact-state recognition allows robots to perform manip-
ulation tasks by adjusting their behavior based on the current
contact situation. This can be achieved through analytical
modeling [16] or statistical modeling [17]. Conceptually,
analytical modeling for a press-fit task is challenging due to
the complexity of modeling numerous constraints, especially
the soft body characteristics of the carton for in-contact
manipulation, and is generally susceptible to uncertainty. In
contrast, statistical modeling directly learns the relationship
from gathered samples to predict the contact state without
requiring task-specific information. Yan et al. [9] introduce
a supervised learning-based contact-state recognition model
using support vector machines. This system receives force
and torque input from sensors and outputs the corresponding
impedance controller and skill parameters to adjust the pose
and orientation of the robot’s end effector. Jasim and Plapper
[10] use a Gaussian mixture model and the expectation-
maximization algorithm to model input observations (wrench
and pose) and estimate the contact state using Bayesian
classification. Our proposed approach also uses supervised

1Here, wrench data refers to the measurements of forces and torques
exerted on a robot’s end effector. Such a measurement consists of six
components — three force components and three torque components —
over the (x, y, z)-axes.
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learning-based contact-state recognition for failure recovery;
however, in contrast to [9] and [10], we use a time-series-
based classifier to estimate the contact side from a short
history of raw wrench data and use this information to
generate corrective feedback for failure recovery, making it
simpler and more efficient to implement for a press-fit task.

Reinforcement learning (RL)-based methods are also
widely used to enable robots to learn new tasks and adapt to
new situations [18]. Traditional control approaches are typ-
ically combined with RL techniques to perform peg-in-hole
tasks. Johannink et al. [2] combine a learnable parametrized
policy with a fixed hand-engineered controller, such that
the twin delayed deep deterministic policy gradient (TD3)
is used as the underlying RL algorithm. Beltran-Hernandez
et al. [19] use the soft actor-critic (SAC) algorithm to
find a policy that generates trajectory commands and the
parameters of a force controller based on an estimated goal
pose. Learning manipulation skills in combination with RL
to perform peg-in-hole tasks is also a common approach in
the literature. While some of these frameworks use a fixed set
of manipulation primitives for a specific task [4], others use a
dynamic sequence of manipulation primitives automatically
discovered through deep RL [5]. The sample efficiency,
stability, and generalization ability for real-world press-fitting
is, however, challenging; most of the above approaches
thus suggest using Sim2Real with random exploration and
domain randomization [20], [3]. However, developing an
accurate simulation for press-fit tasks that can represent the
contact-rich manipulation and soft-body characteristics of
drink cartons is not trivial, while random exploration in the
real world can be dangerous.

Learning from demonstration (LfD) is an alternative
promising approach to learning and performing a manip-
ulation task. LfD is often combined with RL to improve
data efficiency [21], [22] due to its ability to bootstrap
the agent at the start of the training. Some approaches
use only a few demonstrations to learn any manipulation
task. For instance, Hermann et al. [6] propose an adaptive
curriculum generation framework that only requires a few
expert demonstrations to learn a task in simulation and
transfer it to a real robot. Similarly, Zhan et al. [7] propose
a framework that utilizes only ten expert demonstrations and
achieves optimal policies across several manipulation tasks.
Recent work in learning from the demonstration is inclined
towards one-shot demonstration learning, namely learning
any manipulation task through a single demonstration. Johns
[8] presents an approach that learns manipulation tasks using
a single expert demonstration combined with vision-based
self-supervised training from a bottleneck pose (from which
the object interaction begins); the approach uses a coarse-
to-fine trajectory where the robot approaches the object’s
bottleneck pose in a coarse manner and then interacts with
the object in a fine manner by replaying the end effector
velocities recorded during the demonstration. A promising
alternative to visual-based imitation learning is presented
by Franzese et al. [11], which introduces the Interactive
Learning of Stiffness and Attractors (ILoSA) framework.

ILoSA also utilizes a single demonstration and uses active
user corrections to learn diverse manipulation tasks. Here,
Gaussian processes are used to learn variable impedance
policies, identify uncertainty regions, as well as enable
interactive corrections, modulation of stiffness, and active
disturbance rejection. Our proposed approach modifies and
extends the ILoSA framework to learn and perform the press-
fit manipulation task from a single demonstration and user
correction, but integrates a monitoring and failure recovery
mechanism to perform the press-fit task reliably.

III. BACKGROUND: COMPLIANT CONTROL
USING ILOSA

The proposed approach is built upon ILoSA [11], an
interactive imitation learning framework. In this section, we
provide a short overview of ILoSA so that our approach,
which is described in the next section, can be understood
without ambiguities.

ILoSA uses two main teaching methods: kinesthetic
demonstration and teleoperated feedback. We collect a single
kinesthetic demonstration D to initialize the policy for the
end-effector’s intended behavior:

D = {(ξ, s)} (1)

Here, ξ = {ϕ0, ..., ϕT } is a sequence of features ϕ defining
the state of the robotic system, while s = {∆xd,Kd

s }
represents task-specific information, such that ∆xd is the
attractor distance recorded in the demonstration and Kd

s

is the recorded stiffness. The acquired policy can then be
executed, such that online corrections U are provided using
teleoperated feedback to improve the policy:

U = {(x
offset

, y
offset

, z
offset

)} (2)

Here, x
offset

is the directional feedback along the x-axis;
y
offset

and z
offset

are defined equivalently over the y- and
z-axis, respectively.

In ILoSA, a policy is learned using Gaussian processes and
can thus represent uncertain regions, which allows interactive
corrections and stiffness modulation. Specifically, corrections
impact the parameters of the impedance controller by altering
the attractor distance, represented by ∆x, and the stiffness
of the end effector, represented by Ks, as

Λ(q)ẍ = Ks∆x−Dẋ+ fext (3)

Here, Λ(q) is the Cartesian inertia matrix of the physical
system, D is the critical damping matrix, and fext is external
force. The hyperparameters of the GPs are determined using
a combination of expectation-maximization and the L-BFGS
method. Concretely, during the demonstration phase, the
hyperparameters are optimized accordingly, but are kept
constant during the correction phase, as the correlation is
assumed to be invariant.

ILoSA uses an uncertainty measure to determine if the
robot is in an unvisited area, in which case a corrective
sample is added to a database. A correction is then distributed
among all existing samples that are correlated with the
current end effector position using the following update rule,
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which is used to correct the attractor distance or stiffness (or
both) based on interpreting the received feedback:

µ(x) = k∗(ξ,x)
⊤ (K(ξ, ξ) + σ2

nI
)−1

y = A(ξ,x)y (4)

Σ = k(x,x)− k∗(ξ,x)
⊤ (K(ξ, ξ) + σ2

nI
)−1

k∗(ξ,x) (5)
µ+ ϵµ = A(ξ,x) (y + ϵy)⇒ ynew = y +A(ξ,x)+ϵµ (6)

Here, k is the variance of x, K is the covariance matrix of
the training points ξ, k∗ is the covariance between x and
the training points, σ2

n denotes the variance of the Gaussian
noise of the training inputs, and y are the training outputs.
K, k∗, and k are all functions of a kernel, and A(ξ,x)+

is the pseudoinverse of A. The correction provided at x is
represented by ϵµ. A+ acts as a selector that automatically
adjusts the modification needed for correlated elements in
the database to align with the user’s desired corrections.

ILoSA uses the directional feedback provided by the
user to infer changes in the attractor distance or stiffness,
which allows for incremental correction of the end effector’s
dynamics. It concretely uses the teleoperated input feedback
to directly determine the attractor distance increment ∆xinc ,
while the change in stiffness Ks inc is obtained as

(Ks +Ks inc)∆lim = Ks |∆x+∆xinc| (7)

On its own, ILoSA can only be used to learn and execute
a policy, but the method does not involve monitoring and re-
covery mechanisms, which limits its usefulness for practical
press-fit applications. In this paper, we embed ILoSA within
a monitoring and recovery framework that allows reliable
execution in the press-fit context.

IV. COMPLIANT CONTROL WITH FAILURE
RECOVERY

In this work, we propose an approach called Adaptive
Compliant Control with Integrated Failure Recovery (AC-
CIFR) for learning and performing a press-fit task using
a mobile manipulator. ACCIFR uses ILoSA as a baseline
framework to learn a compliant policy for the press-fit
task, but incorporates a collision monitoring and recovery
mechanism in order to prevent the robot from getting stuck
due to collisions with the environment. Our approach aims
to efficiently execute the press-fit task while maintaining the
ability to generalize to task variations. To achieve this, we
integrate a failure recovery mechanism that uses contact-state
recognition to detect and recover from collisions, namely
ACCIFR uses corrective feedback to adjust its policy and
recover from a collision. These features enable the ACCIFR
algorithm to handle various environmental variations, recover
from failures, and lead to successful press-fitting.

A. Formulation of a Press-Fit Task

In a container loading process, the press-fit task involves
pushing a carton to fit at a designated spot inside the
container. Formally, the objective of the press-fit task is to
move the robot’s end effector E from a starting pose S,
following a trajectory T in space, to fit an object O at a
goal pose G, as shown in Fig. 3. We assume that S and

Fig. 3: Illustration of a press-fit task

the estimated goal pose G will be known a priori. Also, we
assume that O is grasped in such a way that it can be pushed
to fit inside the goal pose. The observable measurements are
the end effector pose and the wrench data at each time step.
The success of the press-fit task relies on the robot’s ability
to accurately navigate T and fit O into G in a compliant
manner, namely while avoiding collisions with other objects
and the walls of the container.

B. Press-Fit Monitoring and Recovery

To ensure that the press-fit is achieved correctly, we
monitor both the distance between the current end effector
pose ∆xt−1 and the goal pose G, as well as the force applied
along the robot’s x-direction. The execution is deemed
successful when the goal pose is reached within a predefined
distance threshold, denoted as Dth, and a desired force
threshold, denoted as Fth, is achieved. This helps to ensure
that the object is press-fitted securely, which is essential for
the successful execution of the task.

During execution of the press-fit task, the robot can
experience collisions with the environment, particularly with
other cartons as well as with the container edges. Our failure
recovery mechanism, illustrated in Fig. 4, follows a three-
step approach to detect and recover from collisions. The first
step involves collision detection. Once a collision is detected,
a classifier predicts the collision side based on time-series
wrench data. Finally, corrective feedback recovers the end
effector by driving it towards the goal. We describe each of
these steps below.

1) Collision detection: ILoSA predicts and sets the attrac-
tor pose and stiffness at each timestep during active control.
We utilize the generated prediction for collision detection,
namely we continuously monitor the difference between
∆xt−1 and ∆xt. If there is no difference between the current
attractor pose ∆xt−1 and the next predicted attractor pose
∆xt, and the goal pose is not reached, we consider that the
end effector has either collided or is stuck.

2) Contact side prediction: To predict the side of a
collision after it has been detected, we use the Incep-
tionTime [23] deep learning-based time-series classification
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Fig. 4: Failure recovery mechanism: (i) a collision is detected
(in red), (ii) a classifier predicts the contact side, and (iii)
corrective feedback steers the end effector towards the goal
(in green) based on the contact-side prediction.

model.2 We employ a deep learning classifier due to its
inherent capability to automatically learn complex patterns
and representations directly from the raw time-series wrench
data, eliminating the need for explicit feature engineering as
typically required by classical machine learning approaches.
The input to the classifier, denoted as Iwrench, is multivariate
time-series wrench data of the form

Iwrench =




xf1 ... xfn
yf1 ... yfn
zf1 ... zfn
xτ1 ... xτn
yτ1 ... yτn
zτ1 ... zτn




(8)

where (xf , yf , zf ) and (xτ , yτ , zτ ) are force and torque
readings, respectively, sensed at the end effector, and n
represents the length of the wrench data history. The output
of the classifier is the predicted contact side label, denoted
as Pcontact. For the evaluation in this paper, we collected
labeled wrench data for collisions on the left and right sides
for simplicity, but the classifier can be extended if other
collision categories need to be classified. For training, we
collected a wrench data stream for several seconds after
the collision occurred. The data was obtained from 80 trials
following a collision and then randomly divided into training
and test sets using an 80%/20% split ratio. The raw data was
preprocessed to ensure it is in a suitable format as in Eq. 8;
the classifier was trained on the preprocessed data using the
cross-entropy loss function and Adam optimizer.

3) Corrective feedback: In this paper, we use a failure
recovery mechanism that is inspired by [12], where, for
parameters that have led to a failure of a parameterized skill,
a hypothesis about the failure in terms of violated symbolic
relations is found; this hypothesis is then used to guide the
subsequent recovery process. Concretely, given parameters
xf that have resulted in a failure as well as parameters
x′
f that violate relations of a nominal execution model, a

corrective set of parameters x∗ is identified by moving xf

in a direction away from x′
f , as this makes it more likely

that the violation of the relations will be remedied.

2We use the implementation of the model provided in the PyTorch Time
library for this purpose https://github.com/VincentSch4rf/
torchtime.

Algorithm 1 Adaptive Compliant Control with Integrated
Failure Recovery (ACCIFR). The elements of the ILoSA
algorithm are shown in black font; our added components
are shown in blue.

1: procedure KINESTHETICDEMONSTRATION
2: while trajectory recording do
3: receive(xt → ξ)
4: ∆xd(xt−1) ← xt − xt−1

5: end procedure
6: train(GPs)
7: procedure INTERACTIVECORRECTIONS(ξ,∆xd,Kd

s )
8: while not success do
9: receive(x)

10: [∆x,Σ] ← GP∆x(x)
11: Ks ← GPKs

(x)
12: if feedback then
13: [∆xinc,Ks inc]← interpret(feedback, ∆x,

Ks)
14: if Σ ≥ ΣThreshold then
15: append(x → ξ, ∆x + ∆xinc → ∆xd,

Ks +Ks inc → Kd
s )

16: else
17: correct(∆xinc → ∆xd,Ks inc → Kd

s )
18: fit(GPs)

19: ∆x ← GP∆x(x)
20: Ks ← GPKs

(x)
21: if collision(∆xt−1,∆xt) then
22: Pcontact ← predictContactSide(Iwrench)
23: feedback ← correction(Pcontact)
24: else
25: fstable ← −α∇Σ
26: [∆x,Ks]← modulation(∆x,Ks, fstable,Σ)
27: send(∆x,Ks)
28: success ← monitor(∆xg , ∆xt−1, Dth, Fth)
29: end procedure

For the recovery mechanism we propose in this paper,
we use the wrench data classifier described above to ground
relations describing collision directions and then use the
idea of recovery by moving away from the direction in
which a collision is identified. Concretely, after a collision
is detected, corrective feedback recovers the end effector
from the collision by steering it away from the side of
the collision and towards the goal pose. We use manually
defined corrective feedback instead of varying the feedback
magnitude as in [12] since, unlike in [12], we do not have
an underlying model that can evaluate the expected quality
of the correction; the feedback magnitude was empirically
found for both collision sides. This feedback is then inter-
preted just as the teleoperated feedback described in Eq. 2.

Overall, ACCIFR, summarized in Algorithm 1, is a mod-
ified and extended version of ILoSA [11] that accounts for
failure monitoring and recovery, thereby contributing to more
reliable press-fit execution.
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Fig. 5: Experimental setup for press-fitting

V. EVALUATION

We conducted experiments to evaluate the performance of
our proposed ACCIFR approach compared to the baseline
ILoSA approach in terms of its ability to generalize to
different variations of the press-fit task. We used a Franka
Emika robot manipulator with 7 degrees of freedom, a
miniature container setup with milk cartons, and a 3D mouse
for user correction, as shown in Fig. 5. We trained the system
using a single demonstration and user correction; the same
trained models were used throughout the evaluation. We
conducted experiments in three different scenarios of the
press-fit manipulation task, considering variations in (i) the
robot’s starting position, (ii) the goal position, and (iii) the
object grasping position. We performed a total of 20 runs for
each scenario with each variation, such that we evaluated the
performance using the number of successful runs and the
number of collisions encountered during the task.3 In the
trials with the robot, we used a contact-state classifier that
takes an input history of 290 wrench measurements, which
is about 10s; however, we also evaluated the prediction
performance of the contact-state recognition classifier with
varying lengths of wrench data history.

Our evaluation is based on the following assumptions: (i)
before press-fit execution, the robot manipulator starts at a
predefined pre-place pose, (ii) an estimated goal pose for
placing the carton is given to the robot, (iii) only the arm
of the mobile manipulator is moved to perform the press-
fit task (fixed base), and (iv) milk cartons have soft-body
characteristics.4

A. Generalizability Test I: Starting Position Variation

In this scenario, we varied the initial starting position of
the end effector in five different ways to fit an object at a
fixed goal pose with position (0.80,−0.05, 0.43) and quater-
nion orientation (0.58,−0.50, 0.48,−0.40) with respect to
the robot’s base frame. The results in Tab. I demonstrate
that the ILoSA framework performed exceptionally well in
all five cases, namely the end effector successfully reached
the goal without collision for each run in each variation. This
demonstrates that the baseline ILoSA is capable of dealing

3The success of each trial was evaluated manually by the experimenter.
4A video that illustrates the evaluation process can be found at https:

//youtu.be/cFChda1Pccc.

TABLE I: Performance of ILoSA for variations in the starting
position

S.No. Variation Goal reached (out of 20)

1 position: (0.74,−0.05, 0.43)
orientation: (0.58,−0.50, 0.48,−0.40)

20

2 position: (0.74,−0.05,0.52)
orientation: (0.58,−0.50, 0.48,−0.40)

20

3 position: (0.74,0.01, 0.43)
orientation: (0.58,−0.50, 0.48,−0.40)

20

4 position: (0.74,−0.14, 0.43)
orientation: (0.58,−0.50, 0.48,−0.40)

20

5 position: (0.59,−0.14,0.52)
orientation: (0.58,−0.50, 0.48,−0.40)

20

Fig. 6: Validation scenario evaluating the generalizability of
ACCIFR across different goal configurations, representing
contact situations from various directions.

with small variations in the starting position, which may
suggest that the added recovery by ACCIFR is not needed;
however, the benefit of monitoring and recovery becomes
clear below.

B. Generalizability Test II: Goal Configuration Variation

In this scenario, we compare the performance of ACCIFR
with the baseline ILoSA to perform press-fitting with five
different goal configurations, as shown in Fig. 6. For this, we
modified the algorithms to predict the next Cartesian pose of
the end effector in the local frame to reach the goal pose,
which means that the end effector has to only move by a
certain distance (in the x-direction) to reach the goal.

As shown in Tab. II, the proposed ACCIFR approach
outperformed ILoSA regarding successful runs. ILoSA per-
formed well for the default goal pose (goal1) but struggled
to maintain stability while attempting to reach the other goal
poses (goal2 and goal3), namely it did not reach some goal
poses due to collisions. On the other hand, using ACCIFR,
the end effector could recover from collisions and reach
the goal pose in most cases. Nevertheless, the end effector
could not reach goal4 in 6 out of 20 runs. We hypothesize
that this was caused by the impedance control parameters
learned from the user corrections, which was supported by
the observation that adding new user corrections improved
the performance. The results of this experiment demonstrate
that the recovery mechanism effectively enabled the end ef-
fector to reach different goal poses, but also that appropriate
recording of user corrections is essential for improving the
system’s performance.
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TABLE II: Comparision of ILoSA and ACCIFR for varia-
tions in the goal configuration

S.No. Variation Goal reached (out of 20)
ILoSA ACCIFR

1 goal1 20 20
2 goal2 20 20
3 goal3 20 20
4 goal4 0 14
5 goal5 0 20

Fig. 7: Validation scenario evaluating the generalizability of
ACCIFR across different object grasping positions, repre-
senting pose uncertainty during grasping.

C. Generalizability Test III: Variation in the Object Grasping
Position

While performing the press-fit task, the carton might be
grasped at a different grasping position than the demonstra-
tion with which it is trained, which can also lead to un-
foreseen collisions with the environment. In this experiment,
we compare the performance of ACCIFR with the baseline
ILoSA to perform a press-fit task with five different grasping
position variations, as shown in Fig. 7.

The experimental results in Tab. III demonstrate that the
proposed ACCIFR approach significantly outperforms the
baseline ILoSA regarding generalization to different grasping
positions. In particular, ILoSA reached the goal pose without
collision only when the object was held at the same grasping
position as in the demonstration, but it failed in all other
variations. In contrast, the ACCIFR approach was successful
in all five grasping position variations and recovered from
collisions in all cases due to the failure recovery mechanism.
The only failure for ACCIFR occurred in the case of grasp1,
where the grasped object slipped from the gripper in one
trial, thus preventing the end effector from reaching the goal
pose. These results demonstrate the enhanced adaptability,
stability, and collision recovery capabilities of the proposed
ACCIFR approach for the press-fit task with variations in the
grasping position.

D. Contact-State Classifier Analysis

To examine the effect of the length of the wrench data
history on the contact-state classifier and determine the
optimal length of wrench data, we also trained multiple
versions of the classifier with different lengths of wrench

TABLE III: Comparision of ILoSA and ACCIFR for varia-
tions in the object grasping position

S.No. Variation Goal reached (out of 20)
ILoSA ACCIFR

1 grasp1 0 19
2 grasp2 0 20
3 grasp3 0 20
4 grasp4 20 20
5 grasp5 0 20

TABLE IV: Influence of the length of wrench data history
on the contact-state classification accuracy

S. No. Time
(in sec)

Average length of
wrench data history

Classification
accuracy (in %)

1 10 290 100
2 5 147 100
3 2 59 100
4 1 29 100
5 0.5 15 100
6 0.2 6 100
7 0.1 3 100
8 0.05 1 100

data history. Based on the results shown in Tab. IV, it can
be seen that the contact-state classifier used in ACCIFR can
accurately predict the side of a collision regardless of the
length of the wrench data history used. In particular, the
classification accuracy remains at 100% for all time windows
tested, indicating that the classifier can correctly predict the
contact side even when using wrench data with a short
history length. This could be attributed to the classifier’s
ability to extract highly discriminative features from the
wrench data, facilitated by the InceptionTime model; this
allows for the prediction of the contact side to be generated
quickly, which enables the robot to swiftly recover from
failures, thereby minimizing the impact of collisions. The
high accuracy can also be explained by the structure of
the experimental setup, where collision profiles remain static
between trials; however, as this is a fairly accurate model of
a real container loading scenario, the results suggest that the
contact-state classifier can also be useful for the real-world
press-fitting task.

VI. DISCUSSION AND CONCLUSIONS

The proposed approach, which we refer to as Adaptive
Compliant Control with Integrated Failure Recovery (AC-
CIFR), enables a mobile manipulator to perform a press-fit
task. The approach learns the task using a single demon-
stration and user corrections through the ILoSA framework,
while the failure recovery mechanism enables the end ef-
fector to avoid getting stuck after colliding with objects,
ultimately steering it towards the goal location. Regardless
of the initial expert demonstration, ACCIFR’s ability to
generalize to different variations can be attributed to both
ILoSA and the integrated failure recovery mechanism. More-
over, the experimental evaluation indicated that ACCIFR
outperformed ILoSA in terms of generalization performance.
Concretely, ACCIFR achieved a success rate of 90% for
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variations in the goal configuration, whereas ILoSA achieved
only 60%. This is also visible in the case of variations in
the object grasping position, where ACCIFR achieved an
almost perfect success rate, while ILoSA only achieved a
success rate of 20%. Our supervised learning-based contact-
state classifier exhibited good performance across varying
lengths of time-series data, ranging from an average length
of 290 to 1, indicating its ability to capture the necessary
information for predicting the contact side.

The work presented in this paper focused solely on au-
tomating the press-fit task and thus assumes that the mobile
manipulator will always start from a pre-place pose, that it
knows the estimated goal pose, and that it only uses the arm
during the press-fit execution. These assumptions were made
due to the limited scope of our study, as the press-fit task
is just one aspect of a larger research project.5 Additional
components for automating the shipping container loading
process with a custom mobile manipulator are under current
development.

Our evaluation of the proposed approach revealed some
limitations as well. The controller showed erratic behavior
during some trials, which may affect the robot’s reliability in
performing a press-fit task; future work should thus focus on
improving and optimizing the controller for enhanced stabil-
ity and accuracy. We also observed a hardware limitation in
the system, where the object slipped from the end effector
during the press-fit task. Using a gripper that can reliably
hold the object in place (potentially custom-designed) is es-
sential, especially when performing in-contact manipulation
with drink cartons. Another limitation is that our failure
recovery mechanism can only recover from collisions on
the left or right side; future work should generalize failure
recovery behaviors beyond left and right collisions, for in-
stance by incorporating self-exploration and active learning,
which could enable the robot to learn from its experiences
and actively seek new knowledge to improve its performance.
Finally, future work could compare the performance of our
time-series classifier with classical learning approaches to
assess the practical need for a deep learning-based approach.
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Graph-based LiDAR-Inertial SLAM Enhanced by Loosely-Coupled
Visual Odometry

Vsevolod Hulchuk Jan Bayer Jan Faigl

Abstract— In this paper, we address robot localization using
Simultaneous Localization and Mapping (SLAM) with Light
Detection and Ranging (LiDAR) perception enhanced by visual
odometry in scenarios where laser scan matching can be
ambiguous because of a lack of sufficient features in the scan.
We propose a Graph-based SLAM approach that benefits from
fusing data from multiple types of sensors to overcome the
disadvantages of using only LiDAR data for localization. The
proposed method uses a failure detection model based on the
quality of the LiDAR scan matching and inertial measurement
unit data. The failure model improves LiDAR-based localization
by an additional localization source, including low-cost black-
box visual odometers like the Intel RealSense T265. The
proposed method is compared to the state-of-the-art localization
system LIO-SAM in cluttered and open urban areas. Based on
the performed experimental deployments, the proposed failure
detection model with black-box visual odometry sensor yields
improved localization performance measured by the absolute
trajectory and relative pose error indicators.

I. INTRODUCTION

The localization is important for many mobile robotics
applications, including underground exploration, indoor in-
spection, and outdoor navigation. In these scenarios, the
robot’s sensors-based localization is needed if external local-
ization systems, such as satellite navigation, are unavailable
or do not work reliably because of signal reflections from
tall structures. The widely adopted method for localizing
a robot using its sensors is Simultaneous Localization and
Mapping (SLAM) [1], which becomes the de-facto standard
in applications where a prior map of the environments cannot
be utilized. SLAM can be based on data from various
sensors, including Light Detection and Ranging (LiDAR)
laser scanners [2], visual cameras [3], Inertial Measurement
Units (IMU), or wheeled odometry, to name just a few.

Using exteroceptive sensors to build a map of the op-
erational environment within which the robot is localized
allows for decreasing the localization drift compared to
purely proprioceptive incremental methods such as odometry
and dead reckoning. Even matching only consecutive frames
using Visual Odometry (VO) [4] helps to overcome drifts
of IMU measurements or slippage of wheeled odometry.
Nevertheless, the map’s quality is important and related to
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Fig. 1. A situation where LiDAR scan can be aligned with the previous
scans (map) in multiple ways since the area covered by the scan is
mostly flat, which prompts scan-matching ambiguity. A dense map of the
environment is in purple. Distance data of the current scan are denoted in
blue to red.

the data quality, specifically the depth estimates of the range
measurements. Current LiDAR sensors provide relatively
precise range measurements and can have resolution over
one hundred lines [5]. These properties make them suitable
for localization, especially in cluttered environments, where
LiDAR scans can be precisely matched with respect to
(w.r.t.) each other [6]. However, the scan matching may
be ambiguous in long corridors or flat fields, leading to
localization failure or high drift, as depicted in Fig. 1.

Incremental localization methods, such as IMU and
odometry-based methods, including VO, might help to over-
come areas where LiDAR scan matching is ambiguous
locally, albeit it can lead to higher drift than the LiDAR-
based SLAM in the long run. Thus, combining data sources
can be advantageous in SLAM, and two main sensor fusion
approaches can be found in the literature. The first is
tightly-coupled methods that account for sensor raw data,
such as in LiDAR Inertial Odometry via Smoothing and
Mapping [7] (LIO-SAM), where an IMU displacement mea-
surement serves as an initial guess for the scan-matching.

The second class of methods uses a loosely-coupled ap-
proach to fuse multiple localization sources, meaning that
two displacement outputs from localization systems are fused
at the top. Consequently, the resulting estimation tends to be
more robust as a failure of one source does not provoke
the failure of another one. Also, loose coupling allows
the integration of several independent localization systems,
making the whole system modular and easily replaceable
compared to tightly-coupled systems.

In this paper, we propose an extension of the Pose-
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Fig. 2. Result of the proposed Graph-based LiDAR-Inertial SLAM with
loosely coupled visual odometry on the rural dataset. Notice that even
though the matching of the LiDAR scans was unsuccessful in some areas,
the proposed method can use scale and pose drifting visual localization
VINS-Mono to overcome such areas and close the loop.

Graph SLAM, combining tightly and loosely coupled ideas.
We propose to use tightly coupled sensory fusion between
LiDAR and IMU, similar to LIO-SAM. Besides, the de-
veloped solution allows utilizing additional sources of pose
estimates in a loosely-coupled manner, improving the SLAM
performance when LiDAR data matching fails. Various
methods of incremental localization can be loose-coupled
in the proposed method, such as visual localization, wheel
odometry, RADAR-based localization [8], or thermal-inertial
odometry [9]. Nevertheless, the properties of the proposed
method are demonstrated while using a black box embed-
ded stereo visual localization system, the Intel RealSense
T265 (T265) [10], and visual-inertial localization VINS-
Mono [11].

We propose a relatively straightforward failure detection
model that triggers the incorporation of the additional low-
quality pose estimate into the developed Pose-Graph SLAM.
The model assesses LiDAR scan matching quality to indicate
possible matching failure and IMU-based pose change pre-
diction to confirm the failure for switching the pose estimate.
Incorporating the additional localization source is enhanced
by an auto-scaling mechanism and improved graph structure.

The triggering threshold has been experimentally estab-
lished using a real robotic system; the proposed Graph-based
SLAM has been deployed in several deployments and com-
pared with the selected state-of-the-art LiDAR-based SLAM.
Based on the experimental results, the proposed method
demonstrates improvement of the localization performance
by the additional source of the incremental localization while
not sacrificing LiDAR-based performance in scenarios where
LiDAR scan matching performs well, see Fig. 2. We consider
the main contributions of the proposed approach as follows.
• Modular enhancement of existing Pose-Graph SLAM

by a loosely coupled additional localization system.
• Two-step failure detection model, allowing detection of

scan matching failure.
The rest of the paper is organized as follows. Section II

overviews the related literature, including a brief descrip-

tion of the selected reference LIO-SAM framework. The
proposed method is described in Section III. Experimental
results are reported and discussed in Section IV. Finally, the
paper is concluded in Section V.

II. RELATED WORK

Many SLAM systems have been proposed [2], [3] and
evaluated in the Kitti benchmark [12]. Based on the results
reported in [12], most of the top ten performing methods use
LiDAR measurements for robot pose estimation. One of the
top-performing LiDAR-based methods is LOAM [13], albeit
it lacks an explicit loop closure and is limited to only one
type of sensor. On the other hand, multiple possible sensors
are used in the RTAB-Map [14], which is a general tightly-
coupled LiDAR-Visual SLAM framework using multiple
graph frameworks. However, failure handling is not resolved
in the framework yet, and the authors mention it as a future
research direction.

Contrary to the RTAB-Map, the authors of [15] loosely
coupled several localization sources. The first step of the
coupling is the sanity check, where localization failures are
identified for each localization source using the dynamic
model of the vehicle. Then, Chamfer distance-based [16]
score is used to select the best pose estimate. The advantage
of [15] is high robustness, but since the localization sources
are completely independent, the visual odometry cannot help
the LiDAR-based SLAM to close the loop in the case
of temporal LiDAR-based SLAM failure. Furthermore, the
Chamfer distance-based score measures the alignment of the
LiDAR scans. It does not directly detect when the perfect
alignment of LiDAR scans may correspond to a wrong
displacement in monotonous corridors or fields.

In [17], the authors review available sensory fusion ap-
proaches for LiDAR-Visual SLAM. They mention that the
graph-based SLAM [1] is often used for sensor fusion
because it abstracts from raw measurements. The approach
represents measurements, poses, and observations in a graph
structure. Pose-graph SLAM [18] is a specific kind of
graph-based SLAM that is the most used nowadays. It
restricts the graph’s nodes to be poses and positions of
robots and landmarks and edges to be measurements-based
constraints between them. The authors of [19] demonstrate
the computational advantages of the pose-Graph SLAM for
large-scale maps, comparing the solution with conventional
filtering approaches. The approach is further explored in
[20], where the authors review iSAM2 [21], which iteratively
re-optimizes only nodes influenced by new observations.
Multiple graph optimization frameworks have been proposed,
but ORB-SLAM3 [22] uses the g2o library [23] in Loop
Closure for Bundle Adjustment [24] to improve the Visual-
Inertial Odometry. In VINS-Mono [11], the authors present a
Visual-Inertial SLAM solution that fuses a monocular camera
and IMU in a tightly-coupled manner for obtaining odometry
and optimizing the global trajectory with pose-graph SLAM.

LiDAR-Inertial odometry is the core of LIO-SAM [7]
that uses scan matching based on LOAM [13], where the
initial guess of the LiDAR pose is based on integrated
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Fig. 3. Map optimization graph in LIO-SAM [7].

IMU measurements. The scans aligned by LiDAR odom-
etry are marked as keyframes if the distance from a pose
corresponding to the previous keyframe is above a certain
threshold. Otherwise, the pose is treated as a temporal sub-
frame. The relations between the keyframes are represented
by constraints that are used to construct a sparse graph within
the GTSAM [25] optimization framework. Loop closure is
then performed as a parallel process using the Iterative
Closest Point (ICP) [26], and the loop constraints are added
if the ICP converges. For the loop closure detection, the
latest keyframe is attempted to be matched against the nearby
keyframes, including recent keyframes and keyframes that
are close to the current robot pose. If the matching of the
keyframes is successful, the transformation between them is
inserted into the graph as a constraining factor. The graph
structure is illustrated in Fig. 3.

LIO-SAM is further extended by tightly-coupled VO in
LiDAR-Visual-Inertial Odometry via Smoothing and Map-
ping (LVI-SAM) [27]. LVI-SAM tightly couples LIO-SAM
with Visual SLAM VINS-mono [11] to improve performance
in challenging scenarios using sensor-specific failure detec-
tors for LiDAR and VO. However, such an approach does not
support flexibility in changing the source of additional local-
ization systems and restricts end-users to specific additional
sensors (camera) and algorithms (VINS-mono).

Based on the literature review, we opt for LIO-SAM
as a suitable base system for integrating the additional
sensor for localization. It provides the advantage of a great
performance of LiDAR-based methods [12] while avoiding
the disadvantage of the tightly-coupled visual odometry of
LVI-SAM, which supports only the specific method of visual
odometry. LIO-SAM framework accounts for ambiguities of
the scan-matching by checking scan-matching convergence.
The convergency is then reflected in uncertainties while
optimizing IMU measurements. On the other hand, the sys-
tem is developed for structure-rich environments. Besides, it
does not explicitly handle situations where the scan-matching
results are completely unusable. Both the drawbacks are
addressed by the proposed loosely-coupled combination of
LiDAR-Inertial SLAM and VO.

III. PROPOSED METHOD

The proposed loosely coupled VO with the graph-based
LiDAR-Inertial SLAM leverages LIO-SAM [7]. It uses the
same way of calculating LiDAR-Inertial odometry (referred
to as LiDAR-based odometry). However, we modify the
factor graph construction to incorporate measurements from

an additional localization system, such as VO. The inputs to
the proposed method are LiDAR scans, IMU measurements,
and pose estimates of the additional localization system(s).
Although the proposed approach is general, we consider
Visual-Inertial Odometry (VIO) as the additional localization
system that produces a 6 DoF robot pose estimate to present
the proposed concept. The following assumptions are made
in the design of the proposed method.
• For simplicity of the description, only a single addi-

tional localization system VIO is used, albeit multiple
localization sources can be straightforwardly utilized.

• The additional localization system provides pose esti-
mates w.r.t. to the same coordinate frame as the LiDAR-
based odometry.

• All sensors’ data is synchronized in time.
The proposed method consists of two parts: (i) failure de-
tection, which indicates that LiDAR-based odometry failed,
and (ii) visual localization integration, which integrates the
additional localization into the factor graph in the case of
the detected failure.

A. Failure Detection

Failure detection starts with the failure indication defined
by the Failure indicator Ifail. If the indication is positive,
Failure resolution determines if VIO provides a more suitable
pose estimate than the LiDAR-based odometry. The overview
of the failure detection process is depicted in Fig. 4, and it
works as follows.

TLiDAR

TIMU

TVIO

DIMU-VIO

Failure IndicationDIMU-LiDAR

Failure Resolution

Start

Failure

Normal

Convergence Indication

False

True

False

True

Fig. 4. Failure detection algorithm.

The failure indicator IFail is combined from two compo-
nents: convergence indicator IConv and IMU-based indicator
IIMU as

IFail = IIMU or IConv. (1)

IConv is triggered when the LiDAR scan matching does
not converge, but it might not cover all cases when it is
suitable to switch to VIO. Therefore, we also use IIMU to
increase the failure detection rate, which is supported by the
experimental results reported in Section IV-A. The advantage
of IIMU is that it is not directly influenced by a lack of
spatial and visual features in the environment. The indicator
uses a rough estimation of the robot motion by IMU-based
odometry increment TIMU ∈ SE(3) to estimate the adequacy
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of the LiDAR-based odometry increment TLiDAR ∈ SE(3).
Using LiDAR scans at 10 Hz to improve the estimate of the
robot motion ensures that the IMU-based motion estimates
do not suffer from localization drift by integrating IMU
measurements for an extended period. The difference of the
increments DIMU-LiDAR is computed as

DIMU-LiDAR = TIMU · T−1LiDAR. (2)

We analyze the norm of the rotational component and a
translational component of the difference defined by

rIMU-LiDAR = || rot(DIMU-LiDAR)||ANG

tIMU-LiDAR = || trans(DIMU-LiDAR)|| (3)

where rot(DIMU-LiDAR) ∈ SO(3) is the rotational component
and trans(DIMU-LiDAR) ∈ R3 is the translational component
of DIMU-LiDAR. The term || · ||ANG denotes the angular metric
of the rotation that is determined as a rotation angle of the
angle-axis representation of the rotation.

The IMU indicator IIMU works as an outlier detector [28],
and it is defined as logical or of two threshold values

IIMU = (rIMU-LiDAR > cr) or (tIMU-LiDAR > ct) (4)

that triggers when either the rotational or translational
component of the difference DIMU-LiDAR is larger than the
corresponding thresholds cr and ct, respectively. The thresh-
olds are determined experimentally using outlier detection
methodology; see the following section.

The failure resolution begins if the failure indicator IFail (1)
is true. The VIO pose estimate is used if it is significantly
closer to the IMU-based odometry than the LiDAR-based
odometry. Thus, the resolution is defined by the following
condition

(rIMU-VIO < α · rIMU-LiDAR)
and

(tIMU-VIO < α · tIMU-LiDAR)
(5)

where rIMU-VIO and tIMU-VIO are defined similarly to the IMU-
LiDAR difference DIMU-LiDAR defined in (3).

Note that the LiDAR-based odometry failure might be
indicated based on IFail, but failure resolution (5) would not
activate the usage of VIO pose estimate if the latter does not
improve the LiDAR-based one. We incorporate an empiri-
cally obtained α = 0.8 factor in the IMU-LiDAR difference
when considering additional odometry over LiDAR. It is
done to ensure the significance of any potential improvement
by additional odometry and account for IMU noise.

B. Visual Odometry Integration – Scale Self-Adjustment

Let us suppose the LiDAR-based odometry failure is indi-
cated, and VIO provides more precise localization according
to the rule (5). In that case, the VIO is incorporated into the
factor graph in place of the LiDAR-based odometry, intro-
ducing a constraint between the keyframes if the keyframe
is inserted. Since the additional odometry (such as visual
or wheeled) might suffer from a wrong scale or slow scale
drift, the proposed method performs dynamic scale self-
adjustment, estimating the scale of the odometry when the
LiDAR-based localization is considered sufficiently precise.
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Fig. 5. The proposed method for combining the LiDAR-based odometry
with VIO-based pose estimate increments.

We propose to utilize the median value of the moving
window to compute the scale. In particular, 500 keyframes-
long window includes the past ratios of the absolute values
of the translations tVIO/tLiDAR, where t〈source〉 is the norm
of the translational part of the odometry increment. Then,
the factor graph structure is created according to the scheme
depicted in Fig. 5 as follows.
• The LiDAR-based odometry creates constraints be-

tween the previous and the new keyframes based on
scan-matching when the LiDAR-based odometry works
successfully. When the new LiDAR scan (frame) is
available, it is scan-matched against a reference map
combined with the nearby keyframes to create such a
constraint. Similarly to LIO-SAM, only if the estimated
pose increment exceeds a configurable threshold the
frame is inserted into the map as a keyframe. Otherwise,
it is treated as a temporal sub-frame to improve the ini-
tial guess of the next frame pose and output localization
information.

• On the other hand, the VIO constraint is inserted instead
of the LiDAR-based one if the failure is detected.
However, in contrast to LiDAR-based constraints, the
VIO-based ones are not guaranteed to be optimized
for the keyframes alignment as they optimize visual
features alignment and may suffer from the incorrect
and drifting scale. Thus, combining keyframes con-
nected with VIO-based constraints can result in a poorly
aligned reference map, and a new LiDAR scan would
not be successfully matched against such a reference
map. Therefore, only keyframes inserted after the last
VIO usage are combined in the reference map when the
new LiDAR scan is processed.

Finally, it is necessary to properly handle Loop closure
constraints of the graph-based SLAM that aim to match
keyframes that are far from each other. These constraints
may fix the drift introduced by the VIO constraints. How-
ever, false loop closures may appear for the structure-
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less keyframes, consequently breaking the graph. Therefore,
keyframes corresponding to the LiDAR-based odometry fail-
ure are deemed unsuitable for loop closures. Further, the
inserted VIO constraints are set to have ten times larger
uncertainty than the LiDAR-based ones to ensure that loop
closure constraints will fix only VIO constraints without
affecting LiDAR-based constraints significantly. The effect
of the proposed loop closing system has been experimentally
examined, and results are reported in the following section;
in particular, the effect is demonstrated in Fig. 10.

IV. EXPERIMENTAL RESULTS

The proposed method has been experimentally validated
using a four-wheeled skid-steered robot Husky. The robot
was equipped with the Ouster OS0 LiDAR with 128 lines,
and the maximum range is approximately 50 m, a 9-axis
IMU Xsens MTi-30, and a fisheye stereo tracking camera,
the Intel RealSense T265 (T265). T265 provides out-of-
the-box VIO odometry, but its internal loop closures have
been disabled to make it compliant with made assumptions
on the additional localization systems. The careful extrinsic
calibration by measuring the relative pose of T265 w.r.t. the
LiDAR was done to comply with the proposed method’s
assumptions. Thus T265 pose estimations were transformed
into the LiDAR frame before using them by the proposed
method. The 3 DoF ground truth localization of the robot
has been recorded using the Leica TS16 total station, shown
in Fig. 6a.

(a) Total station setup (b) Bird’s-eye view on urban campus area

Fig. 6. The urban experimental scenario at the Czech Technical University
in Prague campus at Charles Square.

The LIO-SAM itself was already evaluated using publicly
available datasets in [7]. In this work, we primarily focus
on areas that induce the scan matching ambiguity. Thus, two
environments have been considered for system performance
evaluation. The first environment is the backyard area of
the Czech Technical University (CTU) in Prague campus at
Charles Square, depicted in Fig. 6b. The second environment
is a parking lot at Prague’s outskirt visualized in Fig. 7.
While the first environment can be considered structure-rich,
the parking lot in the rural area contains wide-open loca-
tions where LiDAR scans do not provide sufficient features
for successful scan matching. The testing environments are
denoted as campus and rural scenarios.

The length of the traveled trajectory is 285 m and 300 m
for the campus and rural scenarios, respectively. The pro-
posed method is examined with different failure indicators to

(a) Used wheeled robot (b) Bird’s-eye view on a parking lot

Fig. 7. Experimental parking lot scenario in Prague’s outskirts.

justify the combined indicator denoted IMU + Convergence.
Besides, the performance is compared with the LIO-SAM [7]
as the former localization method to show the benefits of the
proposed loosely-coupled VIO.

The evaluation is based on the methodology [29] using
medians of the absolute trajectory error ATEt and relative
pose error RPEt indicators considering the translational parts
of the localization error. In particular, ATEt evaluates the
global accuracy of the trajectory, while the median RPEt

estimates the local consistency of the localization (drift).
For RPEt, the step ∆ is set to 1 m, which corresponds to
the minimum distance between consecutive poses. Besides,
the standard deviation STDt of the RPEt is reported to
account for outliers. The indication Fail is used in cases
when the system received corrupted odometry, which led to
wrong IMU bias estimation. Such situations prevented the
localization system from recovering.

A. Parameterization of the Failure Detection

The failure detection model’s parameters have to be es-
timated, and the following intent describes the estimation.
Note that these results are only used to calibrate the pro-
posed method but do not serve to estimate the performance
of the proposed method. The proposed IMU-based failure
detection model is based on outlier detection [28] for differ-
ences between IMU-based and LiDAR-based pose increment
DIMU-LiDAR as of (4) with two established threshold values cr
and ct, which single out the outliers (failures). The threshold
values are set as follows.
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Fig. 8. Histograms of DIMU-LiDAR differences in the campus scenario. The
threshold values cr and ct are established as 95 percent quantiles depicted
by the vertical line segment.

We model the baseline distributions of differences
rIMU-LIDAR and tIMU-LIDAR in the non-failure scenario and
set the outliers thresholds as 95 percent quantiles of the
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distributions as shown in Fig. 8. LiDAR-based odometry
provides satisfactory results that can be treated as ”Non-
Failure” in the full-range campus dataset; thus, the data
is used to model the distribution. Note that the data used
does not intersect with data from the campus dataset in
reported evaluation tables, ensuring that the model tuning
and evaluation are performed using different data.

B. Performance in the Campus Scenario

The robot has been operated in the campus scenario where
the total station provides the ground truth data for evaluation.
We examine the localization performance of the proposed
method based on the scan-matching failure indicator IConv
only and with both indicators IConv and IIMU. First, we
examine the method using only the scan-matching failure
indicator and using both indicators. Limiting the LiDAR
range to 10 m has induced the scan-matching ambiguity as
illustrated in Fig. 1.

TABLE I
LOCALIZATION PERFORMANCE IN THE CAMPUS SCENARIO WITH AND

W/O FAILURE DETECTION AND LIDAR RANGE CROPPED TO 10m

Method / Failure Indicator ATEt [m] RPEt [m] STDt [m]

LIO-SAM [7] (No indicator) Fail Fail Fail
Proposed IMU Fail Fail Fail
Proposed Convergence 5.35 0.08 0.22
Proposed IMU + Convergence 4.70 0.06 0.26
Fail indicates the method has not been able to produce reasonable results.

The results in Table I indicate that a solo IMU-based indi-
cator cannot detect failure by itself but significantly improves
the performance when combined with the convergence-based
indicator, reflected in more precise localization results.

TABLE II
LOCALIZATION PERFORMANCE IN THE CAMPUS SCENARIO WITH FULL

LIDAR RANGE AND LIMITED RANGE TO 10m

Full range Limited range
Method ATEt RPEt STDt ATEt RPEt STDt

[m] [m] [m] [m] [m] [m]

LIO-SAM 0.08 0.04 0.03 Fail Fail Fail
T265 16.40 0.83 0.50 16.40 0.83 0.50
T265 scaled* 7.06 0.20 0.30 7.06 0.20 0.30
Proposed
method (w/o lc)

0.13 0.04 0.03 4.70 0.06 0.26

Proposed
method (with lc)

0.13 0.04 0.03 2.8 0.08 0.3

Fail indicates the method has not been able to produce reasonable results.
*Odometry scaled to optimize ATEt with the constant scale factor after the
experiment.

Next, we examine the proposed method and LIO-SAM
in two setups: full range and limited range. Besides, we
consider the method in two setups: without and with the
loop closure (lc). The methods are fed with data directly
captured by LiDAR without any range restrictions for the
full range. However, for the limited range, LiDAR’s range is
cropped to 10 m to examine the localization system perfor-
mance under conditions where LiDAR scan matching might
be ambiguous. In addition to LIO-SAM and the proposed

method, we evaluate the localization provided by the T265
with its and with the optimal scale. The optimal scale is the
scale minimizing the ATEt for the T265 trajectory, estimated
after the experiment and applied to the entire T265 trajectory.
It is considered to estimate the best possible reachable
result using T265 with the constant scale. Nevertheless,
the proposed method is inputted with the raw T265 data,
estimating the scale online using the method introduced in
Section III-B. The performance indicators are depicted in
Table II and trajectories in Fig. 9.
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Fig. 9. Aligned trajectories in the campus dataset.

The presented results support the hypothesis that the
environment is structure-rich for the full range and that LIO-
SAM and the proposed method provide competitive results.
On the other hand, T265 suffers from localization drift and
provides worse results, but as rarely used, it only slightly
worsens the performance of the proposed method compared
to LIO-SAM. However, when the LiDAR range is cropped to
10 m, LIO-SAM fails to output any feasible result once the
robot enters the area where it is too far from the buildings.
The limited LiDAR scans are ambiguous for the scans-
matching algorithm, and the whole localization fails. The
proposed method handles these ambiguous LiDAR scans by
switching to VIO, as shown in Fig. 9b. Although it introduces
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(a) Before loop closure

(b) After loop closure

Fig. 10. Loop closure example conducted by the proposed method in the
campus scenario.

a drift caused by the additional odometry, it performs best.
Finally, we examined the loop closure of the proposed

method. The obtained maps and trajectories before and after
the loop closure are depicted in Fig. 10. It can be observed
that the loop closure compensates for the drift introduced by
the relatively low-quality VIO. The resulting map is aligned
because the loop closure constraint optimized the trajectory
where the LiDAR-based odometry was ambiguous, which
is the flat region at the right part of the map. At the same
time, LiDAR-based constraints that align keyframes with no
ambiguity are almost not changed because those have much
lower uncertainty in the graph structure. In Table II, it can be
seen that for the limited range setup, the loop closure highly
improved global consistency reflected by the ATEt metric
while slightly worsening local consistency reflected by the
RPEt metric.

C. Performance in the Rural Scenario

The next deployment took place in the rural scenario with
wide open areas. In this case, we use fisheye images from
the T265 processed by the VINS-mono [11] odometry to
show the flexibility of the proposed method to incorporate
measurements from various types of additional localization
systems. Thus, we examine the performance of LIO-SAM,

TABLE III
LOCALIZATION PERFORMANCE IN THE RURAL SCENARIO

Method ATEt [m] RPEt [m] STDt [m]

LIO-SAM Fail Fail Fail
VINS-Mono 10.9 0.39 0.25
VINS-Mono scaled* 4.97 0.42 0.18
Proposed method (w/o lc) 7.7 0.19 0.13
Proposed method (with lc) 2.4 0.15 1.0

Fail indicates the method has not been able to produce reasonable results.
*The odometry scaled to optimize ATEt with the constant scale factor after the
experiment.

VINS-Mono, and two variants of the proposed method, with-
out and with loop closure (lc). The results are summarized
in Table III.

From the results, it can be seen that the proposed method
performed better than LIO-SAM since it did not fail. VINS-
mono provided the robot with smooth but scale and pose
drifted odometry. It can be seen in Fig. 11a that due to
the loop closure, the proposed method is able to re-estimate
the whole trajectory, mainly altering the part where the
additional odometry was used. The trajectories the evaluated
methods provide are depicted in Fig. 11b.
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Fig. 11. Proposed method results in parking dataset.
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V. CONCLUSION

We propose an augmentation of the graph-based SLAM
based on LiDAR-Inertial odometry in a modular way for
incorporating an additional localization source. Although
the additional localization is combined with the LiDAR-
Inertial odometry in a loosely-coupled manner, the resulting
factor graph can be optimized by identifying loop closures
based on LiDAR data even in cases when LiDAR scans
matching failed at some part of the trajectory. The proposed
improvement is based on failure detection by an IMU model,
setting the graph constraints uncertainties according to the
nature of localization sources and setting the selection rules
for keyframes usage. The proposed method has been tested in
urban and rural scenarios demonstrating competitive results
compared to LIO-SAM when LiDAR scan matching is not
ambiguous. The proposed method outperforms LIO-SAM
when the ambiguity of the scan matching induced high
localization drift and even a failure of LIO-SAM. The results
also indicate that the proposed method can utilize additional
localization systems. Moreover, the automatic auto-scale of
the data from additional localization supports drifting black-
box localization systems like the utilized T265.

For future work, we plan extensive evaluation and com-
parison of the proposed method with other SLAM methods,
including vision-based ones.
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Abstract— Object pose estimation is a crucial task in var-
ious applications, including human-robot interaction, mobile
robotics, and augmented reality. It involves determining the
position and orientation of an object relative to a reference
frame. This is a challenging task due to the need for accurate
object detection and recognition, as well as understanding
its geometry and the surrounding environment. Depending
on the application and available resources, this task can be
performed using Lidars, as in autonomous driving, or smaller
RGBD cameras, as in mobile robotics. This work proposes an
innovative convolutional neural network (CNN) for object pose
estimation from RGBD data. The model is designed to have
two separate branches, one for estimating the object’s position
and one for estimating the orientation, to facilitate the training
process without loss in performance. Moreover, our approach
emphasizes the problem of symmetric object pose estimation,
for which we designed a new loss function to better represent the
rotation error. The proposed model, with the newly introduced
loss function, outperforms state of the art models on public
datasets for object pose estimate, both for standard asymmetric
objects and symmetric ones.

I. INTRODUCTION

Object pose estimation involves detecting the 6 Degrees
of Freedom (6 DoF) pose of an object in three-dimensional
space with respect to a reference point of view. This task
is crucial in various fields, such as robotics [1], augmented
reality [2] [3], and autonomous driving [4]. In robotics, for
instance, it is essential in grasping, which requires the coor-
dination of perception, planning, and control of movements.

6 DoF pose estimation problem is commonly tackled
by positioning one or more cameras on the robot and by
designing a system able to derive the object’s pose only
from the data captured by these devices. Several methods
have been proposed to estimate an object’s pose from camera
frames in recent years. Classical approaches rely on hand-
crafted features and template matching [5], but they struggle
when occlusions and significant light variation are present.
For these reasons, approaches that rely on deep learning
algorithms have achieved higher performance than traditional
computer-vision-based solutions [6]. Nevertheless, they re-
quire specific postprocessing techniques, like customized
Iterative Close Point procedure for PoseCNN [7] or the 3D
model of the object to compute the loss at training time for
DenseFusion [6].

Our work proposes a flexible deep learning-based model
that uses depth cameras to detect the object’s pose from
a single color image enriched by depth information. Our

1 Department of Electronics, Information and Bioengineering (DEIB),
Politecnico di Milano, Milan, Italy {name.surname}@polimi.it

solution estimates the object’s translation and rotation in-
dependently to facilitate the training process. Moreover, we
introduce a novel approach to deal with the multiplicity of
equivalent orientations that characterize symmetric objects.
The contribution of this paper is thus twofold:

• We propose a new architecture for object pose estimate,
designed to have two separate branches, one for the
object’s pose and one for the orientation. This allows
disjoint training of the two tasks, making the process
more efficient and straightforward.

• We introduce a new loss for symmetric objects that
better measures the error in rotation compared to the
state-of-the-art one presented in [6]. At the same time,
we define a new metric to evaluate any 6DoF pose
estimate model based on the idea behind our custom
loss.

This work is structured as follows. In Section II, we
present an overview of the current state of the art on object
pose estimation. Then in Section III, we detail our newly
designed model, and we introduce the custom loss function.
In Section IV, we compare the performance of our model
against a state of the art architecture on a common dataset
and validate our loss function. To perform the analysis, we
use both our proposed metrics and the state of the art one
to guarantee a fair comparison. Section V briefly concludes
the paper.

II. RELATED WORKS

Object detection and pose estimation can be performed
using different sensor modalities. Among these, the most
prevalent ones are images and PointClouds. Images may
consist of RGB data captured using conventional cameras
or RGBD data, which augment visual information with
depth. The additional depth channel provides discretized
distance information for each pixel in the image. Conversely,
PointClouds represents a set of data points in a 3D coordinate
system. Each point in the PointCloud is defined by its x, y,
and z coordinates, which correspond to its spatial position
in the 3D space, and may also include supplementary infor-
mation such as color, intensity, or reflectivity. PointClouds
offer a 3D depiction of the targeted scene.

Both images and PointClouds can be leveraged to perform
object detection and pose estimation. When using solely
PointCloud data, the most widely applied deep-learning-
based approach is PointNet [8].

PointNet [8] is a pioneer in processing point sets directly.
It uses neural networks to extract high-level features from
PointClouds of different objects to perform classification and
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Fig. 1: Schema of the proposed Object 6DoF pose estimation model. The network takes as input RGBD data, detect the
object and predicts its position and orientation. The model is structured as two independent branches that can be trained
separately.

object part segmentation. The basic idea of PointNet is to
learn a spatial encoding of each point and then aggregate all
individual point features to a global PointCloud signature.
PointNet++ [8] extends the original model introducing a
hierarchical neural network that applies PointNet recursively
on a nested partitioning of the input points’ set. The idea
of PointNet++ is first to partition the set of points into
overlapping local regions, then, to extract local features
capturing geometric structures from small neighborhoods.

Despite their ability to achieve high accuracy, PointNet
and its variants demand high-density and accurate Point-
Clouds, which can solely be acquired using Lidar sensors.
Due to their high cost and size, these sensors are suitable
for implementation in autonomous vehicles, but cannot be
effortlessly integrated into smaller and less expensive sys-
tems. Hence, an alternative solution is to leverage RGB
images or RGBD data, where depth is computed from stereo-
vision techniques or infrared projection. While these sensors
produce less accurate depth information than Lidar sensors,
they greatly reduce sensor size, weight, and cost, making
feasible their integration into smaller devices and mobile
robots.

The classic RGB-based object pose estimation approach
relies on detecting 2D image keypoints, followed by using
a PnP algorithm [9] to estimate the 6DoF pose. Recently
new voting-based approaches have also been introduced to
estimate the object pose, as shown in [10]. With the advance-
ment of deep learning techniques, some neural network-
based 2D keypoint detection methods have been introduced.
For instance, some methods, such as [11], directly regress the
2D coordinates of the keypoints, while [12] uses heatmaps to
locate the 2D keypoints and [13] predicts the 3D coordinates
of each object’s pixel. One widely used model that exploits
this is PoseCNN [7], which achieves remarkable perfor-
mance in estimating 6DoF pose using only RGB images.

The fundamental concept behind PoseCNN is to divide the
pose estimation task into different components, enabling
the network to model their dependencies explicitly. Another
promising model is the Geometry-guided Direct Regression
Network (GDR-Net) [14], which estimates the 6D pose end-
to-end from dense correspondence based on intermediate
geometric representations.

The advent of accessible depth cameras has enabled
methods that infer poses of low-textured objects even in
poorly lighted environments more accurately than RGB-only
methods. To exploit the new depth channel information,
researchers had to face the problem of combining hetero-
geneous data from color images and 3D PointClouds. Xu
et al. [15] proposed the PointFusion network that extracts
point could features using a variant of PointNet and derives
the image appearance features from a CNN. The two vectors
of features are then combined in a fusion network to extract
3D bounding boxes. Later, Wang et al. introduced a novel
local feature fusion scheme and a fast iterative refinement to
improve the pose estimation further with a network called
DenseFusion [6].

Our proposed architecture extends the state of the art on
RGBD object pose estimation, providing a modular network
that can be trained independently for the translation and
rotation task. This makes the whole process more efficient
and straightforward removing the need for a 3D model to
compute the training loss [6]. We also introduce a custom
loss that better models the rotation error, compared to the
one preciously used in [7].

III. MODULAR CNN FOR 6 DOF POSE ESTIMATION

The goal of an object pose estimate network is to retrieve
the 6 degrees of freedom pose of an object in the three-
dimensional space with respect to the observer. The 6DoF
pose is commonly represented with a homogeneous transfor-
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mation matrix, composed by a rotation matrix R ∈ SO(3),
being SO(3) the group of all rotations around the origin of a
three-dimensional Euclidian space, and a translation t ∈ R3

x.
The system’s inputs are the frames from an RGBD depth
camera (i.e., RGB and depth images).

Figure 1 presents an overview of our network architecture,
composed of three distinct and nearly independent blocks.
The first block focuses on identifying the object of interest
in the color frame for which we aim to estimate the pose.
The second block, referred as the center regression branch
or TNet, estimates the three-dimensional coordinates of the
object center. Finally, the orientation estimation block, or
RNet, predicts the object rotation. Since the blocks are
independent, it is possible to separate the computation of the
object translation from the rotation estimation, thus allowing
us to study, train and optimize each sub-task independently.
Furthermore, this modular approach enables us to evaluate
the performance of the model with respect to each target sep-
arately and modify the architecture accordingly. Additionally,
the separate networks for translation and rotation prediction
offer flexibility to the user to apply only a specific part of
the full model if necessary (e.g., when the rotation is known
in advance).

Having two separate branches allows us to train the model
with a simple loss function (e.g., the norm of the distance
between ground truth and prediction). Contrarily, training
a complete model often requires ad-hoc solutions and, as
shown in the literature [6], a 3D model of the target object.
In the next sections, we detail the three core components of
our model and the designed loss functions.

A. Instance segmentation

The preprocessing segmentation serves as an initial tool
for the network. Its primary objective is to identify the
object of interest in the image to be positioned in the 3D
space. By performing this first step as part of the model,
we can provide a cropped image to the rest of the network,
which only contains the object’s information and eliminates
the environment’s interference. For this task, we used an
instance segmentation network, which predicts the object’s
pixels in the image, allowing us to generate the required
mask. In particular, we adopted a pretrained version of Mask
R-CNN [16], a widely used state of the art model for image
segmentation fine-tuned on our object of interest.

B. TNet

The goal of the TNet branch is to predict the object
translation t (i.e., the vector representing the location of
the center of the object in the three-dimensional space with
respect to the camera reference frame). For this task we only
exploit the depth image that has been cut out using the mask
from the instance segmentation model. We extract a fixed
number N of pixels randomly selected from the depth frame,
and we use the camera intrinsic parameters to reconstruct the
3D coordinates corresponding to each selected pixel. In this
way we obtain a sparse PointCloud restricted to the visible
object surface. Therefore, the input of the center regression
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Fig. 2: Architecture of the TNet branch. The 3D position is
only computed from PointCloud data

model is a 3 × N matrix. From this, the network performs
a feature extraction of local and global geometric structures
for each pixel, and then it extracts an estimate of the object
center from each selected point.

Exploiting only the reconstructed PointCloud data while
ignoring the color information for this task produces a net-
work that deals with smaller input data and less parameters.
In this way we obtain a model that is fast to train and requires
small computational power to infer the object translation.
Having a simpler task to complete with respect to the full
pose estimation, the depth information provides sufficient
data for the model to learn to predict the object center.
Moreover, PointCloud data are not affected by variable light
conditions or any other noise that characterizes RGB images.

The detailed structure of TNet is shown in Figure 2.
The model receives as input a 3 ×N matrix corresponding
to the three-dimensional coordinates of N points randomly
extracted from the visible object surface. The objective of
this model is to estimate the center of the object by predicting
for each point in the input its translation with respect to
the center. Therefore, we predict a three-dimensional vector
∆xi for each point, obtaining in this way again a 3 × N
matrix as output. From this, we can compute the center
position predicted by the ith point, by adding the ∆xi to
its three-dimensional position. The final translation output
can be obtained as the average of all the per-pixel predicted
center positions. The network is built using a series of
fully connected layers with ReLu activation functions that
extract a vector of 1024 features for each point, then a max
pooling layer is used as a symmetric function to aggregate
information from all points and to generate a vector of
global features. Finally, global features are combined with
the output of the second layer to derive the final output.

To train the network we define a loss function that
penalizes the incorrect predictions. This is done by taking
the average of the error on the prediction of each point. Let
xi be the position of the ith point, we define the distance
between the center xC as a vector ∆xi computed as follows:

∆xi = xC − xi for i = 1, ..., N. (1)

∆x̂i represents the prediction of our model for the ith point,
while ∆xi is the target vector. The loss function of the
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Fig. 3: Architecture of the RNet branch. RGB data and
PointCloud are processed by the network to predict the
rotation vector and the confidence score.

translation can be defined as:

LT =
1

N

N∑

i=1

∥∆xi −∆x̂i∥1 . (2)

C. RNet

For the rotation task, we designed a more complex network
that relies on color and depth images to predict the object’s
rotation. As for the center regression model, we randomly
pick N pixels between the ones selected by the instance
segmentation preprocessing step. Then, we extract the three
channels data from the RGB frame and the corresponding
distance information from the depth frame from each pixel.
These are fed to two different sub-networks that compute
the corresponding embeddings, which are then fused and
processed by a set of fully connected layers that derive
from each of the originally picked pixels an estimate of the
rotation in the form of quaternions. The model architecture
is presented in Figure 3.

We use the same structure as the initial layers of the
TNet model to extract features from the depth information.
This allows us to reuse the weights learned for the center
regression and reduce the number of layers of the model.
Instead, the feature extraction for the colored pixels is made
with Resnet34 model [17], a widely employed model for
image processing.

The extracted color information and PointCloud embed-
dings are then combined and fed to a fusion module, similar
to the DenseFusion network [6]. This part of the network
concatenates each pair of features and generates a fixed-
size global feature vector using an average pooling layer. In
the end, this global feature vector is appended to the local
feature vector for each pixel. In this way, we enrich each
dense pixel feature with the global fused features to provide
a global context. Finally, we feed each resulting per-pixel

feature into a final block that predicts the object’s pose.
The pose predictor comprises four fully connected layers
that progressively reduce the initial dimension of the per-
pixel feature to a four-dimensional vector representing the
quaternions of the estimated object rotation.

The N rotation prediction cannot be combined as shown
for the translation prediction by computing the average of
the estimated center translation. For this reason, we train our
network to evaluate the returned poses’ accuracy. To do so,
we add to the last module a parallel predictor that computes
a confidence score ci for each pixel starting from the same
fused local and global embeddings.

To train this network, we need to define a distance between
the predicted and the target rotations. To this end, we define
a per-pixel orientation error as the angle of the rotation that
aligns the estimated and ground truth orientations. We can
compute the per-pixel loss as follows using the distance
between the two orientations, represented as quaternions:

LR
i = 2 ∗ arccos |⟨ qtarget, q̂i ⟩|. (3)

To simplify this loss function in order to make it easier for
the optimization algorithm to update the weights, we can
eliminate the inverse cosine function by rewriting the loss as
follows:

LR
i = 1− |⟨ qtarget, q̂i ⟩|. (4)

According to [18], this is still a valid metric in SO(3) that
takes values in the range [0, 1]. Finally, we must combine the
per-pixel losses to obtain a single value to be optimized. The
overall loss can be defined as a weighted average of the per-
pixel losses weighted over the per-pixel confidence score ci,
and we add a regularization term that penalizes predictions
with small per-pixel confidences. We express the loss as:

LR =
1

N

N∑

i=1

(Lici − ωlog(ci)) (5)

where N is the number of randomly sampled pixels from
the RGB-D image and w is a balancing hyperparameter.

D. Loss function

Thanks to its modular design, the proposed model can be
trained in two steps, first the translation block and then the
rotation one. But to achieve higher accuracy, it is preferred
to fine-tune the whole model jointly afterward. To perform
joint finetuning, we need to define a loss function that
considers the error in translation and rotation simultaneously.
In literature, a common approach is to compute this metric
by sampling random points on a 3D model of the object
and computing the squared distance between these points in
the ground truth and in the predicted 6DoF pose [7]. This
assumes the existence of a 3D model of the object of interest
that can be used to generate these points. Since this is not
always possible, we designed our model with the modular
architecture previously shown, which can be trained with
only the 6DoF pose of the object.
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In literature, to perform the jointed training, the loss to
minimize for the prediction per-point is defined as:

Li =
1

M

M∑

j=1

∥∥∥(Rxj + t)− (R̂ixj + t̂i)
∥∥∥
2

(6)

where xj denotes the jth point of the M randomly selected
3D points from the object’s 3D model, R and t are the
rotational matrix and the translation vector that define the
ground truth pose, and R̂i and t̂i define the predicted pose
generated from the ith point.

This loss function is only well-defined for asymmetric
objects, where the object’s shape or texture determines a
unique canonical frame. Indeed, symmetric objects have
more than one and possibly an infinite number of canonical
frames, which leads to ambiguous minima. Therefore, we
need to define an alternative loss function for symmetric
objects. To this end, [7], [6], [19], and most of the works on
pose estimation define the loss for symmetric objects as the
distance between each point on the ground truth model and
the closest point on the estimated model orientation. While
the overall loss definition remains unchanged, the per-pixel
loss function becomes:

LS
i =

1

M

M∑

j=1

min
0<k<M

∥∥∥(Rxj + t)− (R̂ixk + t̂i)
∥∥∥
2
. (7)

Rotations that are equivalent to the 3D shape symmetry
of the object are not penalized. But this implementation
ignores the type of symmetry that characterizes the object
underestimating incorrectly predicted rotations. This loss can
be seen as a lower bound of the actual prediction error.
To improve the previous formulation and provide a loss
that better respects the roto translation error, we propose
a new metric that minimizes the loss function over all
the acceptable object symmetries. Instead of computing the
distance with respect to the closest point, we calculate the
classical loss function as defined in Equation 6 for every
possible symmetric rotation of the predicted model, and we
take the minimum of these values as the new per-pixel loss.

To define the new loss function in a rigorous way, we
need to introduce some notations, as presented in [20]. In
particular, we define:

1) Order of symmetric rotation: we say that an object has
an n order of rotational symmetry around the axis θ,
i.e. O(θ) = n, when its 3D shape is equivalent to its

shape rotated by Rθ

(
2πi

n

)
∀i ∈ {0, . . . , n − 1},

being Rθ(α) the rotational matrix corresponding to a
rotation of an angle α around an axis θ.
The min value of O(θ) is 1, when the object has no
symmetry around the θ axis. At the opposite, the order
of symmetry of an object with a circular symmetry
is infinite. A sphere has infinite order of symmetry
around all the axes.

2) Equivalent ViewPoint set: we define the set of all equiv-
alent ViewPoints with respect to a three-dimensional

vector v around an axis θ as

Eo(θ) =

{
Rθ

(
2πi

n

)
v ∀i ∈ {0, . . . , n−1})

}
, (8)

with symmetry order o ∈ 2, 3, . . . ,∞.
Moreover, the order of symmetries across multiple axes

is not independent. Indeed, the following properties hold for
circular symmetries:

Proposition 1: If an object is not a sphere, then the
following conditions must hold:

1) The object can have up to one axis with infinite order
rotational symmetry.

2) If an axis θ has infinite order rotational symmetry, then
the order of symmetry of any axis not orthogonal to θ
can only be one.

3) If an axis θ has infinite order rotational symmetry, then
the order of symmetry of any axis orthogonal to θ can
be a maximum of two.

We can now give a formal definition of our loss. Given an
object with rotational symmetry on the three orthogonal axes
x, y and z equal to nx, ny and nz . And given k = (k1, k2, k3)
we define an equivalent ViewPoint as

Ek(R̂ixk + t̂i) =

R̂i Rz

(
2πk3
nz

)
Ry

(
2πk2
ny

)
Rx

(
2πk1
nx

)
xj + t̂i (9)

with k1 ∈ {0, . . . , nx − 1}, k2 ∈ {0, . . . , ny − 1} and k3 ∈
{0, . . . , nz − 1}. Then, the per-pixel ViewPoint loss (VP-
Loss) is defined as follows:

LV P
i = min

k ∈ K

1

M

M∑

j=1

∥∥∥(Rxj + t)− Ek(R̂ixk + t̂i)
∥∥∥
2

(10)

with K =
{
(k1, k2, k3) | k1 ∈ {0, . . . , nx − 1}, k2 ∈

{0, . . . , ny − 1}, k3 ∈ {0, . . . , nz − 1}
}

. In summary, the
ViewPoint loss computes the average distance between the
target and predicted model as for non-symmetric objects
but does the computation for all possible equivalent View-
Points(i.e., all symmetric rotations of the model) and takes
the minimum over them.

IV. EXPERIMENTAL RESULTS

Since the newly introduced loss is a core component of
the object pose architecture, the first step of the experimental
validation concern the validation of our loss function. More-
over, before comparing our model against other state of the
art approaches, we also introduce a new evaluation metric
inspired by the ViewPoint loss and designed to model the
rotation error of symmetric objects better.

To validate the proposed loss, we compare it with the state
of the art presented in Equation 6. For this task we consider a
cube of size 5cm with square holes on the sides as shown in
Figure 4, the order of symmetries around the main axes are
nx = ny = 2 and nz = 4. Indeed, we can rotate the object

around the z axis of an angle α ∈
{
π

2
, π,

3π

2

}
and the
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Fig. 4: 3D model of a cube
with holes, used for the loss
validation

Fig. 5: 3D PointClouds of
the target and predicted
models

Base Loss
(Eq. 6)

CP Loss
(Eq. 7)

VP Loss
(Eq. 10)

Noise 6.193 mm 4.773 mm 6.184 mm
Rotation of π around z 61.965 mm 4.675 mm 6.234 mm
Rotation of

π

4
around z 25.145 mm 5.375 mm 22.567 mm

TABLE I: Losses comparison on different configurations
(i.e., rotation around the z axis) of the cube model from
Fig. 4. The Base Loss is not defined for symmetric objects
and does not consider equivalents ViewPoints. While both the
Closest Point (CP Loss) and the ViewPoint loss (VP loss)
are designed especially for symmetric objects.

cube would look the same. We consider two models of the
same cube in the 3D space to compare the different losses.
One represents the target and one the predicted cube. Then
we uniformly sample 200 points from both and compute the
distance between the points to obtain the loss, as shown in
Figure 5. The results from the computation of the losses
in some explicative scenarios are reported in Table I. As
expected, the loss value from the closest point formulation
is the smallest when a small noise is applied to the position
and orientation of the object. If we add to the noise a rotation
of π around z, then we have that the basic loss value for
a non-symmetric object is very high since every point in
the predicted model lies at the opposite side of the target,
while the ViewPoint loss values in this setting are close to
the corresponding value. This is because a rotation of π
around z is one of the equivalent ViewPoints of the object,
therefore, it is considered correct apart from the noise. On
the other hand, a rotation of

π

4
around z is not an equivalent

configuration because of the holes. This results in a high
ViewPoint loss that is close to the base loss since all the
equivalent configurations are equally distant from the target
model. Contrarly the state of the art closest point loss (CP
loss), reported in the second column of Table I, does not
distinguish so clearly between the different situations. In
particular, in this last test, where we generated a rotation
error of

π

4
, the computed loss is not significantly higher than

a correct rotation, prooving the advantage of our ViewPoint
loss against the state of the art approach.

A similar problem to the design of the loss emerges when

the model has to be evaluated against other state of the art
approaches. In particular, the most used metric to evaluate
predictions are the Avarage Distance (ADD) and its variant
for symmetric objects (ADD-S).

ADD =
1

M

∑

x∈Θ

∥∥∥(Rx+ t)− (R̂x+ t̂ )
∥∥∥
2

(11)

ADDS =
1

M

∑

x1∈Θ

min
x2∈Θ

∥∥∥(Rx1 + t)− (R̂x2 + t̂ )
∥∥∥
2
. (12)

where [R̂, t̂ ] is the predicted 6DoF pose, [R, t ] the ground
true pose, and x is a vertex out of M vertexes on the
object mesh Θ. Since this metric is highly connected with
the closest point loss, it has the same limitations previously
explained. For this reason, we designed a custom metric
to evaluate the model. In particular, we define the new
metric taking inspiration from the ViewPoint loss defined
in Equation 10, called ADD-VP. The ADD-VP evaluates the
mean pair-wise distance between object vertexes transformed
by the ground truth 6DoF pose [R, t ] and the closest
predicted pose between all the equivalent ones, based on the
object’s symmetries. It is defined as follows:

ADDV P = min
k ∈ K

1

M

∑

x∈Θ

∥∥∥(Rx+ t)− Ek(R̂x+ t̂ )
∥∥∥
2

(13)
where Ek(R̂x+ t̂) represents the equivalent ViewPoint with
parameters k = (k1, k2, k3) as described by Equation 9. With
this metric we can provide a more accurate evaluation of the
model.

Finally, we compare our proposed architecture, trained
with the ViewPoint loss, against the state of the art model
DenseFusion [6] on the Linemod dataset [21], training both
models for 500 epochs. To validate the results for asymmetric
objects we adopt the ADD metric, like most works in
literature. Regarding the two symmetric objects found in
the dataset, we report both the ADD-S and the ADD-VP.
The first one is required to make a fair comparison with
the other models. On the other hand, the second one gives
a more realistic evaluation of the error, and it is the one
optimized in our implementation. In Table II, we summarize
the percentage of correctly predicted poses on the test set
of each object in the Linemod dataset. We fix the threshold
for accepting a prediction as correct to 10% of the object’s
diameter, to be coherent with metrics used by state of the art
models. For our implementation, we present both possible
training modes. First, the percentage of correctly predicted
poses obtained by combining the translation predictor, TNet,
and the rotation predictor, RNet, which guarantees a simpler
and easier implementation. Then, we include the outcome
from the refinement obtained by training the full model using
the novel ViewPoint loss.

The results show that our full model with ViewPoint loss
significantly outperforms the state-of-the-art model on all
the objects from the Linemod dataset trained on the same
number of epochs. Similarly, the predictions from the model
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TABLE II: Percentage of correctly predicted poses on Linemod test set of DenseFusion and our model’s components
(symmetric object in italic).

ID Name DenseFusion TNet + RNet Full Model

non-symmetric object ADD ↑ ADD ↑ ADD ↑
symmetric object ADD-S ↑ ADD-PV ↑ ADD-S ↑ ADD-PV ↑ ADD-S ↑ ADD-PV ↑

1 Ape 0.6663 0.7560 0.8651
2 Benchvise 0.7982 0.8256 0.8852
4 Camera 0.6607 0.7367 0.7993
5 Can 0.8277 0.8343 0.8632
6 Cat 0.8832 0.8476 0.9104
8 Driller 0.7889 0.8299 0.8636
9 Duck 0.6629 0.7402 0.7950

10 Eggobox 0.9952 0.0056 0.9733 0.9432 0.9821 0.9512
11 Glue 0.9903 0.0348 0.9523 0.9621 0.9635 0.9678
12 Holepuncher 0.6079 0.7228 0.7644
13 Iron 0.9019 0.8726 0.9351
14 Lamp 0.8829 0.8315 0.9056
15 Phone 0.8347 0.8957 0.9576

TOTAL 0.8071 0.8261 0.8769

that combines RNet and TNet without using the objects’ 3D
models are comparable to state-of-the-art models. It is also
interesting to note how the proposed model, trained whith our
custom loss, achieves comparable results to the state of the
art on the ADD-S metric. Contrarly the DenseFusion model,
trained with the closest point loss, performs poorly using the
ADD-PV metric.

V. CONCLUSIONS

This paper presents a novel architecture for 6DoF object
pose estimation. The proposed convolutional neural network
is designed to have two independent branches, one for
position and one for orientation estimate. In such a way,
the two blocks can be trained separately, making the whole
process simpler and less resource-demanding. Moreover,
we introduce a new loss function specifically designed for
symmetric objects (i.e., the ViewPoint Loss), which provides
a better representation of the roto-translation error in these
specific scenarios. The comparison with state of the art shows
how the proposed method outperforms other approaches, and
our loss help to produce more accurate predictions from the
model.
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Learning State-Space Models for Mapping Spatial Motion Patterns

Junyi Shi1 and Tomasz Piotr Kucner1,2

Abstract— Mapping the surrounding environment is essential
for the successful operation of autonomous robots. While
extensive research has focused on mapping geometric structures
and static objects, the environment is also influenced by the
movement of dynamic objects. Incorporating information about
spatial motion patterns can allow mobile robots to navigate
and operate successfully in populated areas. In this paper,
we propose a deep state-space model that learns the map
representations of spatial motion patterns and how they change
over time at a certain place. To evaluate our methods, we
use two different datasets: one generated dataset with specific
motion patterns and another with real-world pedestrian data.
We test the performance of our model by evaluating its learning
ability, mapping quality, and application to downstream tasks.
The results demonstrate that our model can effectively learn
the corresponding motion pattern, and has the potential to be
applied to robotic application tasks.

I. INTRODUCTION

In recent years, the utilization of mobile robots has wit-
nessed significant growth across various applications such
as logistics, healthcare and exploration. Mapping, serving as
a fundamental approach for modeling environmental infor-
mation, plays a vital role in enabling robots to plan their
movements, avoid obstacles, and locate targets. However,
mobile robots still encounter limitations in dealing with
changing environments. To allow mobile robots successfully
navigate and operate in populated areas, it is necessary to
develop methods for mapping dynamic information.

In daily life, it can be observed that individuals often
adhere to implicit traffic rules while navigating their sur-
roundings. Pedestrians exhibit distinct movement depend-
ing on their location, such as when traversing a corridor
or approaching building entrances. Moreover, people from
different regions tend to follow specific directional norms.
For instance, individuals in the UK and Japan tend to favor
the left side, while those in the US and Canada exhibit
different behaviors. This observation naturally gives rise to a
hypothesis: there exists a spatial motion pattern that guides
the movement of pedestrians. With the map representation of
these motion patterns, mobiles robot can benefit in a variety
of applications such as motion planning [1], human motion
prediction [2], task planning [3], and human-robot interaction
[4].

Modelling these spatial motion patterns can be challeng-
ing. Previous studies are either based on the assumption that
motion patterns remain constant within a given location [5]

1Junyi Shi and Tomasz Piotr Kucner are with the Department of Electrical
Engineering and Automation, Aalto University, Finland. junyi.shi,
tomasz.kucner@aalto.fi

2Tomasz Piotr Kuncer is also with the Finnish Center of Artificial
Intelligence, Finland.

or undergo significant changes over extended periods [6].
However, such assumptions are somewhat divorced from
reality. In reality, motion patterns tend to evolve gradually,
as seen in an example of an underground station where the
number of people does not remain constant, nor does it
increase instantaneously. Instead, it changes gradually as the
station approaches a certain rush hour.

In this paper, we adopt the assumption that dynamics
within a changeable environment are driven by a certain
kind of motion pattern that undergoes gradual changes over
time. Our approach focuses on learning a map representation
that describes the implicit motion pattern and its temporal
variations. By leveraging data collected over successive time
periods, our method can effectively learn the corresponding
motion patterns and predict their subsequent movements.

Our contributions can be summarised as follows:
• We implement a generative model to describe the spatial

motion pattern, which aggregates and encodes the spa-
tial information of dynamics into a map representation.

• We employ a state-space model (SSM) to represent how
the spatial motion pattern changes over time at a certain
place.

• We demonstrate the predictive performance using our
learned model, by evaluating the learning ability, the
mapping quality and the model’s applicability to down-
stream tasks.

II. RELATED WORK

Our work is based on the concept of Maps of Dynamics
(MoD), which refers to spatial or spatio-temporal represen-
tations of patterns of dynamics [7].

MoDs can be classified into different groups based on the
type of dynamics being mapped. When considering discrete
objects, they can be classified into three main groups: static
objects, semi-static objects, and dynamic objects. [8]. Static
objects, such as trees and buildings, rarely change position
over long periods of time. In mapping systems, these are
often represented using geometric maps, such as occupancy
grid map [9] or OctoMap [10], which are not considered as
MoDs. Semi-static objects, such as chairs and boxes, might
change position within a relatively low frequency or as a
consequence of specific events. Krajnı́k et al. [6] introduce
occupancy grids for mapping semi-static objects, combined
with the temporal model Frequency Map Enhancement (Fre-
MEn), in order to model the state changes of the semi-static
cells. Dynamic objects, such as pedestrians and animals, are
some objects that move purposefully and can be observed
during the change of their states. Kucner et al. [11] and
Wang et al. [12] treat dynamics as a change of occupancy

979–8-3503-0704-7/23/$31.00 ©2023 IEEE
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Fig. 1. Overview of our system. Our model consists of three major components: Encoder, Decoder and Transition Module. The encoder takes the pairs
of velocity v and position p as input, where the Transformer converts a set of points to a single feature vector z and output a normal distribution. After
sampling, the system obtains the motion pattern m. The decoder takes position p and motion pattern m as inputs, and generate the reconstruction v̂.
Observations from the past state are used to generate predictions into the future state in the transition module.

in grid map cells and construct models capable of grasping
the spatial relation between the states of neighboring cells.
Dynamic objects can also be modelled by their trajectory, as
explored by Bennewitz et al. [13] and Ellis et al. [14], or
represented by velocity fields, as proposed by Verdoja et al.
[15] and CLiFF-Map [5].

Traditionally, state-space models have been used to pro-
duce estimates of currently unknown state variables based on
their previous observations [16]. As a common approach, it
is widely used in applications such as state estimation [17],
target tracking [18] and navigation [19]. In recent years, deep
sequential generative models are appealing as temporal mod-
els, which have shown impressive performance in various
types of inference tasks, such as system identification [20],
geometric mapping [21]. By learning from past experience,
it can be applied to model environmental dynamics and
uncertainty due to the probabilistic nature of the model.

In this paper, we focus primarily on mapping spatial
motion patterns of dynamic entities. In contrast to previous
studies, we adopt the assumption that the motion patterns
of these entities undergo gradual changes within short time
frames, and can be implicitly represented. We propose a
deep sequential generative model specifically designed for
the MoD problem, by learning a state-space model that
represents the underlying motion patterns based on past
experiences.

III. METHODOLOGY

A. Problem Setup

In our work, we employ a motion probability distribution
to represent the dynamics. The motion distribution, denoted
as M, is defined as a conditional distribution of velocity v
given position p:

M = p(v | p), (1)

where p is a 2D Euclidean vector denoting the position. The
velocity v is using a polar coordinate frame, which combines
the orientation ψ and speed ρ:

v = (ψ, ρ)⊤, ψ ∈ [−π, π) (2)

By using a polar representation rather than a 2D Euclidean
vector representation, each component of the velocity vec-
tor has an explicit physical meaning and can be analyzed
independently.

At each time step t we are interested in, we make the
assumption that there are no changes in the underlying
motion pattern. We observe n points at the time step t in
the form of {v,p}, which can be viewed as samples from
the joint distribution:

p(vt,pt) = p(pt)p(vt | pt) (3)

We further assume that the dynamics in the given location
are driven by a spatial motion pattern m, which serves
as a parameter of the motion distribution. Different values
of m give rise to distinct motion distributions. The joint
distribution with m, conditioned upon Equation (3), can be
expressed as follows:

p(vt,pt |m) = p(pt)p(vt | pt,m), (4)

where we assume the position p is independent of m.
The purpose of this formulation is to estimate the motion

distribution based on the given set of observations. In practi-
cal implementation, we utilize Gaussian distributions for all
the distributions in our formulation. Specifically, we employ
a neural network that outputs both the mean and variance of
the Gaussian distribution, allowing us to learn and estimate
the parameters of the motion distribution.
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B. Network Structure

In our work, we employ variational inference and amor-
tized inference [22] techniques to address the problem. The
neural network utilized in our approach consists of three
distinct components: the approximate posterior distribution
defined as qϕ(m | {v,p}n), the prior distribution pθ(m)
and the emission model pθ(v | p,m).

To handle the varying number of observations at each time
step, we introduce the concept of a set feature extractor. The
set feature extractor converts a set of points to a single feature
vector: z = f({v,p}n). The set feature extractor allows us
to align the encoder with other components and simplify the
dependencies on the motion set {v,p}n.

Based on this, the posterior is split into two parts. First,
a set feature extractor is applied to convert the set into a
vector representation. Then, Multilayer Perceptrons (MLPs)
are applied to compute the mean and variance of the posterior
distribution. There are multiple options available for the set
feature extractor, we choose Transformer [23] as the extractor
for its reliable performance.

In most cases, the variational autoencoder (VAE) does
not require the learning of the prior distribution, a stan-
dard Gaussian N can be simply utilized. Furthermore, a
specialized decoder can only be implemented with a known
state structure, such as the motion pattern m in our case.
Therefore, we utilize a common flatten decoder, which is a
combination of several MLPs.

We employ evidence lower bound (ELBO) [24] as the
objective function, which is given as:

Lelbo =E{v,p}n∼D

[
Em∼qϕ(m|{v,p}n)

[
1

n

n∑

i=1

− log pθ(vi|pi,m)]+

DKL[qϕ(m|{v,p}n)||pθ(m)]
]
,

(5)

The ELBO provides a lower bound on the marginal likeli-
hood, which is intractable to compute directly. Maximizing
the ELBO is equivalent to minimizing the Kullback-Leibler
(KL) divergence between the approximated posterior and the
true posterior.

C. Sequential Modelling

Since we assume that there is a underling law that guiding
the changes of motion pattern, we can extend our model to
handle sequential data using the state-space model formula-
tion.

To accomplish this, we extend the posterior and the prior
distributions to a sequential form, which can be expressed
as follows:

Posterior: mt+1 ∼ qϕ
(
mt+1 |mt, {v,p}nt+1

)

Prior: mt+1 ∼ pθ (mt+1 |mt)
(6)

In the sequential modelling, the decoder remains the same
as the VAE model. Specifically, we employ a recurrent state-
space model (RSSM) proposed by Hafner et. al [25], which
is one of the state-of-the-art SSMs. Typically, transitions in

a recurrent neural network are purely deterministic, while
transitions in a state-space model are purely stochastic.
RSSM uses a mix of deterministic and stochastic latent state,
which allow the model itself to robustly learn to predict
multiple future states. For the SSM, we also utilize MLPs to
compute the mean and variance. The whole structure of the
model is shown in Figure 1.

IV. EXPERIMENTS

We evaluated three aspects of our MoDs: the learning
ability, the mapping quality and the model’s potential ap-
plicability to downstream tasks.

The model described in Section III is implemented in
PyTorch [26]. We employed GRU [27] as the recurrent
neural network (RNN) in our model for the deterministic
transition. The dimension of the set feature extractor is 256,
the dimension of the hidden state for encoder is 1024 and
decoder is 256, the dimension for the deterministic transition
is 512, the dimension for the stochastic transition is 256 and
the dimension of the latent variable is 256.

A. Evaluation of Learning Ability

We started our evaluation with a generated toy dataset,
which has clear, explicit motion patterns. A vortex-like
pattern is defined as:

ρ̇ = 0.5ρ, (7)

ψ̇ = ψ +
π

2
. (8)

The velocity fields of the vortex pattern are generated using
scipy.integrate.odeint [28], as shown in Fig. 2.

Fig. 2. The toy vortex dataset.

We trained the model with a batch size of 16 in 500 epochs
using AdamW [29] with an learning rate of 0.001. In order
to simulate a realistic scenario, only 20 randomly selected
velocities in every time step were used as the training set.
20 time steps were used for training, the model observed 5
time steps and predicted 5 time steps or 20 time steps in the
experiment.

As shown in Fig. 3, tests were done on another gener-
ated vortex dataset, which demonstrated the performance of
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our model in a similar scenario. We analysed the velocity
predicted by our model, considering the magnitude of the
velocity error at the ground-truth location. Two metrics were
used: Average Velocity Error (AVE) and Final Velocity Error
(FVE). The former metric is calculated by the mean square
error (MSE) over all estimated points of the states and the
true points, while the latter one is calculated at the predicted
final state.

Fig. 3. Results of a vortex-like spatial motion pattern. The output of the
proposed method is shown in blue, which overlaid with the ground truth in
red. The arrows indicate the magnitude and orientation of the velocity field
at this future time.

The results are shown in Table I, where we tested the
errors from the SSM compared to the baseline VAE. SSM
demonstrated a strong learning capability, performing well
in both AVE and FVE metrics. As the other parameters of
the two networks are identical, SSM only adds the transition
module, so it can be assumed that this increases the ability
of our model to learn changes in motion patterns over time.

TABLE I
EXPERIMENTAL RESULTS ON VORTEX DATASET

Model Horizon AVE FVE

VAE 5 time step 0.00591 0.00595
20 time step 0.00601 0.00584

SSM 5 time step 0.00004 0.00006
20 time step 0.00003 0.00007

B. Quantitative Evaluation

Experimenting in a simulated environment was not
enough, so we further introduced real-world datasets for
evaluation. However, in real scenarios, we are unable to
obtain true values of the motion patterns. Therefore, we im-
plemented the quantitative evaluation to assess the mapping
quality of the representation.

The ATC dataset [30] was used in the experiments, which
comprised real pedestrian data from the Asia and Pacific
Trade Center in Osaka, Japan. The dataset was obtained
using a tracking system comprising numerous 3D range

sensors, covering an area about 900 m2. The data collection
took place over 92 days between 24 October 2012 and 29
November 2013, specifically on Wednesdays and Sundays,
between the hours of 9:40 and 20:20. The spatial geometric
map for the environment is shown in Figure 4, which
contains a long corridor and several entrances.

Fig. 4. The occupancy grid map of the ATC shopping mall.

A divergence estimator proposed by Wang et al. [31] was
used to provide the quality of the map in absolute values.
Wang’s divergence estimator computes the differences be-
tween the output of the model and the original data. For each
query location in the map, we obtain a motion distribution
from the output of the encoder. Simultaneously, we also have
a set of observations {vo

1, . . . ,v
o
n} from the given dataset.

Wang’s divergence estimator was then employed to estimate
the divergence between the above two distributions, which
employed only the samples coming from them. The estimator
is given as follows:

D̂n,m

(
M′∥M

)
=
d

n

n∑

i=1

log2
vk(i)

ρk(i)
+ log2

m

n− 1
(9)

In the divergence estimation, the distance ρk(i) between
vo
i and its k-NN in

{
vo
j

}
j ̸=i

is compared with the distance
vk(i) between vo

i and its k-NN in
{
vq
j

}
, where

{
vq
j

}
denotes

the observations queried from the component of the model.
We retrained the model with a batch size of 16 in 1000

epochs, 20 days are used for training, 5 for validation, a
Sunday set and a Wednesday set for evaluation. We take
half an hour as a time step, and divide the day into 20 time
steps. We employed CLiFF-Map [5] as a baseline method
for comparison, which were trained in different time steps.
We set k=1 in practice, which means the algorithm only
considers the closest single neighbor to the new data point.

The result of the quantitative evaluation is shown in Table
II. On Sundays, the observations are roughly twice as high
as on Wednesdays and the time period starting at 12AM
is usually the peak of crowd density. Both methods are
influenced by changes in observations, and our method is
less sensitive to population density than CLiFF-Map. Since
this experiment is actually comparing the ability to aggregate
information (either through clustering in CLiFF-Map or
through the set feature extractor in our method), it can be
shown that our method is more robust to the number of
observations.
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TABLE II
QUANTITATIVE EVALUATION RESULTS

Model Horizon Sun Wed
Obs. Div.[bit] Obs. Div.[bit]

CLiFF [5]
11AM- 1361895 0.3094 655704 0.3958
12AM- 2136236 0.2814 1046258 0.3542

Avg. 0.3024 0.3765

SSM
11AM- 1361895 0.3178 655704 0.3624
12AM- 2136236 0.2962 1046258 0.3266

Avg. 0.3094 0.3478

C. Applicability to Downstream Task

Pedestrian motion prediction is used as a case for eval-
uating the applicability of our model to downstream tasks.
For non-myopic robotic navigation, it’s important that the
prediction is made over the entire duration to the destination.
In practice, we try to simulate the following scene: a service
robot walking down a corridor in a small room, possibly for
about 4.8 seconds; and an operating robot walking down a
longer corridor in a factory, possibly for about 20 seconds.
Therefore, we consider the horizon length over 4.8s and 20s
in the rather larger indoor setting of interest, which some
current research is lacking at these time spans.

We see our work as macroscopic works, to distinguish
it from some microscopic works. Traditional metrics for
pedestrian trajectory prediction using microscopic features
are Average Displacement Error (ADE) and Final Displace-
ment Error (FDE). ADE is calculated by the mean square
error (MSE) over all the displacement in position per person
between the prediction and the ground-truth data in the whole
trajectory and FDE is calculated at the final endpoint. We use
the mean value of the generated distribution to calculate the
error and compare it with microscopic methods.

For this task, 0.1s was chosen as a time step and the
network observed 50 time steps (5s) in the experiment. We
retrained the model with a batch size of 16 in 100 epochs. As
shown in Fig. 5, the observations in the eastern long corridor
of ATC dataset is used for training and evaluation. The results
of the applicability in pedestrian motion prediction is shown
in Table III. We compared our method with the state-of-
the-art motion prediction algorithm Social GAN (SGAN)
[32]. SGAN obtains values at every 0.4 seconds and it was
designed and trained for 12 time steps (4.8s), when it can
get its best performance. As a microscropic method, SGAN
generates associated predictions for every pedestrians, but
our method has no concept of individual pedestrians for
inputs, which is somehow unfair.

In a real-world robotics application, we can easily deter-
mine the direction in which a pedestrian is moving by using
sensors. Therefore, we also trained and evaluated our model
in only one direction, that is, only consider the orientation
ψ in domain [0, π) to get a fair comparison. The exper-
imental results demonstrate that our model achieves high
accuracy for FDE and long-horizon ADE metrics. However,
our model exhibits slight underperformance compared to
SGAN for short-horizon ADE. One possible explanation is

Fig. 5. Visualization of the pedestrian motion prediction. The observations
in eastern long corridor of ATC dataset is used for training and evaluation.

TABLE III
RESULTS OF PEDESTRIAN MOTION PREDICTION

Model Horizon Sun Wed
ADE(m) FDE(m) ADE(m) FDE(m)

SGAN [32] 4.8s 0.6382 1.1896 0.6163 1.0758
20s 1.8956 3.6783 1.9464 3.8433

SSM 4.8s 1.1084 2.3260 1.3941 2.7436
20s 2.2147 3.9748 1.8420 3.3368

SSM 4.8s 0.6824 0.8892 0.6761 0.9630
(one direction) 20s 0.7223 0.9908 0.8828 1.0491

that our model outputs velocity rather than directly providing
trajectory information. As a result, we need to integrate the
velocity outputs of each time step to obtain the corresponding
position, which is then used as input for the subsequent
time step. The above process may introduce additional error,
which could contribute to our model’s reduced performance.
In addition, note that our model was not designed for the
motion prediction task, but we can still see that it maintains a
certain level of accuracy, which is an encouraging indication
of its applicability to downstream tasks.

V. CONCLUSION

In this paper, we presented a method for learning the
motion patterns in a changeable environment. The proposed
model, leverages a set feature extractor to aggregate spatial
information of the input data, a variational autoencoder
to encode the spatial information, and a transition module
to learn the temporal information. We demonstrated the
effectiveness of our method through several experiments,
which shows that our model is possible to map the dynamics
and be applied in downstream robotic application.

So far, we have utilized only the temporal and spatial
information of dynamic objects, without considering the
effects of static and semi-static objects. In the future work,
we intend to integrate information from static and semi-
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static objects to provide better environmental information
for robotic applications. Additionally, the position-based
velocity fields may vary in different environments. Therefore,
introducing semantic information to model motion patterns in
diverse environments is another future direction of research.
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Monocular Person Localization with Lidar Fusion for Social Navigation

Sedat Dogru, Carlos A. Silva, Lino Marques Member, IEEE

Abstract— Smooth social navigation requires not only de-
tection of the people around the robot, but also accurate
localization of the people, a process difficult to achieve with
a single sensing modality. Hence, literature has focused on
various fusion approaches, such as RGB-D, ROI based lidar
vision fusion, or Artificial Neural Network (ANN) based lidar
vision fusion. However, monocular photogrammetry has always
been ignored in the literature. In this work, we propose a fusion
approach based on monocular positon estimation and lidar, and
show the effectivenes of the approach both on a public dataset
and a purpose built dataset with different cameras.

I. INTRODUCTION

Navigation has always been an important aspect of mobile
robots; and with the increasing deployment of robots in
human dominated spaces, socially acceptable navigation has
become more important. Socially acceptable navigation is
defined as human friendly navigation around them, and it
consists of a collection of behaviours: Maintaining a low
speed around humans, respecting personal [1] or group space
[2], respecting passage priorities, or following motion norms,
such as going through the right side of a corridor when
faced with an incoming person [3], [4], taking into account
communication [5], and even context [6] are some example
behaviours that have been studied in the literature. In order to
work effectively, these behaviours require the robot be able
to detect humans and estimate their position, taking them
into account in the navigation algorithm.

Person detection can be done using various sensors, such
as Infrared (IR) cameras, RGB cameras, RGBD cameras,
radar, and lidar. Vision based approaches focus on detecting
features to help identify human body and body parts, such as
face, or use Deep Neural Network (DNN) based approaches
[7], [8], which internally generate some features to train
detection. RGBD based approaches in some cases use only
dense depth data [9], which may restrict detection range due
to the relatively shorter depth range of the RGBD cameras.
3D lidars, despite their relatively sparser measurements, are
also used to detect humans [10]. 2D lidars provide sparser
measurements than 3D ones. However, they have also proven
useful in person detection through indirect measurements.
2D lidar data has been used to detect legs of people [11], to
identify possible human specific features in the data [12] and
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commonly to detect mobile agents, assuming that the only
mobile agents in the environment are the humans [13].

Among the mentioned person detection methods, 2D/3D
lidar as well as depth or image based approaches using
RGBD cameras allow direct measurement of the human
position in 2D or 3D. Lewandowski et al. [9] used depth
information from RGB-D cameras, proposing an approach
which directly operates in the metric 3D space, extracting
candidate clusters and classifying them with an SVM, using
features such as VFH and 3DmFV. Hacinecipoglu et al.
[14] proposed an approach that focuses on the detection
of the head in the depth information acquired by an RGB-
D camera, based on the rationale that a person’s head is
the least likely body part to be occluded. There are other
approaches focused on general point cloud object detection
and classification which can be used for detecting humans,
such as PointNet [15], PointPillars [16] or AFDetV2 [17].
These methods rely on computationally expensive deep-
learning based methodologies such as neural networks that
directly process the point cloud as it is, which may fail
to achieve real-time performance with modest hardware.
Although lidars are able to provide highly accurate dis-
tance measurements, with increasing distance point density
decreases, decreasing angular resolution and even detection
probability. Particularly in close to ground 2D lidar config-
urations, where the lidars are used to detect legs, the legs
occupy a very small angular range and hence their detection
becomes probabilistic. Image based detection approaches
without an integrated depth sensor can utilize a stereo system
to measure distance using the stereoscopic image processing
principle [18] or use monocular photogrammetry in special
cases to measure distance [19], [20]. These approaches can
also benefit from lidar and camera fusion, which would allow
utilizing the high measurement accuracy of lidars [21]–[23].
Yet another approach in navigation context is to avoid an
explicit estimate of the distance, but instead train a complex
Artifical Neural Network (ANN), such as a Deep Neural
Network (DNN), using a high number of training samples to
infer motion commands that would result in safe navigation
[24].

Sensor fusion using vision and lidar has been studied,
creating a corresponding depth image, or merging features
obtained in both domains. Spinello et al. [25] use extrinsic
camera calibration to project 2D lidar clusters to the image.
They use multidimensional features that describe geometric
properties in lidar data and a grid of Histogram of Oriented
Gradients (HOG) to detect humans in the image, learning
both through SVM, and fusing both. Premebida et al. [26]
use feature maps obtained from RGB images and upsampled
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lidar data and input to a deformable part model detector.
González et al. [27] fuse 3D lidar and RGB image, filtering
in the part of the point cloud that falls in to the camera
FoV, interpolating those points to obtain a dense depth map,
after which HOG and Local Binary Pattern (LBP) features
over both the image and the depth are used in a detector.
Schlosser at al. [28] extract depth features from upsampled
lidar data and merge with RGB image in a CNN to detect
pedestrians. Bozorgi et al. [22] instead of directly fusing
lidar and RGBD data, merge tracks independently obtained
through RGBD and lidar person detectors. Silva et al. [21]
fused RGB and lidar data, keeping lidar data that falls in
to the bounding box, and then studied several feature based
methods to remove foreground and background points that do
not belong to the human, to eventually localize it. lidar and
vision have been fused to detect humans, however the fusion
has been through projection and merging features, sometimes
through an ANN. A problem that is faced with such a fusion
is background or foreground objects, which are detected by
the lidar and appear in the field of view of the camera after
lidar to camera projection.

Monocular vision by itself lacks the capability to measure
distance to objects, which is caused by the inherent scale
ambiguity, and therefore it has been little studied. However,
taking into account extra information on the size or position
of the objects, helps resolve the scale ambiguity. Kundegorski
and Breckon [19], using monocular infrared cameras, and
the observation that statistically seen the height of most
humans lie in a narrow range producing a bounded and
acceptable error in human position estimation, localized
people succesfully and compared it to GNSS. Niu et al. [20]
used a lidar to measure the height of the ground plane on
which the persons are standing to resolve the ambiguity, and
used YOLO reporting a bounding box to detect people and
estimate their position through the camera.

Monocular distance estimates can provide a valuable con-
tribution to the existing fusion algorithms, helping improve
quality of the lidar point cloud by reducing the outliers
significantly. In this work we propose a range based fusion
of lidar measurements (2D/3D) with monocular distance
estimates for person position estimation, aiming particularly
social navigation scenarios. In this work, person detection is
performed using a vision based approach, namely a human
segmentation based on YOLOv7-seg [29]. The monocular
distance measurement is achieved using monocular pho-
togrammetry principles with the assumption that both the
humans and the robot occupy the same operational space,
and known camera height for the robot.

In this work we show a fusion approach utilizing the
strength of each sensor. At close range, where the target
occupies a large portion of the field of view of the camera,
monocular distance estimate is not possible. However, we
can use the transformation between the two to identify the
clusters and hence estimate the distance using lidar only. In
the mid-range, monocular distance estimates have relatively
low error, and the lidar is still dense, hence a position
estimate is provided using both. At long-range, the point

density of the lidar decreases, giving only random detections
particularly in a 2D lidar placed close to the ground. Hence,
despite the decreased accuracy, monocular estimates are
used. We show that although the error in the monocular
estimate increases with the square of the distance of the target
from the object, vision based human detection performance,
which may suffer due to poor lighting, is also a contributor to
the overall error. At mid-range, the monocular localization
helps filter out unrelated clusters that fall in to the ROI,
which would normally require a classification step. In this
work, we study the performance of the proposed approach,
and compare it to the state of the art, using data from
the JRDB dataset [30], and also data collected by us with
fully known ground-truth using two different cameras in a
corridor, measuring distances up to 25m. We use the recently
proposed RGB lidar fusion approach [21].

II. METHOD

A. Monocular Position Estimate

1) Mathematical Background: Monocular position esti-
mation algorithm assumes that the person and the robot are
on the same ground surface, and the height of the camera, hc,
in addition to the camera calibration matrix, K, are known
(Fig. 1). Assuming (x, y, z) is a point in 3D world in camera
coordinates, and (u, v) is its corresponding image on the
image plane of the camera, with the origin of the image
plane being the upper left corner of the image, for Pinhole
camera K is given by

K =



f 0 cx
0 f cy
0 0 1


 (1)

and the following relationship holds [18]


u
v
1


 = K



−x/z
+y/z
1


 (2)

In the above relationship, z is the vertical distance from the
camera, and it is the reason for the scale ambiguity in monoc-
ular position estimation. Focusing on estimation position of
the feet, rather than the torso, which are equivalent in terms
of navigation on a plane, it can be assumed that at least one
feet is on surface, and hence the vertical distance between
the camera and the feet, y, is equivalent to the height of the
camera hc. This in turn allows solving the above equation
as

y = hc (3)

z = f
hc

v − cy
(4)

x =
z

f
(u− cx) (5)

for the position of the feet in camera coordinates.
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Fig. 1. Photogrammetric Pose Measurement, the robot (yellow) is on the
left with a camera (blue) at a height of hc. In a social navigation scenario,
the people and the robot occupy the same floor.

Fig. 2. Error in monocular position estimate as a function of distance and
height (hc) of a camera with 60o vertical FoV.

2) Error Analysis for Monocular Position Estimate: The
above approach is usable when the feet are in the FoV of
the camera, i.e. they are far enough with z ≥ hc ∗ tan θ

2 ,
with θ being the vertical FoV. Hence, larger θ or smaller hc
improve the close range of the method (Fig. 3). In order to
find the long range sensitivity of the method, we rewrite (4)
as

v =
fhc
z

+ cy (6)

and calculate d
dz and re-arrange the terms, giving in magni-

tude

|dz| = 1

fhc
z2|dv| (7)

This implies that the estimation error in z increases quadrat-
ically with distance from the camera. Note that, the (u, v)
space is quantized, hence a point in 3D is anywhere within a
cell, with the cell coordinates representing the position of the
object with at most half cell size of error. Additional errors
in cell boundaries introduced due to the camera optics, or
image processing algorithms, will increase dv. Increasing hc
can be seen to be decrease the error in z estimate. However,
this comes at a price of increasing the non-usable space close
to the camera.

The error can also be seen in Fig. 2, where it is calcu-
lated for an Intel RGBD camera. The closer field of view
deteriorates with moving the sensor up, but the distance
measurement accuracy improves, particularly for the long
range.

3) Pipeline: The pipeline is summarized in Alg. 1, and
the intermediate steps for a sample are shown in Fig. 4. The
process starts with the calculation of a lookup table of depth
(i.e. z-distances in camera coordinates) for the lower half of

Fig. 3. Field of view of a top and a bottom camera on our experimental
platform.

the camera image, to improve computational performance
by reducing the need to recompute the z-distances again
and again for different frames along the life time of the
localization process. Due to 1-point projection, the upper
half of the image cannot contain any point from the ground
plane. Later, as images are received, person detection is
run on the image using a bounding box or a segmentation
approach, giving a mask for each person. Then the edges of
the masks are found and the corresponding depths are looked
up, forming a parametric curve of depth. The minima of this
curve are expected to correspond to the closest points of
the footprint with respect to the camera. Depending on the
posture of the person, and hence the corresponding mask,
these points can correspond to two individual feet, or just
one foot, and at times it may also contain some errors due
to the segmentation process. Then the corresponding x and y
are calculated, and the final positions (x, y, z) are returned.

(a) (b)

(c)
300 350 400 450 500

-300

-280
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-240
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-200

-180

-160

-140

(d)

Fig. 4. (a) The original image, with the segmentation masks overlayed.
(b) The corresponding edge with depth lookup (c) The depth of the edge as
a function of the edge, the minima seen correspond to the individual feet
(d) The minima of (c) marked on the borders of the individual mask.
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Algorithm 1 Pose Estimate From Monocular Camera
1: procedure CALCULATEDEPTHIMAGE(I)
2: Iz ← 0
3: for each (u, v) ∈ I do
4: Iz(u, v)← fhc/(v − cy)
5: end for
6: return Iz
7: end procedure
8: procedure CALCULATEPOSITION(I)
9: IM ← DetectPerson(BoundingBox|Segmentation)

10: for each Im ∈ IM do
11: Ie ← FindEdges(Im)
12: Id ← LookupDepth(Ie, Iz)
13: f(z)← FormCurve(Id)
14: [u, v, z]← FindArgMin(f(z))
15: y ← hc

16: x← (z/f)(u− cx)
17: end for
18: return [x, y, z] ▷ List containing all detections
19: end procedure

B. Lidar and Camera Fusion

1) Point Cloud ROI Extraction: The process starts with
the detection of people in an RGB image using a pre-trained
YOLOv7-tiny or YOLOVv7-seg [29], which was trained
on the MS COCO [31] dataset. YOLO returns the pixel
coordinates of the 2D bounding boxes or segmentation masks
corresponding to people. Using the transformation matrix
TC

L , which represents the optical frame of reference of the
camera in the frame of reference of the lidar, and the intrinsic
matrix of the camera K, it is possible to match the bounding
boxes/masks of the RGB images and the point clouds of the
lidar.

Let PC = {(xi, yi, zi)} represent the 3D point cloud
of the lidar after it is transformed to the reference frame
of the camera. The point cloud is filtered, excluding the
points outside the field of view of the camera, giving PC ′.
These points can be transformed to the image plane using
the camera matrix K and sequentially applying equation (2),
giving a corresponding set of points {(ui, vi)}. By comparing
these corresponding image coordinates with the bounding
boxes or segmentation masks output by YOLOv7, the regions
of interest of the point cloud, which lie inside the bounding
boxes or the masks, are identified. Assuming that YOLO has
reported N bounding boxes/masks, each 3D point cloud is
represented by Pboxj , with each containing nj many points
(j = 1, ...N ).

2) Candidate Generation: The set of N 3D point clouds
extracted in II-B.1 do not necessarily contain points only
corresponding to the humans detected by YOLO. The clouds
may include the background and in some cases the fore-
ground of the person (Fig. 5), particularly when using
bounding boxes instead of segmentation masks. Therefore, it
is necessary to analyze each cloud, Pboxi

, establish clusters
and find the ones corresponding to humans. A solution to
this problem could be the application of a density-based
clustering algorithm, such as DBSCAN [32], to each point
cloud. However, DBSCAN has a set of parameters which

(a) (b) (c) (d)

Fig. 5. Depiction of process described II-B.2. a) YOLOv7 detection;
b) Resulting point cloud after pre-processing; c) and d) The two clusters
extracted from Fig. 5b by DBSCAN

would not allow the algorithm to scale well for clouds with
sparser or far points, or allow separation of a person standing
just a few centimeters away from a wall. In order to solve
these problems, we propose complementing DBSCAN with
a pre-processing step named z-filtering. This pre-processing
first assigns the 3D points into different layers along the
z−axis, with respect to the camera frame. Then it aggre-
gates consecutive layers into single clusters based on their
point density and a previously defined percentage threshold
DENSITY RATIO which is calculated through the average
point density across all layers with at least one point. After
pre-processing, DBSCAN is applied to each of the previously
formed clusters along the camera’s x and z coordinates. The
y coordinate is not considered for invariance to the person’s
distance from the sensor due to the LiDAR’s vertical angular
resolution, which causes the LiDAR’s beams to become
more vertically spaced as the distance to sensor increases.
If, due to the point cloud sparseness, DBSCAN is not able
to form any clusters, then the generated candidate is the
cluster established by the preprocessing step. When using
segmentation masks, due to their more precise cropping of
the human body, it is not necessary to apply DBSCAN, only
z-filtering.

3) Lidar and Monocular Estimate Fusion: The cluster
fusion process divides the working space into three regions,
depending on the distance from the camera. The closest
region corresponds to the area where the ground is not visible
by the camera, and hence since the feet are not visible the
monocular estimation of the pose is not possible. For this
region, z ≤ hc tan θ/2. If a person’s mask fills the lower
end of the image, it is assumed to be in this close range.
Hence, the lidar clusters obtained by ROI fusion are used.
Secondary clusters are removed filtering directly by distance,
i.e. requiring z ≤ hc tan θ/2. In the second region, the
person’s feet are visible in the camera z ≥ hc tan θ/2, and
the person forms a meaningful cluster in the lidar scan. In
this case after applying ROI fusion, the clusters are selected
comparing the distances between the lidar estimates and the
monocular estimates. In the third region, the lidar is reporting
only random points, which is particularly the case with a lidar
close to the ground. Hence, only the monocular estimate is
used to represent the person.
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C. Baseline Approach - 3D Feature Based Classification

In a recently published work [21], we have showed that
after using the ROI provided by the image based person
detector (YOLO) to extract the corresponding lidar point
cloud, the ROI contained readings not only from the detected
person but also from the the background and the foreground
of the persons, at times parts of other persons, at times
walls or other items in the environment. In order to solve
this problem, various classifiers were tested on the 3D point
cloud, and a new feature vector based on 3D Modified Fisher
Vector (3DmFV) [33] was proposed. The new feature vector,
called 3DmFV with Plane Inlier Percentage (3DmFV+PIP),
included planarity as well, and showed considerably im-
proved performance.

III. VALIDATION AND EXPERIMENTAL WORK

A. Localization Performance

The robot was placed in a long corridor, marking the
ground first every 0.5m, then every 1.0m. Then a test
subject stood still at each mark, recording the corresponding
images from a top and a bottom camera, at 1.25m and
0.3m respectively and a 3D lidar. The data then was used to
measure both monocular localization performance and vision
lidar fusion performance, presenting the results in Fig. 6.
The data shows that monocular performance of the bottom
camera was considerably better, localizing the subject mostly
with an error less than 0.5m up to 14m. Afterwards, the error
starts growing, reaching 6.0m at 20m. The error of the top
camera however reaches 2.0m at 6.0m, and after 11.0m, it
exceeds 4.0m. This behaviour is caused by the low quality
person detection by YOLO for the top camera, mainly caused
by the camera’s incapability to adjust exposure properly
(Figs. 6c, 6d). However, fusion can be seen to help keep
the localization error close to zero up to 10m.

The second test was repeated using a subset of the JRDB
dataset, this time manually extracting the ground truth posi-
tion by inspecting the lidar data carefully. The JRDB dataset
includes a wide array of densely crowded scenarios, thus
allowing for a more challenging evaluation of the proposed
approach. When using the JRDB dataset, data from a camera
at 1.1m height, a 3D lidar and a 2D lidar at approximately
1.3m and 0.3m was used. Fusion capabilities were tested
separately for both the 2D and the 3D lidar. Fig. 7 shows the
histogram of the error calculated over two distance regions
of fusion for the tested dataset, with the average errors
presented in table I. In close range the error can be seen
to be small with both lidars, with a mean value of 0.14m. In
mid range, although large errors are randomly seen, the error
is concentrated in the lower 0.3m bins, with an average of
0.15m for the 2D, and 0.3m for the 3D, increased mainly
by the several samples with a big error. For the 2D lidar the
end of mid-region was chosen as 6.0m, because after that
point persons were only randomly visible in the lidar data.
However, for 3D lidar it was possible to observe meaningful
data points up to 12m, a range containing all the detected
persons.

(a)

(b)

(c) (d)

Fig. 6. (a, b) Monocular and fusion localization errors obtained using robot
cameras at different heights in a corridor. The first samples do not contain
monocular estimates since the subject was too close to the cameras. (c, d)
Segmentation results from the two cameras when the person is 11m away
from the cameras. Due to illumination problems, the segmentation of the
top camera can be seen not to include half of the legs, causing localization
errors.

TABLE I
ERROR IN POSITION ESTIMATE

Close
Region

Mid-
Region

Far Region

Monocular & 2D lidar 0.14 0.15 1.15
Monocular & 3D lidar 0.16 0.28 -

B. Classification Performance

The JRDB dataset contains many examples of point clouds
that contain the detected person as well as other people and
fore/background items, causing classification errors of the 3D
point cloud. Therefore, a subset of the data set was used to
measure the improvements to the 3D classification obtained
through fusion of monocular localization. As a baseline the
recently proposed [21] and in section II-C briefly described
3DmFV+PIP feature vector was used in a Support Vector
Machine (SVM) classifier. Monocular localization was also
fused with 2D lidar data for a different classification run,
and all the results are summarized in Table II. On the tested
subset, fusion of monocular localization with lidar data can
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Fig. 7. Error histogram for monocular and lidar fusion.

be seen to improve the localization performance of the people
considerably, with even 2D lidar’s performance surpassing
3DmFV+PIP based classification approach. The state of the
art 3DmFV+PIP approach was able to find the right point
cloud cluster of the detected person in 72% of the frames,
whereas the 2D monocular fusion and 3D monocular fusion
were able to achieve rates of 83% and 86%.

TABLE II
PERFORMANCE OF DIFFERENT APPROACHES

TP FP TPR FPR
3DmFV + PIP 42 16 0.72 0.28
Monocular & 3D lidar 50 8 0.86 0.14
Monocular & 2D lidar 48 10 0.83 0.17

IV. CONCLUSIONS

In this work we have shown that monocular localization
can help improve performance of lidar camera fusion, reduc-
ing the outliers and hence improving the accuracy consid-
erably. We have also shown that, peformance of monocular
localization depends heavily on segmentation performance in
the visual domain, particularly light performance. As future
work, we are planning to integrate the approach proposed in
this paper in a social navigation pipeline, such as [34], [35]
runnning on a robot.
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Towards Data-Driven Discovery of Governing Swarm Robots Flocking
Rules

Belkacem Khaldi1, Erhan Ege Keyvan2, Mehmet Şahin2, Ali Emre Turgut2, and Erol Şahin2

Abstract— Extracting local interaction rules that govern the
dynamics of a swarm is a central challenge in many swarm
robotics application domains. Reverse engineer of such dynam-
ics might be highly beneficial in preventing the serious design
handcrafting errors that swarm robotics engineers may implic-
itly make. Advances in data-driven based systems identification
techniques, called SINDy, are currently enabling the tractable
identification of the equations governing the dynamics of many
systems. However, they have not yet to be applied in swarm
robotics systems. In this work, we aim to combine sparsity-
promoting techniques with nonlinear swarm dynamical systems
to develop a data-driven system identification model capable of
discovering governing swarm flocking interaction rules from
swarm measurement data. We particularly build and compare
two SINDy flocking models: Flock-SINDy-STLSQ and Flock-
SINDy-SR3. our findings suggest that the Flock-SINDy-SR3
discover better the underlying flocking dynamics rules than
the Flock-SINDy-STLSQ and is expected to be further used as
a controller implemented on real drones.

Index Terms— System Identification, SINDy, Swarm robotics,
Flocking behaviour, Reverse engineering.

I. INTRODUCTION

Swarm robotics systems frequently employ local interac-
tion rules at microscopic level to fulfill required mission col-
lectively at the macroscopic level [1]. The common method
for handcrafting these local interaction rules is to model
and implement them at the microscopic swarm level. This,
however, has a substantial effect on the swarm’s macro-
scopic level since any alterations may severely influence the
swarm’s overall intended mission.

One question that comes to mind for overcoming such
a challenge is can we reverse engineer the local rules
governing the interactions between the swarm, so that we
may avoid substantial design handcrafting problems. This
might be accomplished if the fundamental procedures of
reverse engineering—information extraction, modeling, and
testing—are followed [2].

Advances in data-driven techniques that includes both
classical machine learning and deep learning approaches,
specifically those being applied for sparse identification of
non-linear dynamics (SINDy) [2-6], are currently enabling
the tractable identification of many equations governing
various complex systems. They have recently been used to
identify models ranging from predictive control systems,

1B. Khaldi is with the LabRI-SBA Laboratory, Ecole
Superieure en Informatique 8 Mai 1945, Sidi Bel Abess, Algeria
b.khaldi@esi-sba.dz

2 E.E. Keyvan, M. Şahin, A.E.Turgut, and E. Şahin are with the Center
for Robotics and Artificial Intelligence (ROMER), Middle East Tech-
nical University, Ankara. [ekeyvan, mesahine, aturgut,
erol]@metu.edu.tr

canonical physical systems, aerodynamic systems, chemi-
cal processes to epidemiological systems, but not to our
knowledge in swarm robotics. They offer appealing qualities
that make them worth considering in the context of swarm
robotics.

Recent breakthroughs in data-driven techniques to system
identification in general can inductively-directly discover
dynamic models from data. Most successful methods in this
regard include artificial neural networks [3], [4], evolutionary
algorithms [5], [6] and nonlinear regression [7], [8], [9],
[10]. Artificial neural networks have strong system dynam-
ics identification abilities. However, as generalizability and
interpretability are the main concerns in system dynamics,
it is crucial to find sparse models that, in contrast to neural
networks, require the fewest terms to express their dynamics.
Evolutionary algorithms, on the other hand, are powerful
bio-inspired alternative methods that have successfully been
applied to system identification. They are, however, com-
putationally demanding and hence unsuitable for real-time
tracking. System identification also benefits greatly from the
use of conventional regression-based model identification
techniques such as the koopman operator [8], [10] and
dynamic mode decomposition (DMD) [7], [9]. However, they
are unable to capture structural modifications or underlying
nonlinear dynamics.

The current work primarily concerned towards the adop-
tion and adaptation of sparse-based data-driven identification
methods, with the goal of following the aforementioned
reverse engineering steps to discover models governing the
swarm-interaction rules leading to the macroscopic swarm
robotics collective behavior. This is motivated by our belief
that this is crucial for designing more accurate control
models for swarm robotics systems, which contributes to the
improvement of swarm robotics technology. On the other
hand, we believe this is an opening up of a new research
direction for future perspectives in the swarm robotics field.

To this end, the current work showcases the feasibility of
system dynamics discovery in a swarm drones performing
a flocking behaviour that was previously successfully being
implemented on a mobile swarm robotics system [11] (See
Subsection II-B). The work presents in subsection III-A
two data-driven discovery flocking models following the
conventional SINDy method reviewed in subsection II-A.
These two built models are assessed and compared further
in subsection III-B to see their capabilities in predicting the
swarm flocking dynamics in a forward simulation manner.
Furthermore, the accurate flock SINDy model is assessed
further in subsection III-C in terms on how it is expected
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to perform if used as a controller implemented in each
individual drone.

II. PRELIMINARIES

This section introduces key background material and con-
cepts for the identification framework of flocking drones
behavior. We begin by describing the SINDy with control
technique, which served as the foundation for our work.
Then we review the flocking behaviour re-implemented on
the ROS based Kobot simulator.

A. Sparse Identification of Nonlinear DYnamics with Control
inputs

Consider a nonlinear discrete-time dynamical system of
the form:

xt+1 = g(xt,ut) (1)

where xt ∈ Rn is the state at time t, ut ∈ Rq is the control
input at time t, and g : Rn×Rq → Rn describes the system
dynamics. It is important to note that the system dimension
corresponds to the variables in its dynamics. In our case, the
function captures the flocking dynamics, including the states
of drones and control inputs.

We review the SINDy with control, which is a technique
that uses measurement data to find a sparse nonlinear dy-
namical system. It employs sparse regression to discover
a few active terms necessary to approximate the function
g. To select the optimal model, the approach assesses a
library, Θ(xt, ut), of possible linear and nonlinear model
terms in the state, xt and control inputs ut. This library
is computed by first stacking m − 1 time snapshots of the
state xt and the input signal ut into two matrices: X =[
x1 x2 · · · xm−1

]T
and U =

[
u1 u2 · · · um−1

]T
.

The associated temporal history of the state variable
derivatives xt from the data X are often estimated nu-
merically or gotten by shifting the X by one step
time and organized in a matrix, represented by X ′ =[
x2 x3 · · · xm

]T
. Then, a collection of potential non-

linear functions that best describe the data and which may
contain constant, polynomial, trigonometric, or any cus-
tomized built-in terms might be constructed and assessed as
follows[12], [13]:

Θ(X,U) =
[
1 X U (X ⊗X) (X ⊗ U) · · ·

]
,

where X ⊗ U is the vector representing all product com-
binations of the components in X and U . Note that the
optimal method for picking the right library is to begin with
a straightforward alternative, such as low-order polynomials,
and progressively increase the complexity of the library until
sparse and precise models are produced.

The system in Eq.1 may then be written in terms of these
data matrices as:

X′ = Θ(X,U)Ξ (2)

Where Ξ =
[
ξ1 ξ2 · · · ξm

]
is mostly a sparse matrix

containing the coefficients of the most active terms in the
generated library functions, Θ,which produce a good model

fit and might be identified by employing one of the sparse
regression techniques. The goal of such strategies is to reduce
the residual error between the real data and the model. The
sequential thresholded least-squares (STLSQ) method is used
in the original SINDy approach [12], and several other vari-
ants, including the sparse relaxed regularized regression op-
timizer (SR3) [14], have been used to improve the SINDy’s
performance in identifying complex systems dynamics in
terms of computational efficiency, higher accuracy, quicker
convergence rates, and greater flexibility.

B. Flocking Behaviour

Our study draws inspiration from the flocking behavior
exhibited by mobile robot swarms [11] and extends it to a
swarm of drones using the ROS based kobot simulator. To
achieve flocking behavior in the swarm, we use a weighted
vector sum of heading alignment and proximal control vec-
tors, represented as:

f =
αh+ βp

||αh+ βp|| (3)

Here, h is the heading alignment vector with weight α, p
is the proximal control vector, encoding the repulsion and
attraction rules, with weight β, and f is the desired flocking
vector.The resultant vector’s Euclidean norm is represented
by ||.||. It is worth noting that the vector h enables a
drone to align with the average heading of its neighbors
via the onboard drone Vector Heading Sensor to obtain the
neighbors’ current headings. Whereas, the proximal vec-
tor utilizes data collected by the time-of-flight Range and
Bearing sensor system [15] to accomplish two objectives:
preventing collisions with both other robots and obstacles, as
well as maintaining cohesion between the swarm members.
Advanced mathematical details on how these vectors are
computed can be found in [11].

III. DISCOVERY OF GOVERNING SWARM DRONES
FLOCKING DYNAMICS

A. SINDy Flocking Models Learning Results

We focus on identifying the swarm flocking robotics
dynamics that are induced by the local interactions rules
given in Eq.3. The overall framework pursued in this study
is schematized in Figure.1. To this end, we performed a
number of ROS-based simulations of a swarm of n = 5
Tello drones performing the flocking behaviour using the
Kobot simulator during a fixed time steps duration. The
weighting coefficients used in this setup are α = 1 and
β = 1.5. Note that the choice of weights were carefully set
to slightly prioritize the proximal control over the alignment
control, while ensuring that the balance between them in the
flocking behavior remains unaffected. At each simulation,
the drones were randomly dispatched in a free-obstacles
arena bounded by four walls. We collected at each simulation
time step, t, the flocking (f it =

[
f it (x) f it (y) f it (z)

]
), the

proximal (pit =
[
pit(x) pit(y) pit(z)

]
), and the alignment

heading (hit =
[
hit(x) hit(y) hit(z)

]
) 3D vectors for each

drone. These measurements are then arranged and stacked
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Fig. 1: Schematic of the flocking-SINDy discovery framework, demonstrated on the swarm dynamics governed by a flocking
interaction rules. Data are collected from the ROS based Kobot simulator of a swarm Tello drones system performing the
flocking behavior in [11], including a time history of the swarm states X , its derivative X ′, and the Control Inputs U .

into two big matrices of shapes (n ∗ TimeSteps, 3) and
(n ∗ TimeSteps, 6) as follows:

X =

state−−−−−−−−−−−−−−−−−−−→


| | |
f1t (x) f1t (y) f1t (z)
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...
...

...
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| | |
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*
n

(4)

and

U =

Control Inputs−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→


| | | | | |
h1t (x) h1t (y) h1t (z) p1t (x) p1t (y) p1t (z)
h2t (x) h2t (y) h2t (z) p2t (x) p2t (y)
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t (z)

...
...

...
...

...
...

hnt (x) hnt (y) hnt (z) pnt (x) pnt (y) pnt (z)
| | | | | |
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tim
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ep

s
*
n

(5)
Therefore, the state of our system is X = [fx, fy, fz],

and we assume that we can control it by the input control
variables U = [hx, hy, hz, px, py, pz].

First, we used 80% of the data for the training dataset and
the remaining for the testing dataset. We next run the SINDy
with control algorithm to identify a sparse nonlinear model.
First, we build the library of candidate functions Θ. Here, we
use polynomials up to second order. We set the sparsification
hyperparameter to λ = 0.01 and run the SINDy algorithm
using the STLSQ and the SR3 optimizer approaches.

In Figure 2, the results of the SINDy flocking dynamics
identification during the learning stage are shown. We use
SINDy to identify the underlying flocking rules and compare
the results of the true model with the STLSQ and the SR3
optimizers. On the left of Figure 2 (in panel (a)), we show
the ground truth of the flocking dynamics of each drone (see
black lines) and the identification training for SINDy-STLSQ
(dashed blue lines) and SINDy-SR3 (dashed red lines). The
control inputs are the same for both the SINDy models.

We see that the SINDy-STLSQ model perfectly predicts
the true flocking dynamics as it perfectly captures the evo-
lution of all flocking vector components: fx, fy , and fz .
Similarly, the SINDy-SR3 model is almost identical to the
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(a) True model vs SINDy built models for each drone (b) True model vs SINDy built
models plotted as Kernel density
estimations for the entire swarm

Fig. 2: SINDy flocking dynamics identification results during the learning stage.

true flocking dynamics, and slightly diverges during few
moments of the time steps training period.

The aforementioned results can be confirmed while better
visualizing the flocking dynamics of the entire swarm drones
using the kernel density estimation plots of the true model,
and the SINDy built models (see panel(b) of Figure 2).

It is important to highlight that the kobot simulator is
specifically designed for two-dimensional (2D) motion and
interactions of swarm drones. As a result, the z-coordinate re-
mains constant at 0 throughout the experiments. This design
choice aligns with the main objective of our study, which
is to showcase the effectiveness of the SINDy algorithms in
discovering swarm-flocking rules within the horizontal plane.

B. SINDy Flocking Models Prediction Results

In this subsection, we use the flocking built SINDy models
to assess the swarm flocking dynamics identification per-
formances. The main challenge behind this is to see how
well the models accurately predict and identify the governing
flocking dynamics when performing forward simulations in
the testing dataset. Similarly to the previous subsection, we
compare the system identification results of the SINDy flock-
ing models with the ground truth flocking dynamics. The
obtained results are shown in Figure 3 for both individual
drones and the entire swarm.

This time, the flocking model with the SINDy-SR3 sustain
its performance learned previously and preforms better than
the flocking model with the SINDy-STLSQ and this during
all the testing time step window. As can be seen in panel (a)

of Figure 3, the flocking model with the SINDy-SR3 almost
captures the flocking dynamics for nearly all the x, y, and
z components of the drones flocking vector, f (See dashed
red lines). However, it slightly diverges during few moments
of the time steps testing window. This divergence is tolerant
as the swarm flocking dynamics is almost the same while
compared to the true swarm flocking dynamics plotted as
kernel density maps ( See panel (b) of Figure 3).

On the other hand, the flocking model with the SINDy-
STLSQ, accurately predicts the drones flocking dynamics of
both x and z components of the flocking vector f during the
entire testing time steps period. However, it fails from a long
period from the start of the forward simulation window to
discover the flocking dynamics of component y. But begin
slightly to converging to the true y dynamics as we forward
further. This leads to a fail in capturing the entire flocking
swarm dynamics during the entire testing time steps window
while compared to the true swarm flocking model (See 3.(b)).
We may therefore presume that the SINDy-STLSQ model
perform poorly in comparison to the SINDy-SR3, even-
thought it perfectly perform well during the learning stage.
This is due to the fact that the underlying flocking governing
rules discovered by SINDy-STLSQ (See Table I) is different
to the true one I). Whereas the forward simulation results
with the SINDy-SR3 model performs better as it perfectly
discovered the exact underlying flocking governing rules.
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(a) True model vs SINDy built models for each drone (b) True model vs SINDy models
plotted as Kernel density estima-
tions for the entire swarm

Fig. 3: SINDy flocking dynamics identification results during the testing window.

TABLE I: True vs Discovered Individual Flocking Dynamics
Equations

Model Flocking Dynamics Equations

True Model





fx = 1 ∗ hx + 1.5 ∗ px
fy = 1 ∗ hy + 1.5 ∗ py
fz = 0

SINDy-STLSQ





fx = 0.878 ∗ fx + 0.114 ∗ hx + 0.110 ∗ px
fy = 0.997 ∗ fy + 0 ∗ hy + 0.048 ∗ py
fz = 0

SINDy-SR3





fx = 0.997 ∗ hx + 1.498 ∗ px
fy = 0.997 ∗ hy + 1.498 ∗ py
fz = 0

C. Swarm Flocking Revers-Engineering Evaluation

In this subsection, we aim to assess further if the ob-
tained SINDy-SR3 flock model could be used in reverse
engineering purpose. We particularly seek to see how well
the forward simulation results of the obtained flocking model
will perform if used as a controller implemented in each
individual drone. To this end, we just used the obtained
forward simulation SINDy results in estimating each drone’s
linear and angular velocities, which will allow us to estimate
later each drone’ positions over time (xi, yi, zi, θi) .

We use the same rules used in the mobile robot flock-
ing swarms work of [11] and which is re-implemented in
the Kobot based ROS simulator. The forward and angular
velocities, v and ω of each drone is updated as follows:

v =

{
(f.hc)

λ ∗ vmax, if f.hc ≥ 0

0, otherwise
(6)

and
ω = (∠hc − ∠f)Kp (7)

where in Eq.6, hc is the current drone heading vector and λ
is to modulate the forward velocity. More details on why
the modulation has to be applied can be found in [11].
vmax is the maximum linear velocity allowed for the drones.
While the Kp term in Eq.7 is for proportionally control
ω using the deviation of the drone flocking angle from its
current direction. For the estimation of drones positions given
their estimated forward and angular velocities, we used the
commonly used Kalman filtering estimation method.

Now, to study the flocking behaviour with the obtained
SINDy-SR3 flocking model, we adopt a modified version
of the angular momentum metric [16] that suggests the
rotational motion of the swarm and is given by:

Mang(t) =

∑N
i=1 |ri(t)ωi(t)|∑N
i=1 |ri(t)||ωi(t)|

, (8)

where ri(t) refers to the distance of the drone from its center
of mass of the swarm. A swarm with Mang ≈ 1 would have
individuals sharing perfectly swarm rotational motion.

Results of the angular momentum of the True flocking
model (black line) against the predicted flocking SINDy-
SR3 model (dashed red lines) are shown in Figure 4 in
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Fig. 4: Swarm angular momentum,Mang(t), during the test-
ing forward simulation window.

a polar projected plot. It is shown that with the flocking
SINDy-SR3 model, Mang approximately fits the True one
throughout almost a very long period of the testing time steps
window and even can capture the sudden swarm angular
rotations caused by the immediate change of the swarm
angular rotation to avoid wall obstacles (See the hard picks
in the plot). We may therefore presume that the SINDy-SR3
model can be used further as flocking controller implemented
in each individual drone. This will hugely avoid the actual
computation of the flocking vector on the actual True model
at each time, and will help in revers engineering the flocking
behaviour in the future.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we adopted a data-driven methodology
to discover the local interaction rules that regulate swarm
dynamics. In discovering the underlying flocking dynamics
rules from swarm measurement data, our proposed flocking
model with the SINDy-SR3 outperformed the one with
the SINDy-STLSQ model. Our findings suggest that data-
driven system identification strategy has a high potential for
developing more accurate control models for swarm robotics
systems. The feasibility of our approaches was demonstrated
through their successful assessment during the learning and
testing stage.

Future research in this area could include applying our
findings to other swarm behaviors. In addition, we intend
to test our method’s resilience and scalability on bigger
swarms with more complicated dynamics, such as environ-
mental conditions and obstacles, and varying sensor ranges.
Furthermore, we intend to investigate our method’s appli-
cability to real-world swarm robotics systems and how it
can be integrated as a reverse engineering approach. We aim
also to investigate the performance of the SINDy flocking
models by analyzing different weight configurations and their
corresponding trade-offs in swarm-flocking behavior.
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Where to Place a Pile?

Miroslav Kulich1, David Woller1,2, Sarah Carmesin3, Masoumeh Mansouri3, and Libor Přeučil1

Abstract— When planning missions for autonomous machines
in real-world scenarios, such as open-pit mining, painting,
or harvesting, it is important to consider how the machines
will alter the working environment during their operations.
Traditional planning methods treat such changes, like piles built
during drilling, as constraints given to the planner that depend
on the machine’s trajectory. The goal is to find a trajectory that
satisfies these constraints. However, our approach formulates
the planning problem as finding optimal positions for changes,
such as piles, along the machine’s trajectory. We propose a
heuristic solver and provide extensive experimental evaluations.

I. INTRODUCTION

With increasing levels of autonomy, robots are deployed in
more and more complex scenarios. In a mining application,
one or more drill machines operate in an open-pit mine to
drill blast holes in predetermined targets. After the blast
holes are drilled, they are filled with explosive material and
detonated, and the ore is processed for mineral extraction.
The drill machines can autonomously navigate to the targets,
level themselves, drill, and retract. However, the drilling
process creates piles of excess material around the hole,
which must be cleared before the machine can navigate to the
next target. The Drill Pattern Planning Problem (DP3) [1] for
a single drill machine or a fleet of these involves computing
a time-optimal plan that ensures the machine(s) can reach
each drill target, perform the defined operations, and move
away from the target without colliding with obstacles, other
machines, or the excess material created during the drilling
process.

Mansouri et al. [1] propose a method for solving multi-
vehicle DP3 considering the dimensions of the machines,
including the size of the dust guard and jacks used for
leveling and the time required to perform each task. The
authors break down the problem into sub-problems, identifies
interdependency among the sub-problems, and interleaves
reasoning within each sub-problem. The approach is further
improved and defined as MVRP-DDO (Multi Vehicle Rout-
ing with Nonholonomic Constraints and Dense Dynamic Ob-
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Fig. 1: Drilling scenario.

stacles) in [2]. Carmesin et al. [3] introduce new variants of
the Hamiltonian Cycle and Travelling Salesperson problems
inspired by the open-pit mining application. Specifically, the
authors assume dynamic graphs where edges are deleted or
made untraversable depending on the already visited vertices.
Besides formal definitions of the problems for such graphs,
problems’ properties are theoretically analyzed, and two
solvers are proposed.

Another application where heavy vehicles are not allowed
to pass already visited areas is autonomous harvesting. In the
harvesting application, harvested areas limit the mobility of
harvesting machines, hence affecting the reachability among
the nodes representing areas to be harvested. Ullrich et al. [4]
propose a graph-search planner that searches a directed graph
representing the harvesting area. The designed cost function
considers the number of passes through individual edges to
tackle multiple passing of edges.

The aforementioned approaches assume the constraints
caused by drilling/harvesting are predefined, and the planner
can only affect the order in which they appear. In [1], [2],
for example, piles are placed at the same positions as blast
holes. Similarly, the set of edges to be deleted after visiting a
vertex is predefined in [3], while edges are removed as they
are traversed in [4]. Our approach is different. We assume
that piles are built in the vicinity of blast holes, but their exact
positions can vary, and the planning algorithm has to decide
where to place them. Specifically, a trajectory for a drilling
machine is given, and we ask the following questions:

• Can we place piles of a given radius so that the
machine’s trajectory is not obstructed by them?

• What is the largest radius for which the machine’s
trajectory is not obstructed by the piles?

• How should the piles be placed to ensure that the
machine’s path is not obstructed?
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We formulate two problems related to the above questions
formally in Section II and propose a solver for both problems
(Section III). The performance of the solver is extensively
evaluated through experiments with a specially designed
dataset, and the results are discussed in Section IV. The
concluding remarks are presented in Section V.

II. PROBLEM FORMULATION
Let P = ⟨p1, p2, . . . pn⟩ be a sequence of points in

R2 forming a polygonal path, i.e., a curve consisting of
line segments connecting the consecutive points. The Path
Conforming Circles Placement Problem (PCCP) is to find a
set of circles K = {κi}i∈I , where I = {1, . . . n}, and κi is
a circle with center ci and radius ri, such that:
(C1) the radii of all circles are equal: ri = r ∀i ∈ I ,
(C2) ith point lies on ith circle: |pici| = r ∀i ∈ I ,
(C3) intersection of any two circles is empty:

κi ∩ κj = ∅ ∀i, j ∈ I, i ̸= j,
(C4) intersection of any circle with the path is empty:

κi ∩ P = ∅ ∀i ∈ I , and
(C5) r is maximal.
We say that κi is associated with pi.

Let headk(P ) = ⟨p1, p2, . . . , pk−1⟩ be a head of
polygonal path P = ⟨p1, p2, . . . pn⟩ and tailk(P ) =
⟨pk, pk+1, . . . , pn⟩ its tail. The Weak PCCP (WPCCP) re-
laxes condition C4 by allowing for the nonempty intersection
of the ith circle with headi(P ). The modified condition for
the WCCP is thus:
(4∗) κi ∩ taili(P ) = ∅ ∀i ∈ ⟨1, n⟩

Examples of the problem instances and their solutions are
shown in Fig. 2. As the WPCCP is less constrained, the
maximum radius found for it is higher than the one for the
PCCP.

Although the PCCP and WPCCP are new, we can take
inspiration from a class of problems seeking the largest
empty circle. The classic example of this class is the Largest
Empty Circle Problem (LEC) which consists in finding the
largest circle C centered in the convex hull of a set of points
such that no point lies in the interior of the circle. Shamos [5]
propose an algorithm solving the LEC based on an effective
search of Voronoi diagrams. Thoussaint [6] subsequently
corrected the algorithm showing that Shamos made a wrong
assumption about the intersection of a convex hull with a
Voronoi diagram, while [7] further improved the algorithm
complexity to O(n[h log n]), where n is the number of points
and h is the number of convex hull edges. The query variant
of the LEC is addressed in [8]. The aim is to preprocess the
input points to identify the largest empty circle efficiently.
Finally, Augustine et al. [9] address the constrained variant
where the circle has to be centered on a given line. All the
aforementioned formulations search for a single circle while
we seek a set of circles. This makes our formulation novel
and challenging.

III. APPROACH
In this section, we introduce a solver for both PCCP and

WPCCP. We start with the description of a general structure

which is the same for both problems. The next subsec-
tions III-A to III-C then detail the individual parts of the
algorithm. Finally, subsection III-D introduces modifications
for the WPCCP.

The algorithm shown in Alg. 1 is motivated by the
bisection method [10]. It starts with the estimation of the
lower and upper bound of the radius (lines 1 and 2). Then,
the bounds are modified by the iterative procedure (lines 3-
10). At each iteration, the interval between the bounds is split
into two halves by computing the midpoint radius (line 4) and
finding the optimal placement of circles with this radius fixed
(line 5). If the found placement is valid, the lower bound is
replaced by the radius (line 7), and the solution is stored. If
the placement is invalid, the upper bound is replaced by the
radius (line 8). The process stops when the upper and lower
bound difference is below the predefined limit. The stored
solution and radius are returned then (line 11).

Algorithm 1: Interval bisection algorithm for the
PCCP/WPCCP.

Input: C – set of cells

1 lb← lower bound()
2 ub← upper bound()
3 while (ub− lb) < ϵ do
4 radius← lb+ub

2
5 (P, valid)← find placement(radius)
6 if valid then
7 lb← radius
8 (Pbest, radiusbest)← (P, radius)
9 else

10 ub← radius

11 return (Pbest, radiusbest)

A. Upper Bound

Circle center ci has to be closer to pi than to any other
point and line segment on P ; otherwise, the circle would
intersect P . The valuable tool for determining possible
positions of circles’ centers satisfying this condition is a
Voronoi diagram (VD): the VD for a set of geometries (points
and line segments in our case) is a partition of the plane into
cells such that each cell contains exactly one input geometry
and all points in the plane are closer to the geometry than
to any other geometry. VD(P ), a Voronoi diagram of points
and line segments can be computed by Fortune’s sweepline
algorithm in O(n log(n)) time and use O(n) space [11].

Fig. 3a shows the VD of a path from Fig. 2. Boundaries of
Voronoi cells are formed by points equidistant from two or
more input geometries. Boundary curves between two points
or two segments are segments, while edges between a point
and a segment are parabolic arcs. The center of the largest
circle κi thus lies on a boundary of ith cell, i.e. the cell
VCi containing ith geometry. Moreover, maximal distances
on boundary curves are reached at their end vertices [7].
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(a) (b)

Fig. 2: Example solutions of (a) the PCCP, and (b) the WPCCP. The paths (in blue) start at the red points.

Given VC = {VCi}i∈I a set of Voronoi cells containing
points on path P we can thus determine upper bound ub of
(W)PCCP as:

ub = min
i∈I

max
v∈∆(VCi)

|vpi|, (1)

where ∆(VCi) is a set of VCi’s vertices and | · | is the
Euclidean distance. In other words, the radius of the largest
circle touching a point is the distance of the point to the most
distant vertex on its Voronoi cell boundary (see Fig. 3b for
an example). The upper bound is the smallest of these radii.

By contradiction, we prove there is no valid solution with
a radius larger than ub. Assume pm for which |pmcm| = ub.
cm is thus the vertex maximizing the distance in Eq. 1, and
m is the cell index for which this maximum is minimal.
The solution for radius r > ub contains circle Cm(c̄m, r)
associated with pm. As cm is the farthest point of VCm

and c̄m is farther from pm than cm, c̄m lies outside VCm.
There is, therefore, a point or segment on the path closer
to c̄m than to cm, i.e., circle κm(c̄m, r) has a nonempty
intersection with the path. The solution is thus invalid, which
is a contradiction.

B. Lower Bound

We determine lower bound lb by finding some solution.
Assume that a circle center for each cell VCi lies on a ray
αi which bisects the angle formed by pi and two edges of
VCi’s boundary incident to pi as shown in Fig. 3c. For each
pair pi, pj ∈ P, i ̸= j we determine circles’ centers ci, cj
such that:
(1) the centers lie on the bisecting rays: ci ∈ αi and cj ∈ αj ,
(2) the points lie on the circles with the same radius rij :
|pici| = |pjcj | = rij ,

(3) the circles touch: |cicj | = 2rij .
The above conditions lead to a quadratic equation for rij with
one positive solution. Nevertheless, one or both centers can
lie outside the individual cells, making the solution invalid.
The valid radius r̄ij is thus limited:

r̄ij = min{rij , |pixi|, |pjxj |}, (2)

where xi is the intersections of ray αi with δ(VCi), the
boundary of VCi). Similarly, xj = αj ∩ δ(VCj).

The lower bound is the smallest valid radius of all pairs:

lb = min
i∈I,j∈I,i̸=j

r̄ij .

Circle center ci is computed as the intersection of αi with
a circle centered in pi with radius lb.

To prove the validity of the solution constructed by this
procedure, we must ensure that the constraints C1–C4 from
the problem formulation are satisfied. C1 and C2 are met
trivially, and C4 holds as ci lies in VCi due to Eq. 2. C3
is proved by contradiction using the observation that given
two circles touching the same point, a circle with a smaller
radius is entirely inside a circle with a larger radius. This
means that if the smaller circle intersects with another circle,
the larger circle also intersects with the same circle. Assume
now that two circles κi(lb) and κj(lb) with radii lb associated
to some points ci and cj intersect. According to the above
observation, κi(lb) and κj(r̄ij) thus intersect as well as
κi(rij) and κj(rij). This is not possible as |cicj | = 2rij .

C. Placement for a fixed radius

In this section, we describe the algorithm which finds a
valid placement of circles for given radius r or reports that
such placement does not exist. We formulate this problem
as a discrete optimization problem and solve it by a local
search heuristic – an initially generated solution is iteratively
improved by local optimization. Realize that validity of the
initial solution is not guaranteed; thus, the search is done
in the space of all solutions, not only valid ones. Invalid
solutions are penalized in the designed objective function
forcing the solver to find a valid one if it exists.

The algorithm shown in Alg. 2 starts by generating a set of
valid circles’ centers for each Voronoi cell of a point on path
P (lines 1–2). Given cell VCi, the set equals the intersection
of the cell and a circle with radius r centered in pi. To
determine the intersection efficiently, the cell is split into
sectors according to boundary edges as shown in Fig. 4a. The
sectors are processed sequentially in clockwise order. Each
sector is described by two angles – directions of rays starting
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(a) (b) (c)

Fig. 3: (a) Voronoi diagram (in gray) of the blue path with highlighted cells of points (in orange). (b) Upper bound
computation: Voronoi cell of pi bounded by closed curve p1v1v2v3p1, circles κ1, κ2, and κ3 going through p1 with centres
v1, v2, and v3, with κ2 the largest one. The dotted lines connect the circles’ centers with the points where the circles touch
the path. (c) Lower bound computation: α1 and α2 are axes of cells associated with pi and pj respectively, si and sj are
centers of largest touching circles.

in pi and passing through endpoints of the boundary edge e.
A sequence of points on circle κ(pi, r) lying in the sector is
generated for each sector. A point from the sequence lies in
VCi iff it is closer to pi than to g, where g is a geometry
(point or edge) that shares the boundary edge e with pi.

The initial solution is generated next (line 3) by selecting
one circle center from each Vi. Preliminary experiments
show that the selection does not influence the solution
quality; we thus simply select the center randomly.

The iterative improvement is made in the loop in lines 4-
11. In each iteration, points on the path are processed in a
random order (lines 8-9). The randomness of the order is
ensured by shuffling the indexes (line 7). When processing
ith point, all circles’ centers are fixed except the ith one
and new ci is selected from Vi that minimizes the designed
objective function (line 9). It consists of two parts.

The first part penalizes candidate centers of circles having
a non-empty intersection with other circles:

f iint(c) =
∑

k∈I\{i}
(Area(κ(c, r) ∩ κ(ck, r)) + εk), (3)

where

εk =

{
ε if κ(c, r) ∩ κ(ck, r) ̸= ∅
0 otherwise,

ε is a constant (see its meaning bellow), and Area is the area
of circles’ intersection.

Assume the optimal placement according to fint in Fig. 4b
for motivation of the second part. The intersection of κ1 and
κ2 is small but nonempty. Center c1 of circle κ1 is the most
left possible, i.e., in the best position. As the intersection of
κ2 and κ3 is empty, f iint(c3) = 0 and moving c3 farther from
κ2 does not improve f iint. Moving c2 farther from κ1 shrinks
κ1–κ2 intersection, but enlarges the intersection of κ2 and
κ3 increasing f iint in total (notice that c2 is in the optimal
position). The solution is to move c3 to provide space for
moving c2.

The second part of the objective function thus aims to
penalize a circle (a center) with circles in its close vicinity
even if it does not intersect them:

f idist(c) =
∑

k∈N

γ(µr − |cck|),

where N = {k|k ∈ I, k ̸= i, |cck| ≤ µr}, µ and γ are
constants. µ specifies the size of the vicinity as the multiple
of r and ensures that f idist is non-negative. Even a tiny
intersection of circles should be penalized more than many
non-intersecting circles close to other circles. f iint should
thus always dominate over f idist which is the purpose of γ
and ε from Eq. 3. We set µ = 2.2, ε = 10−5, and γ = 10−10.

The new position of ci minimizes the sum of the two parts:

ci = min
c∈Vi

(f iint(c) + f idist(c)) (4)

The validity of the solution is determined during the eval-
uation of f iint. Simply, the solution is valid if all intersections
in Eq. 3 are empty.

We monitor whether the position of some center changed
(line 10). If there is no such change during the processing
of the entire path, the iterative process finishes (line 11), and
the algorithm outputs the result (line 12).

Unfortunately, the cost function in Eq. 4 is not convex,
i.e., it can have many local minima. It is thus not guaranteed
that Alg. 2 finds a global optimum or even a valid solution
if it exists. On the other hand, the algorithm is relatively
fast and stochastic. Therefore, we run Alg. 2 several times
to increase the probability of a correct result.

D. Modifications for the WPCCP

The presented algorithm is the same for both PCCP and
WPCCP, with one exception. The difference lies in the way
VCi , an area of possible positions of circles’ centers, is
determined for a given point pi. While a Voronoi diagram
(VD) of points and line segments forming the path is
computed for the PCCP, and the set of possible centers for a
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Fig. 4: (a) Determination of valid circle centers for a given
radius. The orange lines delimit three sections S1, S2, and
S3 of point pi. The black points are valid centers while the
magenta ones are invalid. A center from Sk is valid iff it
is closer to pi than to geometry gk. (b) Situation where the
optimization of fint does not find a valid solution.

Algorithm 2: Local search algorithm for a fixed
radius.

Input: VC – set of Voronoi cells of points on path P
r – radius

Output: ⟨valid,Υ⟩, where Υ = {ci}i∈I

valid – flag whether the solution is valid
Υ = {ci}i∈I – set of circles’ centers

1 foreach i ∈ I do
2 Vi ← VCi ∩ C(pi, r)
3 ci ← random(Vi)
4 repeat
5 modified← false
6 valid← true
7 shuffle(I)
8 foreach i ∈ I do
9 ⟨validi, ci⟩ ← optimal center(Vi)

10 valid← valid ∧ validi
modified← modified ∨ changed(ci)

11 until !modified
12 return ⟨valid,Υ⟩

point is directly its Voronoi cell, the process for the WPCCP
is more complex. The placement of a circle for pi in the
WPCCP is influenced only by points and segments not yet
visited. This means that VCi is a Voronoi cell of pi in the
VD constructed for unvisited points and segments. The naı̈ve
approach to determine VCi for all points is to construct the
VD of relevant geometries for each point and take its Voronoi
cell. The time complexity of this approach is O(n2 log n) as a
single VD is constructed in O(n log n) time. Allen et al. [12]
propose the VD construction algorithm that incrementally
adds new geometries for which the VD is constructed. The
amortized complexity of one such insertion is O(

√
n), and

thus total complexity of constructing all VCi’s is O(n
√
n).

However, we use the naı̈ve approach in our implementation.

IV. EXPERIMENTAL RESULTS

We evaluated the method’s performance for both prob-
lems on two datasets we created for this purpose. The
first dataset consists of 10 instances where the points are
distributed evenly. Specifically, we generated hexagonal grids
of various sizes, took vertices of these grids as cities, and
solved the Travelling Salesman Problem for these cities by
the Concorde solver [13]. The TSP solutions specify the
instances hexaXXX, where XXX is the number of points in
the instance.

The second dataset (instances meshXXX) is generated
similarly, but the points are generated as vertices of a
conforming constrained Delaunay triangulation (CCDT) gen-
erated by [14]. The CCDT distributes points in the plane
randomly but tries to keep some minimal distance between
them. Examples of both datasets are shown in Fig. 5 together
with their solutions.

All experiments were performed within the same com-
putational environment: a notebook with the Intel®Core i5-
8250U CPU@1.6 Ghz. The algorithm has been implemented
in C++. Twenty runs were run for each instance to provide
statistically significant results.

The results are presented in Table I. Each row summarized
values of 20 runs for each instance for both problems. lb and
up are the lower and upper bounds, r, min, max stand for
average, minimal, and maximal found valid radius, σ is the
standard deviation of the radius, and time is computational
time in seconds.

Several observations can be made from the table. First,
the mean radii are closer to the lower bounds than to the
upper bounds. If we set lb = 0% and ub = 100%, the radius
is 10-35% for the PCCP, and 13-37% for the WPCCP. This
suggests that lb is a better estimate of the optimal radius than
ub.

Second, the computational time is two orders higher for
the WPCCP. This is caused mainly by the fact that Voronoi
cells are larger than in the PCCP, and thus more centers have
to be evaluated in Alg.2. Moreover, the convergence of this
algorithm is slower due to a higher number of centers.

Although we run Alg. 2 twenty times, the solutions found
by the solver differ as the values of σ show. The values
are lower for the PCCP, meaning this problem is simpler to
solve. Nevertheless, the deviations are relatively low, even
for the WPCCP.

V. CONCLUSIONS

We study two problems inspired by an open-pit mining
scenario. Contrary to the current approaches, we address
the problems of where to place piles that do not obstruct
a planned trajectory. Together with a heuristic solver for the
problems, we provide upper and lower bounds for a given
instance. The experimental evaluation shows that the solver
finds good solutions for instances of hundreds of piles/circles
in a reasonable time.

While the computational time for the PCCP is sufficient
for real deployment, there is space for improvement for the
WPCCP. We will thus focus on a more efficient generation of
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Fig. 5: Example instances and theirs solutions. (a) PCCP solution of hexa180 (b) WPCCP solution of mesh115.

PCCP WPCCP

problem lb ub r min max σ time lb ub r min max σ time

hexa180 15.00 30.00 17.31 17.31 17.31 0.00 0.50 18.02 103.90 30.66 28.75 31.39 0.64 48.82
hexa240 13.68 27.56 15.62 15.62 15.62 0.00 0.65 16.78 55.14 28.20 26.37 28.77 0.55 60.28
hexa308 12.43 25.00 14.35 14.35 14.35 0.00 0.85 15.02 86.45 24.88 24.14 25.65 0.41 99.93
hexa336 11.75 23.32 13.48 13.47 13.51 0.02 0.93 14.22 80.17 23.73 22.43 24.28 0.47 115.93
hexa416 10.64 21.00 12.23 12.23 12.23 0.00 1.14 13.05 57.95 21.32 20.50 22.00 0.46 134.56
hexa448 9.50 18.75 10.99 10.99 10.99 0.00 1.16 11.52 64.63 19.06 18.12 19.84 0.46 172.08
hexa540 9.50 18.99 10.96 10.96 10.96 0.00 1.50 11.43 65.77 18.63 18.00 19.50 0.41 213.87
hexa576 8.62 17.36 9.90 9.90 9.91 0.00 1.55 10.57 35.34 17.24 16.37 17.82 0.44 196.54
hexa836 7.50 15.00 8.66 8.66 8.66 0.00 2.16 9.04 40.41 14.76 13.93 15.41 0.41 338.74
hexa1144 6.48 13.00 7.37 7.37 7.37 0.00 3.05 7.84 34.95 12.43 11.96 12.92 0.27 413.71
mesh115 14.90 31.04 18.68 18.68 18.68 0.00 0.27 20.72 65.84 34.01 31.75 35.55 1.34 16.82
mesh244 9.25 19.23 10.47 10.29 10.72 0.14 0.37 12.17 38.87 20.22 19.57 20.90 0.49 35.75
mesh268 8.61 19.14 9.95 9.95 9.95 0.00 0.45 11.77 46.47 19.66 17.69 20.62 0.98 54.06
mesh293 7.87 17.87 8.87 8.75 8.96 0.08 0.45 10.98 38.87 17.55 17.07 17.84 0.22 41.52
mesh343 7.78 16.00 8.99 8.94 9.00 0.02 0.42 11.16 45.10 17.40 16.45 18.20 0.56 64.43
mesh374 6.99 14.15 8.76 8.65 8.85 0.06 0.47 9.49 31.50 17.40 16.32 18.11 0.42 66.10
mesh400 7.51 15.98 8.70 8.70 8.70 0.00 0.64 9.72 34.28 15.40 14.70 15.72 0.33 65.52
mesh449 7.06 11.78 8.68 8.66 8.70 0.01 0.45 9.00 26.10 15.32 14.86 15.61 0.18 87.37
mesh686 5.49 12.02 6.47 6.46 6.50 0.01 1.05 6.78 25.22 11.35 11.09 11.82 0.17 112.87
mesh1337 3.51 6.77 4.21 4.20 4.22 0.01 1.21 4.71 17.72 7.85 7.55 8.03 0.12 215.91

TABLE I: Experimental evaluation.

candidate centers in the future. Instead of generating them
equidistantly, new candidates will be generated adaptively
at promising positions based on the cost value of already
evaluated centers.

As Voronoi diagrams can be generated for general ge-
ometries, a natural extension of the problem is to consider
trajectories of other shapes. An interesting example is Du-
bin’s car, for which optimal paths consist of straight lines
and circular turns.
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An EKF-based Multi-Object Tracking Framework for a Mobile Robot in a
Precision Agriculture Scenario

Andrea Arlotta, Martina Lippi, Andrea Gasparri

Abstract— Many robotic applications require the ability to
locate multiple objects in the environment, but the use of instant-
by-instant identification techniques may be unreliable in variable
and poorly structured contexts, such as for the majority of
precision agriculture settings. Inspired by the needs of the H2020
CANOPIES projects, where robotic platforms are required to
perform harvesting operations in table-grape vineyards, in this
paper, we propose a framework for tracking objects of interest
over time using a mobile robotic platform equipped with RGB-D
camera. Specifically, we design a multi-object tracking module
based on an Extended Kalman Filter (EKF) which takes into
account the motion of the robot to update the estimate of the
localization of the objects. We validate the approach in a realistic
Unity-based simulator, where a mobile robot is tasked with
tracking table-grape bunches within a vineyard environment.
Additionally, we conduct preliminary tests in a laboratory setup.

I. INTRODUCTION

In many robotic applications, the ability to locate objects
within the environment is a fundamental skill that enables
various tasks such as monitoring and performing operations on
such objects [1]–[3]. For instance, in autonomous vehicles, the
ability to identify and localize other vehicles, pedestrians, and
obstacles is crucial for safe navigation and collision avoidance.
However, several application scenarios, such as in agricultural
settings, are often characterized by complex,dynamical, and
poorly structured environments, which can pose significant
challenges for object detection algorithms, thus resulting in
inadequate or unreliable performances. For example, occlu-
sions, changes in lighting conditions, and other environmental
factors can hinder the accuracy of object detection algorithms,
leading to incorrect or incomplete identification of objects.

To overcome these challenges, multi-object tracking sys-
tems can be realized [4]. These techniques allow updating
the estimate of the objects’ location, even when they are
temporarily occluded or move out of view. The classical
approach for multi-object tracking systems relies on the use
of cameras and tracking-by-detection paradigm [5], where an
object detector is usually employed to detect the objects of
interest and then a tracker is used to estimate their trajectories
over time. One of the seminal works in this regard is [6] which
relies on a multiple hypothesis tracking (MHT) approach.
Specifically, this is based on creating multiple hypotheses for
the identity and trajectory of each target, and then updating
these hypotheses as new observations become available.

A. Arlotta, M. Lippi, and A. Gasparri are with the Department of Civil,
Computer Science and Aeronautical Technologies Engineering, Roma Tre
University, Italy, 00146 e-mail: andrea.arlotta,martina.lippi@uniroma3.it,
gasparri@inf.uniroma3.it.

This work was supported by the European Commission under the grant
agreement number 101016906 – Project CANOPIES.

Fig. 1: Representation of the case study within a precision agriculture
context: the simulated vineyard with the robot (left), the RGB image
as seen from the robot (top right) and the point cloud obtained from
the robot RGB-D camera (bottom right) are reported.

The algorithm uses a Bayesian probabilistic framework to
calculate the likelihood of each hypothesis given the current
observations and previous hypotheses. Further examples of
tracking-by-detection methods include SORT (Simple Online
and Realtime Tracking) [7], DeepSORT [8], and IOU Tracker
[9]. Regarding the object detector, many popular approaches
can be used for tracking-by-detection, such as Fast Region-
based Convolutional Neural Network (R-CNN) [10] or Faster
R-CNN [11] as dual-stage detectors, and You Only Look Once
(YOLO) [12] or Single Shot Multibox Detector (SSD) [13]
as single stage detectors. More recently, another category of
methods for multi-object tracking is emerging which is based
on the tracking-by-regression paradigm, where the object’s
state is directly regressed from the image data. Examples
of direct regression methods include the recent CenterTrack
[14] and FairMOT [15]. However, these methods usually
require large amounts of labeled training data and can be
computationally expensive.

Despite the impressive results of recent methods for object
detection and localization, they mainly rely on computer
vision techniques and do not model the fact that the camera
may be mounted on a mobile robot, whose motion should
be taken into account for tracking. In this work, we design
a tracking-by-detection framework for multi-object tracking
using a mobile robot equipped with an RGB-D camera. Our
framework employs an Extended Kalman Filter (EKF) for
each tracked object, which is updated with velocity commands
from the robot and instantaneous measurements. Given a
detection module based on RGB-D data, we measure the
relative positioning of the detected objects with respect to
the robot. This instantaneous data is then processed through
a data association procedure, which determines whether each
measurement is associated with a tracked object or a new
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one. Finally, the EKFs are updated using the respective
measurements and the robot’s velocity. This allows to address
potential inaccuracies in the detection process due to, for
instance, noise or occlusions. We validate the approach in a
precision agriculture context, as shown in Figure 1, where
the robot is deployed into a simulated realistic vineyard
and tasked with locating bunches. Furthermore, we perform
preliminary evaluations in a laboratory environment. The
framework proposed in this work is a crucial step toward
developing an autonomous mobile robot, with manipulation
capabilities, for harvesting applications. By accurately detect-
ing and tracking multiple objects, the robot can effectively
execute trajectories to harvest ripe fruits, even in situations
where they may be temporarily occluded by leaves or other
fruits, or are outside the camera’s field of view.

II. PRELIMINARIES

A. State and observation models

Let us consider a frame Σr attached to the mobile robot.
We denote the frame where a variable is computed using the
subscript index. If no frame is explicitly specified, we assume
that the reference frame is Σr. Based on the requirements
of the precision farming application of the H2020 project
CANOPIES, which involves the detection of grape bunches
to improve harvesting applications, we make the assumption
that the objects of interest are static while the robot navigates
within the environment. We denote the state of an object o
by the vector po = [px,o, py,o, pz,o]

T ∈ R3, which represents
the object’s position with respect to the robot frame. Thus, po
denotes the location of the object o with respect to the robot.
The evolution of the state variables over time is governed by
nonlinear equations, which can be written as follows:

po,k = f(po,k−1, uk−1) + wo,k−1, (1)

where po,k is the state of the object at time step k, uk−1 ∈ Rm

is the robot control input at time step k − 1, f represents
the state dynamics function relating the current state to the
previous state and the control input, and wo,k−1 ∈ R3 is the
process noise at time step k − 1. The latter is modeled as a
zero-mean Gaussian process with covariance Qo,k−1 ∈ R3×3.
We assume to have noisy measurements of the object state. In
detail, let zo,k ∈ R3 be the measurement vector of the object
o at time k. The following observation model is considered:

zo,k = h(po,k) + vo,k, (2)

where h(·) is a nonlinear function that maps the state variables
to the measurements, and vo,k ∈ R3 is a zero-mean Gaussian
measurement noise with covariance Ro,k ∈ R3×3. The
specific state dynamics f(·) and observation model h(·)
functions will be elaborated in the following sections with
regard to the considered case study.

B. Extended Kalman Filter

The Extended Kalman Filter (EKF) is a Bayesian filter
commonly used for state estimation of systems with nonlinear
dynamics and measurement models [16]. Briefly, it relies on
linearizing the nonlinear dynamics around the current state

estimate and then propagating the state estimate forward in
time using a recursive process. Two phases are recursively
executed: 1) Predict, where the current state estimate and
system dynamics in (1) are exploited to predict the next
state estimate; 2) Update, where new measurements and the
observation model in (2) are exploited to improve the state
estimate. In detail, let x̂o,k be the object state estimate at time
k, and Po,k ∈ R3×3 the error covariance matrix associated
with the state estimate. The prediction equations are

x̂−o,k = f(x̂−o,k−1, uk−1)

P−
o,k = Fo,k−1Po,k−1F

T
o,k−1 +Qo,k−1,

(3)

where x̂−o,k represents the predicted state estimate at time k,
Po,k

− is the predicted error covariance matrix, and Fo,k−1

is the Jacobian matrix of the state model evaluated at x̂o,k−1.
The update equations are

Ko,k = P−
o,kH

T
o,k

(
Ho,kP

−
o,kH

T
o,k +Ro,k

)−1

x̂k = x̂−o,k +Ko,k

(
zo,k − h(x̂−o,k)

)

Po,k = (I3 −Ko,kHo,k)P
−
o,k

(4)

where Ho,k is the Jacobian matrix of the observation function
evaluated at x̂−o,k, Ko,k is the Kalman gain and I3 is the 3×3
identity matrix.

C. Point cloud from RGB-D camera

RGB-D cameras are sensors that provide both color (RGB)
and depth (D) information about a scene. This information
can be used to generate a 3D point cloud, which represents
the spatial locations of points in the scene. Each point in the
point cloud corresponds to a pixel in the RGB image, and
its position in 3D space is determined by the depth value
at that pixel. More in detail, let Σc be the camera frame,
f = [fx, fy]

T be the camera focal length, c = [cx, cy]
T be

the principal point and sd be the the depth scale factor. We
consider a generic pixel i with coordinates [ui, vi]T and depth
value di. The respective 3D point pci = [xci , y

c
i , z

c
i ]

T in the
camera frame is computed as follows:



xci
yci
zci


 = di sd




1
fx

0 − cx
fx

0 1
fy
− cy

fy

0 0 1






ui

vi

1


 . (5)

The overall camera point cloud Pc is then formed by
collecting all such pci points associated with pixels having
non-zero depth value di.

D. Problem statement

Based on the above quantities, we are now ready to state the
main problem that we address in this work. Let us consider
a mobile robot, with frame Σr, which is equipped with
an RGB-D camera, with frame Σc and let T r

c ∈ R4×4

be the homogeneous matrix of the camera frame with
respect to the robot one. Let us consider that the robot
navigates in an environment where n objects of interest are
present, e.g., bunches in a table-grape vineyard. We aim to
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Fig. 2: Examples of occlusions in a table-grape vineyard. On the left
leaves occlude a bunch, on the right a black grape bunch occludes
a white grape bunch behind.

develop a real-time framework for reliably estimating po,k
∀o ∈ {1, ..., n}, which represent the location of objects with
respect to the robot frame, even when object measurements
are intermittent or affected by outliers. We reiterate that such
measurement inaccuracies are very frequent in unstructured
outdoor environments, such as in precision agriculture settings.
Figure 2 illustrates examples of occlusions in a table-grape
vineyard. In the first scenario (left), a grape bunch (highlighted
in a rectangle) is occluded by leaves. In the second scenario
(right), a white grape bunch (highlighted in a rectangle) is
occluded by a black grape bunch.

III. PROPOSED FRAMEWORK

Fig. 3: Architecture overview.

The proposed framework to solve the above problem
is represented in Figure 3 and structured into four main
modules: i) raw data acquisition, ii) object detection and
relative measurement computation, iii) data association, and
iv) EKF for relative multi-object localization tracking. In the
remainder of the paper, we omit the time dependency if not
strictly necessary to simplify the notation. In the following,
a description of each module is provided.

1) Raw data acquisition: This preliminary module, as
illustrated by the first block on the left in Figure 3, gathers at
each time step all the necessary data for multi-object tracking
on the mobile robot. Specifically, encoder measurements are
collected, which allow deriving the robot control input uk
in (3). This control input typically comprises the linear and
angular velocities of the robot, as well as color and depth
data from the RGB-D camera mounted on the robot.

2) Object detection and relative measurement computation:
This module, shown in the second block from the left in
Figure 3, is in charge of detecting the objects that are in the
robot field of view at each time step k and providing the
relative measurement vector zo,k for each detected object o.

Regarding the object detector, we consider that any off-
the-shelf object detector can be employed. For instance, in
our prior works for precision agriculture settings such as
[2], [3], [17], we employed the YOLO architecture, while,
for the H2020 CANOPIES project, a grape cluster detection
module was developed in [18] that is available for use. The
detector produces two primary outputs: bounding boxes that
enclose the objects of interest and a segmentation mask that
identifies, for each detected object, the associated pixels.
These outputs are leveraged to extract measurements for each
object, which are then utilized for tracking purposes. As
measurement function, we use

h(po,k) = po,k, (6)

i.e., we measure the entire tracking vector. Measurements are
obtained as follows. For each detected object o, the respective
portion of the segmentation mask is used to obtain a masked
depth map, such that zero values are assigned to the pixels
not belonging to the object, while depth values are preserved
for the object pixels. Let Io be the set of pixel indices with
non-zero values in the masked depth map. The object point
cloud Pc

o is generated by applying (5) for the pixels in Io.
At this point, to retrieve the measurement vector zco,k in the
camera frame, we select the pixel [uo, vo]

T at the center
of the top edge of the bounding box that surrounds the
object and approximate its depth value as d̄o = 1

|Io|
∑

i∈Io
di,

where |Io| denotes the cardinality of Io. Then, the object
measurement zco is obtained by using uo, vo, and d̄o in (5).
Note that the choice of the center of the top edge of the
bounding box is arbitrary and other choices might be made
depending on the task at hand. For instance, the center of the
bounding box might be used. In our case study, the ultimate
goal is to enable a robotic hand to execute harvesting, and
this choice of bunch position allows us to more likely locate
and target the bunch peduncle, that is the desired cutting
point for the robotic hand. Additionally, we use the average
depth value d̄o instead of the value do to calculate the object
position because depth maps can be noisy, and the value do
could even be zero. By utilizing this preprocessing step, we
enhance the robustness of the system, and as we approach
closer to the object of interest, more accurate perception data
can be expected. As a final step, a coordinate transformation
is applied to retrieve the object measurement zro in the robot

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

320



frame. Specifically, it holds
[
zro

1

]
= T r

c

[
zco

1

]
,

where T r
c is the homogeneous matrix of the camera frame

with respect to the robot one as stated in Section II-D. The
measurements zro obtained for all the objects detected at time
step k are collected in the set of current measurements Mk.

3) Data association: This module associates measurements
with specific tracked objects in the environment. More in
detail, given the set of tracked objects up to time k Tk,
collecting the states of the tracked objects, and the set of
current measurements Mk, it enables us to establish whether
the measurements are associated with any tracked object and
if so, the specific corresponding one. To this aim, we compute
a likelihood matrix Lk ∈ R|Mk|×|Tk|, where each element
lij represents the Euclidean distance between measurement i,
i.e., zi, and tracked object j, i.e., pj . By computing the
minimum likelihood value l∗i in each row i of Lk, i.e.,
l∗i = minj∈Tk

lij , we can identify the best match between
each new measurement i and the existing tracked objects.
If the minimum value l∗i is below a predefined likelihood
threshold τ , we preliminarily assign the new measurement i to
the tracked object j∗ = argminj∈Tk

lij . If, on the other hand,
the minimum value is above the threshold, we add the measure
zi,k to the set Nk, collecting all the measures which need
to be associated with new objects. Once all measurements
have been analyzed, if multiple measurements are associated
with the same object, we only preserve the association with
minimum likelihood value. The third block from the left in
Figure 3 illustrates the current module, showing the tracked
objects in yellow and the measurements in red.

4) EKF-based Multi-Object Tracking: The objective of
this module is to update the set of tracked objects T . An EKF
is associated with each tracked object, as reported in Section
II-B. For each vector zn ∈ Nk, a new EKF is initialized with
state pn,0 = zn and the respective state is added to the set
of tracked objects T . Then, the prediction and update steps
for each tracked object o are executed independently: the
prediction step is triggered whenever a control input uk is
available, while the update step is triggered whenever a new
measurement zo,k is available. This enables the estimation
of the relative object localization information even when a
measurement is unavailable at a certain time k. To define the
prediction model in (3), let us consider the expression of the
object position with respect to a fixed world frame Σw, i.e.,

pwo = pwr +Rw
r p

r
o,

where pwr is the robot position with respect to frame Σw, Rw
r

is the rotation matrix between frame Σw and robot frame Σr,
while pro is the relative position of the object with respect to
Σr. By deriving the previous equation, one obtains

ṗwo = ṗwr +Rw
r ṗ

r
o + ωw

r ×Rw
r p

r
o,

where ṗwr and ωw
r denote the linear and angular velocities

of the robot with respect to Σw, the operator × denotes

the vector product, and the expression of the time derivative
of rotation matrices has been exploited. By recalling the
assumption made for our application scenario of having static
objects, i.e., ṗwo = 0, the relative velocity of the object with
respect to frame Σr can be computed as

ṗro = Rr
w[−ṗwr − ωw

r ×Rw
r p

r
o].

At this point, by considering as frame Σw the frame of the
robot at time step k − 1, we derive the following dynamics

pro,k+1 = pro,k −Rr,k
r,k−1(ṗ

r,k−1
r,k +ωr,k−1

r,k ×Rr,k−1
r,k pro,k) ·∆t,

where ∆t represents the sampling time, Rr,k
r,k−1 expresses

the rotation of the robot frame at time k − 1 with respect to
the one at time k, and ṗr,k−1

r,k and ωr,k−1
r,k denote the linear

and angular velocities of the robot at time k with respect
to frame at time k − 1. For instance, if the robot frame Σr

is oriented with the x-axis aligned with the sagittal axis in
the direction of motion (as shown in red in Figure 1) and
the z-axis aligned with the vertical axis (in blue), the vector
ṗr,k−1
r,k have zero components along y and z axis, while the

vector ωr,k−1
r,k will have zero components along x and y axis.

As far as the update phase is concerned, if a measurement
in Mk is associated with the object o, the update equations
in (4), using measurement model in (6), are used.

IV. VALIDATION RESULTS

To evaluate the effectiveness of the proposed approach, we
firstly conducted a numerical validation within a simulated
vineyard environment, purposely designed for the H2020
CANOPIES project, as depicted in Figure 1. Then, we
performed a preliminary validation with a real robot in a
laboratory setting. In both scenarios, the mobile robot was
required to track table-grape bunches in its own (moving)
frame. Validation results are shown in the video at the link1.

A. Setup description

1) Simulation setup: The Unity-based simulation setup
used in this study realistically simulates a vineyard with table-
grape pergola system and 3m×3m planting pattern. Different
dimensions, grape densities, light orientation and intensity
can be set to reproduce different operating conditions. Mobile
robots, and in particular Alitrak DCT-300P mobile bases, can
be included and equipped with a PAL Robotics humanoid
robotic torso. Notably, the simulated environment, including
the robotic platforms, is a reliable reproduction of the real-
world one available for the experiments of CANOPIES project.
Finally, the simulator generates ground truth data for object
positions and is integrated with the Robot Operating System
(ROS) middleware. In our experimental setup, we equipped
the robot with an RGB-D camera mounted as shown in
Figure 1. We validated the framework by having the robot
navigate through the vineyard. Specifically, we created a
grid of waypoints positioned at the center of each cell
between the vines, as depicted in Figure 4 where triangles
denote waypoints and the square denotes the start and final

1https://youtu.be/2s1Tz4dUbZ0
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Fig. 4: Example of path employed for testing tracking system. The
square marker indicates the initial waypoint and the triangle markers
indicate intermediate waypoints.

configuration. These waypoints were used to plan a path that
ensured complete coverage of the field.

Fig. 5: Rviz environment screenshot from the laboratory validation
session (left). View of the laboratory setup (top-right). Visual output
of the object detection node (bottom-right).

2) Laboratory setup: Preliminary tests were conducted in
the laboratory to evaluate the algorithm in a real environment,
as shown in Figure 5. The setup included a synthetic tree
with three artificial grape bunches and a Turtlebot 2 robot,
equipped with a Realsense D435 RGB-D sensor. In addition,
an Optitrack motion capture system was employed to obtain
ground truth data. The robot was controlled using a joystick
and moved in a random manner around the tree.

B. Implementation details

The proposed framework has been fully realized within
ROS middleware with the following main nodes:
Robot odometry node, receiving velocity commands
for the mobile base as Twist messages and providing Odome-
try messages containing the state from the encoders.
Trajectory generator node, producing the desired
waypoint as PoseStamped message.
Robot controller, producing velocity commands in the
form of Twist messages based on the desired current waypoint.
Camera node, handling the RGB-D camera and publishing
RGB and depth as Image messages. Concurrently, the camera
intrinsic parameters are transmitted as CameraInfo messages.
Object detection node, performing the object detec-
tion and segmentation and publishing detected bounding boxes
and segmentation mask via custom messages.
Measurement computation node, generating the
measurements of the detected bunches with respect to the
robot frame. It listens to the object detection node output and,

Size # Obj. Mean [m] Std. Dev. [m] Min. [m] Max. [m] F.P.
3x3 15 0.075 0.010 0.043 0.359 0
4x4 33 0.076 0.027 0.011 0.378 0
5x5 51 0.169 0.067 0.017 0.506 0
6x6 81 0.208 0.075 0.020 0.583 0

TABLE I: For each field dimension, the number of initialized filters,
the values of the mean error, mean standard deviation, minimum
error, maximum error, and number of false positives are reported.

when a detection message is available, it computes the set
of 3D points associated to the bunches. The output of this
computation is then published via a MarkerArray message,
which provides the list of positions of detected bunches.
Data association node, responsible for possibly as-
sociating sensor measurements to tracked objects. Once the
association process is complete, the measurements are tagged
with an ID and published in a MarkerArray message.
Tracking node, executing the EKFs associated with
tracked objects. This node listens to the robot odometry
topic and the output of the data association node: every time
an odometry message is available, a prediction step is made
for every object; while every time new measurements are
available, a correction step is executed for the respective ob-
jects. The output of this computation provides a MarkerArray
message which contains the set of the tracked objects.

Regarding the considered parameters, we set the measure-
ment noise covariance matrix, Ro,k = diag{0.5, 0.5, 0.5},
and the process noise covariance matrix, Qo,k = 10−4I3,
∀o, k. Additionally, we initialized the error covariance matrix
at time 0, Po,0 = 0.05I3, ∀o. The similarity threshold
parameter for data association was set to τ = 0.35 m.

C. Simulation results

We validated the framework with different field sizes, from
3 rows and 3 columns (denoted as 3 × 3) to the case of
6 rows and 6 columns (denoted as 6 × 6). Specifically,
for each field size and for each waypoint provided by
the trajectory generator, we collected the estimation errors,
i.e., the distances, between ground truth data and estimated
object positions through the EKFs. Table I summarizes the
obtained results. Specifically, each row is associated with a
field size, while columns report the number of instantiated
EKFs, the average error, average standard deviation, minimum
and maximum errors, and the number of False Positives
(F.P., i.e., the number of active filters for the same object)
obtained considering all waypoints. It can be observed
that the mean and maximum error values increase with
the size of the field. This is motivated by the fact that,
according to our planned path, the higher the field size,
the more likely it is that numerous bunches have had their
latest measurements recorded long ago. Consequently, the
estimates for these bunches are updated solely with predict
equations in (3), resulting in an expected drift effect over
time. Indeed, it is worth noting that the proposed approach is
primarily well-suited for local multi-object tracking within the
robot surroundings. The whole-field coverage simulation was
merely conducted to showcase the results. In our future work,
for instance, we intend to utilize the multi-object tracking
system to guide the manipulator’s movement for harvesting
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applications. Therefore, only the information of the bunches in
the vicinity of the robot are needed for an effective planning.
In addition, the table reports a minimum error always greater
than 0.01 m. This is motivated by the fact that, while the
ground truth values correspond to the precise location of
the peduncles of the bunches, we estimate their location by
selecting the central points of the top edges of the bounding
boxes associated with the detected bunches. This heuristics
is based on the typical structure of grape bunches, where the
peduncle is generally placed in the top-middle part of the
bunch. Finally, the table shows that no false positives were
recorded with the considered scenario.

Fig. 6: Top-view screenshot in RViz environment reporting the RGB-
D depth cloud, measurements (red squares), ground truth data (green
spheres), and estimated positions of the objects (yellow spheres).

Figure 6 shows a visual representation (generated in RViz)
of the results obtained with the coverage of a vineyard
composed of 3 rows and 3 columns. It reports the depth
cloud generated by the RGB-D camera as well as the markers
representing the ground truth positions of grape clusters
(in green), the markers depicting poses generated by the
measurement node (in red), and the markers obtained by
the EKFs of the tracked objects (in yellow). From the
image, it can be observed that, in general, the EKF markers
are relatively close to the ground truth markers. Certain
EKF markers exhibit a more significant error, which can
be attributed to the fact, as mentioned earlier, that the last
measurement was obtained a long time ago, preventing the
execution of the update equations.

D. Laboratory results

Figure 5 reports the laboratory setup (in the top right), the
detection output, where the detected clusters are masked, (in
the bottom right) as well as a graphical representation of
the measurements, tracking instances, and ground truth (on
the left). We reiterate that the detection module developed
within the H2020 CANOPIES project, detailed in [18], was
used. The robot moved for a total of 80 seconds. The figure,
accompanied by the video, showcases the capabilities of
the system to operate in a (simplified) real-world setup.
Specifically, we can observe that the EKF markers (in yellow)
closely approximate the ground truth markers (in green). On
a quantitative basis, we recorded mean error value equal to
0.043 m with a standard deviation of 0.03 m, while maximum

and minimum errors were 0.148 m and 0.003 m, respectively.
All bunches were successfully tracked with no false positives.

V. CONCLUSIONS

In this work, inspired by the needs of the H2020
CANOPIES project, we presented a framework for tracking
table grape bunches in a vineyard using a mobile robotic
platform equipped with an RGB-D camera. The proposed
multi-object position tracking module is based on an Extended
Kalman Filter which takes into account the robot motion for
estimating the location of the objects of interest. As future
work, we aim to validate the approach in a real setup and
exploit the proposed framework for driving the motion of a
mobile manipulator to carry out fruit harvesting operation,
during which occlusion and clutter problems occur.
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Stereo Visual Localization Dataset Featuring
Event Cameras
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Abstract—Visual odometry and SLAM methods are facing
increasingly complex scenarios and novel solutions are needed
to offer more accurate and reliable results in challenging en-
vironments. Standard cameras are challenged under low light
conditions or very high-speed motion, as they suffer from motion
blur and operate at a limited frame rate. These problems can be
alleviated by using event cameras – asynchronous visual sensors
that offer complementary advantages compared to standard
cameras, as they do not suffer from motion blur and support
high dynamic range. Although there are a number of existing
datasets intended for visual odometry and SLAM that contain
event data, most of them are collected using monocular sensors
and limited either in terms of camera resolution or ground
truth availability. Our work aims to complement this by further
supporting the development of robust stereo visual odometry
and SLAM algorithms, allowing to exploit both event data and
intensity images. We provide both indoor sequences with 6-DoF
motion and outdoor vehicle driving sequences that additionally
contain 3D lidar data. All sequences contain data from a
synchronized high-resolution stereo event and standard cameras,
whereas ground truth trajectories are provided by either a motion
capture system or a highly accurate GNSS/INS and AHRS that
combines the fibre-optic gyro IMU with a dual antenna RTK
GNSS receiver.

Index Terms—event cameras, stereo cameras, visual odometry
and SLAM, sensor fusion

The dataset is available at http://www.bitbucket.com/unizg-
fer-lamor/event-dataset.

I. INTRODUCTION

Event cameras, also known as dynamic vision sensors
(DVS), are asynchronous biologically inspired sensors that
detect changes in brightness intensity on a pixel-by-pixel
basis. Intensity changes are reported as events as they occur,
rather than capturing whole scenes with a fixed framerate
like traditional cameras. Event cameras have numerous ad-
vantages over traditional cameras, including high temporal
resolution in microseconds, low latency, high dynamic range
up to 120 dB, and low power consumption. These sensors
have a great potential to be particularly useful in challenging
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Fig. 1: Sample intensity images (left) and accumulated events
(right; color indicates event polarity) from the outdoor se-
quences. Second sample shows a situation where the left part
of the intensity image is overexposed due to bright sunlight
as the car is passing through the shaded area, while the
event cameras can handle this scenario well, given their high
dynamic range. Third sample is captured during a night drive.

scenarios, such as scenes with dynamic illumination or high-
speed motion. However, given that the output of event cameras
is fundamentally different from traditional cameras, the full
potential of these sensors can only be realized by developing
new asynchronous processing methods. Nevertheless, event
cameras have already proven to be valuable for various robotic
perception tasks such as depth estimation, visual odometry,
and simultaneous localization and mapping (SLAM). More
details on event cameras, event-based methods, and results can
be found in a detailed survey [1].

Even though state-of-the-art visual SLAM algorithms based
on intensity images achieve high accuracy in favorable condi-
tions, there remains a challenge to achieve robust visual SLAM
under low light or high dynamic range conditions, as well as
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very high-speed motions, making it imperative to investigate
alternative sensors. Using the complementary advantages of
event and standard cameras for SLAM, visual odometry,
and depth estimation has already been proven to achieve
interesting results, as reviewed in a recent comprehensive
survey on event-based SLAM [2]. The first attempt to combine
events with intensity images and inertial measurements for
robust visual SLAM was presented in [3]. More recently,
[4] presents a visual-inertial odometry method that tightly-
coupled the events, intensity images, and IMU by leveraging
point and line features. This method based on monocular
cameras was subsequently extended to support stereo cameras
in [5]. Similarly, the work in [6] explores the possibility of
using event-based visual-inertial odometry for navigation of
planetary robots.

As the complexity of problems addressed by event-based
odometry and SLAM increases in terms of the type of scene,
illumination, or speed of motion, there is a rising interest for
datasets featuring event cameras coupled with other sensors
to enable researchers to explore novel methods with proper
evaluation benchmarks at their disposal. Visual SLAM datasets
such as KITTI [7], EuRoC [8], and TUM-RGBD [9] have
pushed the field forward by providing high-quality data and
ground truth with clear quantitative evaluation guidelines.
Even though there is a number of existing datasets intended
for visual odometry and SLAM that contain event-based data,
most of them are monocular and limited either in terms
of camera resolution or ground truth availability. Our work
aims to provide a dataset to support development of robust
stereo visual odometry and SLAM algorithms, allowing to
exploit both event data and intensity images. We offer both
indoor sequences with 6-DoF motion and outdoor sequences
collected with a car driving through urban areas. All sequences
contain data from a stereo high-resolution event and standard
camera, while ground truth trajectories are provided from
either a motion capture system or an RTK GNSS receiver.
Outdoor sequences also feature 3D lidar data to support depth
estimation development.

The rest of the paper is organized as follows. Section
II presents related event-based datasets intended for visual
odometry and SLAM. In Section III we present utilized
sensors along with describing synchronization and calibration
methods used for collecting the data. Finally, we conclude the
paper in Section V.

II. RELATED WORK

The first event camera simulator was presented in [10], as
well as a collection of datasets including data from a DAVIS
event camera (240 × 180 resolution), which also provides
intensity images and IMU measurements. Both synthetic and
real-world sequences are available. For indoor sequences,
ground truth for 6-DoF motion is recorded using a motion
capture system. DDD17 [11] and DDD20 [12] are both large
scale datasets collected with a monocular DAVIS346 camera
(346×240) mounted on a driving car. Since these datasets are
intended for automated driving applications, additional data

from the vehicle, such as steering angle and speed, are also
provided. However, 6-DoF pose ground truth is not available,
as only 2D translation can be inferred from the provided
GPS latitude and longitude. The UZH-FPV Drone Racing
Dataset [13] is a specialized visual-inertial odometry dataset
intended for 6-DoF flying drone localization in high-speed
scenarios. It features event data from the miniDAVIS346,
intensity images, and IMU measurements, along with precise
ground truth poses.

MVSEC is the first dataset with synchronized stereo event
cameras [14]. It features a variety of data captured in different
illumination levels and environments. The indoor sequences
were collected with a handheld rig and a hexacopter, while
sensors were mounted on top of a car and a motorcycle for
outdoor driving sequences. Each DAVIS346 camera provides
event streams, grayscale intensity images, and IMU readings.
Additionally, 3D lidar, motion capture, and GPS data are uti-
lized to provide ground truth trajectories and depth. However,
low resolution of the DAVIS346 camera (346× 240), as well
as smaller stereo baseline, are limiting factors for odometry
and SLAM accuracy, especially for outdoor driving scenarios.

Similarly, the DSEC dataset [15] contains data from a stereo
event camera, a stereo standard camera, and 3D lidar, but
with the added benefit of a higher event camera resolution.
DSEC addresses the problem of low event camera resolution
and small stereo baseline as the main drawbacks of MVSEC
by featuring Prophesee Gen3.1 event cameras with 640× 480
pixels. Even though DSEC provides a very rich amount of data
collected by driving in a variety of illumination conditions, it
does not contain ground truth trajectories. Furthermore, it does
not cover very high speed scenarios where standard cameras
would suffer from motion blur.

The TUM-VIE dataset [16] consists of a large variety of
head-mounted sequences, targeting VR applications, and hand-
held sequences, in both indoor and outdoor environments. The
dataset contains high-resolution stereo event data (1280×720),
stereo grayscale frames, as well as IMU data. However, ground
truth poses are only available at the beginning and the end of
each sequence, therefore limiting trajectory evaluation.

The VECtor dataset [17] is captured by a full hardware-
synchronized sensor suite that includes a Prophesee Gen4
event stereo camera (1280 × 720), a regular stereo camera,
an RGB-D sensor, a lidar, and an IMU, while ground truth
trajectories are provided by a motion capture system, or
by matching motion-compensated lidar scans with a dense
point cloud of the environment captured by the laser scanner.
Sequences are collected in large and small-scale environments.
Each small-scale sequence comes in two variants (normal or
fast), depending on the speed of exerted motion. The ViViD++
dataset [18] provides data from a sensor system including
RGB, thermal, event, depth, and inertial measurements, along
with ground truth RTK-GPS trajectory in outdoor driving
scenarios. However, only a single event and standard camera
is deployed.

Even though HD event cameras with a resolution of
1280 × 720 are available on the market and provide more
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TABLE I: Properties of the sensors used for data collection

Sensor Description

2× DVXplorer event camera

640× 480 pixels
200µs temporal resolution

up to 110 dB
165 Mega events/s

2× FLIR Blackfly S camera
BFS-PGE-31S4C-C

2048× 1536 pixels
up to 60 dB

global shutter
10 Hz

3× IMU
integrated in DVXplorer and Ouster

3D accelerometer
3D gyroscope

MoCap OptiTrack Flex13
indoor only

accurate 6-DoF pose
850nm IR light

100 Hz

Spatial FOG Dual
GNSS/INS and AHRS

outdoor only

3D pose and orientation
up to 8mm accuracy (with RTK)

40 Hz

Ouster OS1-128 Lidar
outdoor only

128 channels
Vertical FoV: 45◦

Angular resolution: 0.35◦
10 Hz

detailed information about the scene, we found that the event
rate exceeds the bandwidth limit during very rapid motions
in scenes with rich texture, leading to significant loss of
events during the recording. Bandwidth limitation is the main
reason why we opted for using event cameras with 640× 480
resolution for recording our dataset, as we wanted to prevent
data loss and preserve all the events generated during very high
speed motions, thus enabling more accurate performance of the
event-based algorithms. Furthermore, the main motivation for
collecting this dataset was the lack of ground truth trajectories
in stereo datasets that feature high-resolution event cameras,
e.g., DSEC and TUM-VIE, which we believe can complement
and serve greatly visual odometry and SLAM development and
evaluation.

III. THE PROPOSED DATASET

Both our indoor and outdoor setup (Figure 2) feature a
stereo event camera (with an integrated IMU) and a stereo
standard camera, but with different baselines and intrinsic pa-
rameters. Additionally, the indoor rig contains motion capture
markers, while the outdoor rig equips a 3D lidar (with an
integrated IMU) and a highly accurate GPS aided inertial
navigation system and AHRS. This section provides details
about the individual sensors (summarized in Table I) and
describes how we approached synchronization and calibration.
All sequences are collected and published in the ROS bag
format.

A. Sensor Setup

For both indoor and outdoor data acquisition we used the
DVXplorer stereo event camera kit. The cameras have a spatial
resolution of 640× 480 pixels (VGA) and offer asynchronous
output as a stream of events with temporal resolution of

Fig. 2: Sensor setups for collecting indoor (upper image)
and outdoor sequences (lower image). Event and standard
stereo cameras are mounted on an aluminum rig. Indoor
setup includes motion capture markers, while the GNSS dual
antenna, AHRS and lidar are mounted on the outdoor rig.

200µs, while intensity frames are not available. Their dynamic
range is between 90 and 110 dB (3-100k lux with 99.9% of
pixels respond to 27.5% contrast, 0.3-100k lux with 50% of
pixels respond to 80% contrast). The two event cameras are
enclosed in anodized aluminum cases and mounted on the rig
in a horizontal stereo setup, with a baseline of 30 cm for
the indoor and 57 cm for outdoor sequences. The cameras
are connected to the computer using USB 3.0. The maximum
throughput of events that they can handle is 165 Mega-
events per second, but in practice it is also limited by the
USB 3.0 bandwidth. Both event cameras are equipped with
4-12 mm varifocal CS-mounted lenses. To suppress erratic
events generated by infrared (IR) flashes from the motion
capture system, we additionally placed IR cut filters, in the
form of thin rectangular pieces of glass, directly on top of the
sensor, under the lens. To capture and visualize event data, we
used the ROS event camera driver developed by iniVation 1.
The DVXplorer sensor also encapsulates a 6-axis IMU (gyro
and accelerometer) with a sampling rate of 800 Hz. The event
cameras parameters, usually referred to as biases, regulate the
signal-to-noise ratio and the event rate of the generated stream.
For outdoor and indoor sequences with brighter lighting, we
set the DVXplorer biases to default values as suggested by

1https://gitlab.com/inivation/dv/dv-ros
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the manufacturer (sensitivity level 3 out of 5). For indoor
sequences with less lighting and the outdoor night sequences,
the biases are set to promote slightly higher sensor sensitivity
level (4 out of 5), since there is less contrast in the scene.
Intensity color images are obtained using a stereo pair of
FLIR Blackfly S GigE global shutter cameras, with a spatial
resolution of 2048× 1536 pixels with auto-exposure enabled.
Even though the cameras can operate at a higher frequency,
we had to lower their frame rate to 10 Hz due to bandwidth
limitations. The cameras are powered through a Power-Over-
Ethernet (PoE) switch and connected to the computer via
Ethernet. They are rigidly mounted on the rig in a horizontal
stereo setup along the same line as the event cameras. The
baselines for the indoor and outdoor setup are 10 cm and
40 cm, respectively. We used an inhouse ROS camera driver
that extended the existing camera drivers and wrapped them in
a ROS node. Unfortunately, even with the frequency lowered
to 10 Hz, frames are occasionally dropped at random from
either left or right camera. In case of a dropped frame, we still
retain the corresponding stereo frame in the ROS bag. Lidar
data was collected using the Ouster OS1-128 high-resolution
scanning lidar sensor. It has a 128 channel vertical resolution
that gives 2.62 million points per second, with the vertical field
of view of 45◦. Angular resolution is 0.35◦ with the output
rate of 10 Hz. Additionally, Ouster OS1-128 is equipped with
an IMU MPU 9250 that has an output rate of 100 Hz.

To provide ground truth poses for the indoor sequences,
we used the OptiTrack motion capture system with 12 Flex13
cameras installed in our laboratory. Four reflective infrared
markers were placed on the rig. The motion capture system
reports both position and orientation of the rigid body defined
by the markers with millimeter level precision. In our setup,
the motion capture software is ran on a different computer than
the one used for recording the data. The poses are transmitted
to the destination computer via WiFi and captured using the
dedicated ROS driver at a frequency of 100 Hz.

For outdoor sequences, we use the Spatial FOG Dual, a
highly accurate GNSS/INS and AHRS that provides accurate
position, velocity, acceleration, and orientation as the ground
truth proxy. It combines the fibre-optic gyro IMU, which
provides very accurate inertial data, accelerometers, magne-
tometers, and a pressure sensor with a dual antenna RTK
GNSS receiver. These are coupled in a sophisticated fusion
algorithm to deliver accurate and reliable 3D position and
orientation. We used a TopCon base station with the quad-
constellation RTK Net G5 receiver and a G5-A1 antenna
mounted on the top of a 13-story building. The used GNSS
has factory claimed horizontal and vertical position accuracy
of 0.008m and 0.015m, respectively, with an output frequency
of 40 Hz. On the vehicle we placed the GNSS antennas away
from the other sensors to ensure that there is no interference
due to multiple running data cables.

B. Indoor Sequences

Indoor sequences (Figure 3) are acquired in our laboratory
with rich scene setup. The OptiTrack motion capture system is

Fig. 3: Sample intensity images and accumulated events (first)
and event time surfaces (second) of indoor sequences. In the
second sample, motion blur is present in the intensity image,
whereas the event time surface remains sharp.

used to record the ground truth trajectories. The rig with stereo
event and standard cameras was handheld (6-DoF motion) in
all the indoor sequences. One part of the dataset was recorded
in bright daylight with all the blinds open (event camera
settings set to default). In total, there is around 7 minutes
of indoor data available, divided into 8 sequences. Given that
the standard cameras operate with auto-exposure settings, the
exposure changes according to the amount of light coming into
the sensor. Thus, there might be some overexposed or underex-
posed frames as the cameras are rapidly changing poses, from
pointing towards the windows to away from the windows. The
other part of the dataset is collected with the blinds closed
and with less natural light (event camera sensitivity set to
high). We provide several sequences where speed of motion is
limited so that intensity images do not suffer from motion blur.
In contrast, other sequences contain rapid motions, inducing
motion blur in the intensity images, thus making them more
challenging for standard visual algorithms.

C. Outdoor Sequences

To collect the data for outdoor driving sequences (Figure
1), we mounted the multi-sensor rig on the car roof. The car
was driven in the central area of the city of Zagreb, Croatia.
Given the high traffic in the urban settings, most sequences
contain moving objects such as pedestrians and other vehicles.
Note that the traffic lights, some illuminated billboards, and
the lights of the other vehicles generate bursts of events due to
flickering. During daytime, this does not cause any additional
noise or bandwidth issues, but the lights significantly increase
noise in the night sequences, especially when the streetlights
are positioned directly above and next to the road. Due to
auto-exposure of the standard cameras, parts of some frames
can be overexposed or underexposed, given the bright daylight
conditions (third sample in Fig. 1). Due to the lens and camera
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Fig. 4: Ground truth trajectory for a part of our outdoor driving
sequences, obtained with a GNSS and AHRS system mounted
on the sensor rig placed on the top of the car.

positioning, a part of the car hood is visible in the images.
Sample ground truth trajectory obtained with the GNSS RTK
and AHRS system can be seen in Fig. 4. The first of the
outdoor sequences includes information from the lidar and
contains around 17 minutes of data recorded in the central
area of the city. This long sequence is uninterrupted, meaning
that we retain the parts where the car is stopped on the traffic
lights for completeness. Similarly, the night sequence contains
around 12 minutes of uninterrupted recording. Additionally,
there are 5 other outdoor sequences containing 17 minutes
of data, including a 4-minute sequence recorded while driving
through the woods, in a very highly textured environment with
repetitive patterns, posing a challenge for visual localization.

IV. SYNCHRONIZATION AND CALIBRATION

A. Camera Synchronization and Temporal Calibration

Two standard FLIR Blackfly S cameras are synchronized
to capture images at the same time by physically connecting
their GPIO pins with a synchronization cable. Similarly, two
DVXplorer event cameras are also synchronized from the
hardware side using a dedicated synchronization cable. Since
they do not capture intensity images, we do not need to
worry about triggering their exposure at the same time, but
their synchronization allows us to keep the timestamps of
the generated events consistent across both sensors, on a
microsecond precision level.

Since the clocks between the standard and event cameras
are not synchronized on the hardware level, we performed
temporal calibration to ensure timestamp consistency across
all visual sensors. To estimate the time delay between sensors,
we used the open-source ROS toolbox called Calirad [19],
which implements a method for multisensor calibration based
on Gaussian processes estimated moving object trajectories,
resulting in reliably estimated temporal parameters. Specifi-
cally, for visual sensor calibration we used a square AprilTag
[20] marker with a side length of 14.35 cm printed on a
planar rigid board. Using the AprilTag detector and intrinsic
camera parameters, which need to be estimated prior to this
procedure, we obtain continuous 3D positions of the target in

Fig. 5: Sample image used for event camera calibration,
obtained by accumulating events based on their polarities
within a predefined interval, and using an exponential decay
kernel to determine each event’s contribution to the image
intensity. The image is an output of the iniVation ROS toolbox.

the coordinate systems of the cameras, which Calirad uses to
estimate the time delay between sensors.

B. Camera Calibration

To perform intrinsic and extrinsic calibration of all four
visual sensors, we use a grid of 6x6 AprilTags as a calibration
target that allows for robust data association. We move the
AprilTag grid in front of the static sensor rig to capture
enough data that is subsequently used as the input for the
Kalibr toolbox [21]. The intensity images from the standard
cameras can be directly used as the input, but DVXplorer
event cameras only capture events, which need to be processed
in a way that would allow for the tool to detect AprilTags.
Therefore, we make use of the intensity image reconstruction
tool available in the iniVation event camera driver. Namely,
the events are accumulated during the time interval set using
the configuration parameters and reported in the form of
intensity frames at the configured frame rate. Instead of naïvely
accumulating events based on their polarity within a certain
interval, the contribution of events to the intensity of the image
is calculated by an exponential decay kernel that accounts for
the events’ timestamps. The resulting images, as seen in Fig. 5,
can be used as an input for Kalibr to perform intrinsic and
extrinsic calibration. Even though frame acquisition between
the standard and event cameras is not synchronized, being
able to choose an arbitrarily high event frame rate enables us
to have all four intensity images acquired at approximately the
same time to allow correct extrinsic calibration.

C. IMU-Camera Calibration

The iniVation ROS event camera driver provides a tool
which takes as input the stream of the IMU data coming
from the camera capture node and estimates the IMU biases.
The camera must be placed on a stable and level surface
with the gravity vector in the same direction as the Y axis
of the camera frame, e.g., a table or floor. After performing
intrinsic camera calibration, we collected images of a static
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AprilTag calibration pattern while moving and rotating the
camera around all the axes to obtain extrinsic and temporal
parameters between the IMU and the event camera.

D. Lidar Extrinsics Calibration

The lidar and camera are calibrated using the open-source
package [22]. The package evaluates calibration parameters us-
ing Perspective-n-Point RANSAC with Levenberg-Marquardt
refinement. In order to perform the calibration, various target-
based sequences with a checkerboard moving and rotating
around all axes were recorded. The extrinsic calibration be-
tween lidar and its integrated IMU was assumed to be equal
to the manufacturer specifications.

E. Motion Capture to Camera Calibration

OptiTrack motion capture system provides 3D position and
orientation of the center of the rigid body defined by the
markers placed on our rig. However, the center of the markers
is not fully aligned to any camera frame, thus requiring
extrinsic calibration to obtain the transformation from the
camera coordinate system to the coordinate system of the
motion capture markers. For this purpose, we use the same
AprilTag as for the camera temporal calibration described in
Section IV-A. The AprilTag detector gives us 3D positions and
orientations of the target in the camera frame camTtag while the
motion capture system provides the position of the rig set in
the motion capture frame mocapTrig. We used these transforms,
simultaneously obtained by moving the rig in front of the
AprilTag, to finally estimate the position of the rig marker
with respect to the camera rigTcam by solving the hand-eye
calibration problem defined in [23] by the following equations:

mocapT
(i)
rig

rigTcam
camT

(i)
tag =mocap T

(0)
rig

rigTcam
camT

(0)
tag (1)

(
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(0)
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)−1
mocapT

(i)
rig

rigTcam =rig Tcam
camT

(0)
tag

(
camT

(i)
tag

)−1

(2)
We used the OpenCV calibrateHandEye function to solve this
problem.

V. CONCLUSION

In this paper we have proposed a dataset aimed for devel-
oping robust stereo visual odometry and SLAM algorithms
using synchronized stereo event and standard cameras of
high resolution and sufficient baselines. We included 6-DoF
sequences collected indoors with a handheld rig, as well as
outdoor driving sequences obtained with a sensor rig mounted
on the car roof. In the former case, a motion capture system
provided ground truth trajectories, whereas in the latter, a
highly accurate GNSS/INS and AHRS that combines the fibre-
optic gyro IMU with a dual antenna RTK GNSS receiver is
deployed.
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Analyzing Data Efficiency and Performance of Machine Learning
Algorithms for Assessing Low Back Pain Physical Rehabilitation

Exercises
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Abstract— Physical rehabilitation focuses on the improve-
ment of body functions, usually after injury or surgery. Patients
undergoing rehabilitation often need to perform exercises at
home without the presence of a physiotherapist. Computer-
aided assessment of physical rehabilitation can improve pa-
tients’ performance and help in completing prescribed reha-
bilitation exercises. In this work, we focus on human motion
analysis in the context of physical rehabilitation for Low Back
Pain (LBP). As 2D and 3D human pose estimation from
RGB images had made impressive improvements, we aim to
compare the assessment of physical rehabilitation exercises
using movement data acquired from RGB videos and human
pose estimation from those. In this work, we provide an analysis
of two types of algorithms on a Low Back Pain rehabilitation
datasets. One is based on a Gaussian Mixture Model (GMM),
with performance metrics based on the log-Likelihood values
from GMM. Furthermore, with the recent development of
Deep Learning and Graph Neural Networks, algorithms based
on Spatio-Temporal Graph Convolutional Networks (STGCN)
are taken as a novel approach. We compared the algorithms
in terms of data efficiency and performance, with evalua-
tion performed on two LBP rehabilitation datasets: KIMORE
and Keraal. Our study confirms that Kinect, OpenPose, and
BlazePose data yield similar evaluation scores, and shows that
STGCN outperforms GMM in most configurations.

I. INTRODUCTION

Physical rehabilitation has a very important role in post-
operative recovery and in the restoration of body functions
[3]. Usually, during the rehabilitation process, patients per-
forming exercises are monitored in a clinical setting by
a medical professional, such as a physiotherapist. During
a rehabilitation exercise session, patients’ behavior reflects
their health status and is an important indicator of the
treatment outcome. However, patients often have a limited
number of supervised sessions, and they need to continue
the rehabilitation process at home without any supervision.
In these cases, a physiotherapist makes a rehabilitation plan
consisting of several recommended exercises. Patients are
typically responsible for performing their exercises regularly
at home and periodically visiting the hospital for progress
assessment. However, a lack of supervision and timely feed-
back from healthcare professionals can reduce patient’s en-
gagement during the rehabilitation process. Lower motivation

*This work was supported by ENSTA Paris
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System Engineering (U2IS), ENSTA Paris, Institut Polytechnique
de Paris, 828 Blvd des Maréchaux, 91120 Palaiseau, France,
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and poor supervision can increase the chances of incorrect
exercise performance, which can slow down the recovery
process and increase the risk of re-injury [22].

Low back pain (LBP) is a major cause of disability
worldwide, with more than 50% of the global population
experiencing LBP at some point in their lives [3]. This
is especially concerning as LBP disproportionately affects
elderly individuals, whose percentage in European societies
is steadily increasing. As a result, medical staff are under
significant strain to manage the growing number of patients
suffering from LBP.

Automatic physical rehabilitation monitoring can signifi-
cantly improve patients’ progress during at-home rehabilita-
tion. The goal of such a system is to recognize the activity
being performed, the intensity with which it is performed,
and its quality, thus helping monitor patients’ progress. In
general, human activity analysis is a very active research
topic today and one of the most important and challenging
areas in AI. It involves analyzing human body movements
based on the motions of different body joints, skeletons, and
muscles [29]. It also has applications in several domains such
as sports sciences, action or gesture recognition [10], [17],
[9], [2], and range-of-motion estimation [1].

Developing an effective system for movement assessment
highly depends on a few factors including motion sensors,
precise movement data and its pre-processing, and evaluation
techniques. In recent years, there were several studies that
employed machine learning methods to classify individual
repetitions into correct or incorrect classes of movements.
Some of the first methods proposed for this task included
distance function-based algorithms such as Dynamic Time
Warping and Mahalanobis distance or probabilistic models
such as hidden Markov models and Gaussian mixture models
[31], [7]. The outputs in these approaches are discrete class
values of 0 or 1 (i.e., incorrect or correct).

Naturally, with recent developments in Neural Networks
and Deep Learning (DL), there is a big interest in their
application for modeling and analysis of human motions.
There are already numerous papers on general Human Ac-
tion Recognition (HAR) systems that utilize various DL
frameworks ranging from Convolutional Networks and Long
Short-Term Memory (LSTM) [15] and encoder-decoder net-
works to even more novel architectures such as Spatio-
Temporal Graphs [34], and Attention models [23].

Furthermore, a large number of datasets related to HAR
fields are freely available for analysis. These datasets are
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extensively used for benchmarking algorithms for action
recognition, gesture recognition, or pose estimation. How-
ever, in the medical domain, collecting large data sets of
rehabilitation exercise data from patients faces multiple chal-
lenges such as impairment, unlabeled data, or privacy and
safety concerns. Consequently, only a few public datasets
for rehabilitation evaluation are currently available, and they
are still quite smaller than more general ones, e.g. the ones
used for benchmarking HAR algorithms.

Our study focuses on evaluating the performance and
data efficiency of two distinct algorithms used to assess
the effectiveness of rehabilitation exercises. Specifically, we
investigate the Gaussian Mixture Model and the Spatio-
Temporal Graph Convolutional Network algorithm. Our eval-
uation is conducted on two datasets that contain rehabilitation
exercises for Low Back Pain patients, namely Kimore [8] and
Keraal dataset.

The rest of the paper is structured as follows. Section II
presents an overview of the different approaches for motion
analysis and physical rehabilitation assessment. Section III
describes the used datasets, while Section IV details the im-
plemented methods for rehabilitation assessment. The results
are summarized in Section V. Finally, the conclusions and
discussions are presented in Section VI.

II. RELATED WORK

This section presents related work in deep learning for
motion analysis in general and in the assessment of physical
rehabilitation exercises.

A. Deep learning for motion analysis

Several deep learning approaches have been applied on
skeleton data, in particular on the task of action recognition.
Motion data can be seen as 3D tensors with one temporal
dimension (the timeframe of the movement), one spatial di-
mension (the skeleton joint), and one feature dimension (the
XYZ Euclidean position). Early deep learning approaches
for motion processing focused on the temporal processing,
using recurrent neural networks [12], or 1D convolutional
neural networks [19]. Other approaches explored the idea
of representing motion as images, in order to exploit the
performances of 2D and 3D convolutional neural network
for image processing [33], [18], [20], [6], [14].

With the recent development of graph neural networks,
there is a new wave of algorithms that are able to prop-
erly take into account the skeleton structure using graph
convolutions [34], [30], [24]. These neural network layers
perform an operation that can be seen as a message passing
between adjacent joints in the skeleton graph, thus properly
exploiting this prior knowledge. More recently, self-attention
mechanisms have been added to allow graph convolutions
to span across non-adjacent joints based on dynamically
computed attention coefficients [28], [27].

B. Assessment of physical rehabilitation exercises

Movement assessment is typically accomplished by com-
paring a patient’s performance of an exercise to the desired

performance as specified by therapists. A sequence of body
movements is provided as input for a machine or deep
learning algorithm, which should assess that exercise with
a quality score. This thus requires a more precise model of
the movement than most gesture classification models.

At first, studies on exercise evaluation employed more
traditional machine learning methods for classification, such
as Adaboost classifier, K-Nearest Neighbors, Bayesian classi-
fier, or ANNs [4]. Others tried using distance function based
models like [16]. However, classifiers only provide correct
or incorrect labels, not providing any additional information
or score, while distance functions solve that problem but are
not able to learn from the rehabilitation data.

Further, some of the research tried using probabilistic
approaches, like Hidden Markov models [7] or Gaussian
Mixture Model [25]. Such models provide an assessment that
is based on the likelihood that the given exercises are being
drawn from a trained model. These models were able to
solve previous problems, and stochastic character of human
movements goes hand in hand with models nature, but they
are not able to extract all the information from the data, such
as joint or spatial connections among body parts.

Liao et al. [21] created a deep neural network model to
generate quality scores of input movements. They proposed
deep learning architecture for hierarchical spatio-temporal
modeling combining GMMs, CNNs, and LSTM to provide
a quality score. However, with recent development of Graph
Neural Networks, it is possible to extract even more infor-
mation from spatio-temporal features of the exercise. In [11]
and [13], Graph Convolutional Networks (GCN) are used
to assess physical rehabilitation, obtaining state-of-the-art
scores on commonly used KIMORE and UI-PRMD datasets.
Last but not least, [36] et al. used an ensemble of two GCN,
one for position and for orientation features of the skeleton
joints.

III. DATASET
This section explains the type of data used and presents

two datasets used for the evaluation of the algorithms.

A. Skeleton data

A Human Pose Skeleton represents the orientation of
a person in a graphical format. Depth cameras, like the
Microsoft Kinect, can provide position and orientation of
skeleton joints. They had become very popular due to their
price and ease of use over optical motion tracking systems,
which place a set of markers on the body. More recently,
a standard vision camera can be used with deep learning
techniques that estimate skeleton joints positions from plain
RGB images. In this work, we will consider the algorithms
OpenPose and BlazePose [37], [32]. Figure 1 displays the
joints of Kinect 1, OpenPose 2 and BlazePose 3 skeletons.

1https://www.sealeftstudios.com/blog/
blog20160708.php

2https://maelfabien.github.io/tutorials/
open-pose/

3https://ai.googleblog.com/2020/08/
on-device-real-time-body-pose-tracking.html
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(a) Kinect v2 - 3D positions and orien-
tations of each joint of Kinect skeleton

(b) OpenPose - 2D positions of each joint of
OpenPose skeleton

(c) BlazePose - 3D positions of each joint of
BlazePose skeleton

Fig. 1: Skeleton format for the three pose estimation algorithms used in the Keraal dataset. For the Kimore dataset, we only
have Kinect data.

B. Keraal dataset

The Keraal dataset is a medical database of clinical
patients carrying out low back-pain rehabilitation exercises.
The data includes recordings from healthy subjects but,
more importantly, of rehabilitation patients, extracted from
a 4 weeks evolution of each patient. The centrally ran-
domized, controlled, single-blind, and bi-centric study was
conducted from October 2017 to May 2019. The reha-
bilitation program includes a group of 31 patients, aged
18 to 70 years, recruited in the double-blind study. 12
patients suffering from low-back pain were included in the
Robot Supervised Rehabilitation Group, and were asked
by a humanoid robot coach to perform each of the three
predefined exercises the best they can from its demonstration.
The details of this clinical trial, including the patient care,
the rehabilitation sessions, the robot coach, the inclusion
and exclusion criteria, the characteristics of the patients,
and the efficiency of the care have been reported in [5].
Details can be read on http://nguyensmai.free.
fr/KeraalDataset.html. A list of three exercises has
been chosen in conjunction with therapists as common
rehabilitation exercises that are also used for low-back pain
treatment.

Videos collected from patients and healthy subjects were
annotated by two physiotherapists. In this study, the labels
are obtained by merging the assessments of two physicians,
and we process the videos to obtain the BlazePose and
OpenPose skeletons. Each exercise was labeled as either
correct or incorrect. The dataset used in this study comprises
Kinect (3D) v2 skeleton data , Blazepose (3D) and OpenPose
(2D) skeletons obtained from videos and annotations.

C. Kimore dataset

The Kimore dataset [8] includes RGB-D videos and score
annotations of five exercises for LBP rehabilitation, selected
by physicians. The exercises are performed by two groups of
participants: a control group (44 participants) and a group of
patients (34 participants). The dataset also contains an assess-
ment of the performed exercises, provided by two physicians.
More details can be found here https://vrai.dii.
univpm.it/content/kimore-dataset.

IV. METHODOLOGY

This section provides the technical overview of two algo-
rithms used in this study.

A. Gaussian Mixture Model

Gaussian mixture models (GMMs) belong to a group
of probabilistic models used to classify data into different
categories based on probability distribution. GMM models
the dataset as a mixture of several Gaussian distributions.
As in [25], we encode the movement point positions as a
Gaussian Mixture Model (GMM): θ = [t, x], where t is the
timestamp and x the joints positions.

p(θ) =

K∑

i=1

ϕiN (µi,Σi) (1)

where the ith vector component is characterized by normal
distributions with weights ϕi, means µi, and covariance
matrices Σi. Each Gaussian of the mixture is thus defined
by:

µi =

[
µt
i

µx
i

]
,Σi =

[
Σt

i Σxt
i

Σxt
i Σx

i

]
(2)

where the indices t and x refer to respectively time and
position.

The parameters ϕi, µi,Σi are learned by Expectation-
Maximisation (EM) from the skeleton data of the movements
captured by the Kinect or estimated with OpenPose or
BlazePose.

B. Graph Convolutional Networks

Graph Neural Networks (GNNs) are a class of deep
learning models that are specifically designed to operate on
graph-structured data [13]. These models leverage the graph
topology to learn meaningful representations of the nodes
and edges of the graph.

Given our focus on skeletons, let us examine how they
can be integrated into graph data. Skeleton-based data can
be obtained from motion-capture devices or pose estimation
algorithms from videos. Usually, the data is a sequence of
frames, each frame will have a set of joint coordinates. Each
joint in the given skeleton can be represented as a node in
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Fig. 2: Architecture of spatio-temporal graph convolutional
networks. The network chains two spatio-temporal convolu-
tional blocks (ST-Conv blocks) and a fully-connected output
layer. Each ST-Conv block contains two temporal gated
convolution layers and one spatial graph convolution layer
in the middle. Image taken from [35].

Fig. 3: Architecture of STGCN for physical rehabilitation
assessment. The network combines STGCNs with LSTM
layers as suggested in [11]. Image taken from [11].

a graph, while connections between the joints represent the
edges in the graph (e.g., right hip to right knee). In this
way, the graph provides information about the hierarchy of
the human skeleton, starting from one joint as a root (e.g.,
mSpine) and expanding further to hands and feet, which
would be the leaves of the graph. Although GNNs have
been extensively used in various domains, they were first
used on static graph data, where graph structure does not
change once data is fitted. In recent years, there has been
an increased interest in systems with temporal dimension,
meaning graph data would change over time. To address this
need, a new family of GNNs has emerged: Spatio-Temporal
GNNs, which take into account both the spatial and temporal
dimensions of the data by learning temporal representations
of the graph structure.

Such architecture was first introduced in [35]. The authors
proposed the architecture of spatio-temporal graph convolu-
tional networks (STGCN). As shown in Figure 6, STGCN
is composed of several spatio-temporal convolutional blocks,
each of which is formed as a “sandwich” structure with two
gated sequential convolution layers and one spatial graph
convolution layer in between.

Further, in [34] this model was applied to skeleton-based
action recognition, while [11] modified that algorithm for the
task of assessing physical rehabilitation exercises. Since it is

a very novel approach obtaining state-of-the-art results, we
decided to their algorithm as the base for our analysis here.
An overview of this model can be seen in Figure 3.

V. RESULTS

We experimented with the STGCN and GMM algorithms
and compared their performances and sample efficiency on
the two physical rehabilitation exercises datasets. The GMM
is trained on correct demonstrations of the exercises, and then
a classification threshold is determined based on validation
data containing both correct and incorrect demonstrations.
In contrast, the STGCN method needs to be trained on both
correct and incorrect demonstrations. Even though validation
data could be used to optimize hyperparameters or to perform
early stopping, we did not use it with this method. To
compare the data efficiency of both algorithms, we thus
need to take into account both the number of training
and validation examples needed for the GMM method and
compare it with the number of training examples needed
for the STGCN based method. We report the scores after
training, which takes a couple of seconds for GMM to train,
while STGCN, for one training of 250 epochs, takes 20 -
70 minutes depending on the setup (which dataset, skeleton
type, and number of training examples). All models have
been trained on CPU Intel Core i9-9900KF.

Figure 4 shows the F1 scores obtained with two methods
on the Keraal dataset, while 5 provides the F1 scores. The
scores are averaged across the 3 exercises of the dataset,
with Kinect, OpenPose, and BlazePose poses. We can notice
a slight but not significant improvement in these scores as the
training set size increases. For both GMM and STGCN, we
note that the scores with Kinect, Openpose and BlazePose are
similar : the use of depth sensors (Kinect v2) does not seem
to improve significantly the performance of the algorithm,
which corroborates the conclusions presented in [26]: for
low-back rehabilitation exercises, previous GMM obtained
through Kinect, OpenPose and BlazePose data revealed com-
parable results. These new results extend the same conclusion
to variations in the sizes of the training and validation sets,
and to another evaluation algorithm : STGCN. This indicates
that independently of the size of the dataset and the machine
learning algorithm, simple RGB cameras have the potential
to be used as the main sensor for collecting movement data.
On Kinect and BlazePose data, the STGCN method seems
to outperform the GMM method, especially when a large
number of training examples are available. These results
advocate in favor of using the STGCN method, even when
few training examples are available.

Results for the Kimore dataset are presented in Figure
6. While GMM can achieve an F1 score of nearly 0.9
with 100 training examples, we can see that more than 200
examples are needed to achieve such classification precision
with STGCN. Even when taking into consideration the
additional validation examples needed for GMM, this model
seems to perform significantly better when a small number
of examples is available. This result contradicts what was
observed for the Keraal dataset, where the STGCN method
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(a) F1 scores with Kinect v2 (b) F1 scores with OpenPose (c) F1 scores with BlazePose
Fig. 4: F1 scores of GCN and GMM on the Keraal dataset, with different training sizes used. The data is averaged across
exercises or groups. For GMM various sizes of validation sizes (for threshold defining) are deployed.

(a) Kinect v2 (b) OpenPose (c) BlazePose
Fig. 5: Accuracy of STGCN and GMM on the Keraal dataset.

Fig. 6: F1 score and accuracy scores of STGCN and GMM
on the Kimore dataset.

outperforms the GMM method even with a few training
examples. Our supposition is that this could be due to the
absence of a strong agreement between the physicians for
Keraal (Cohen’s κ = 0.63 and Krippendorff’s α = 0.62).
In comparison, the Kimore dataset uses a questionnaire
containing 10 questions to assess the quality of the performed
exercises, which could lead to more robust labeling.

VI. CONCLUSIONS

In this work, we have compared two algorithms for
LBP physical rehabilitation assessment on two datasets with
several human pose estimation methods. We can draw several
conclusions from the observed results, that can provide useful
insights in order to further develop the use of automated
physical rehabilitation methods :

• While more experiments could be done in order to con-
firm this result, we observed that using more expensive

depth cameras does not seem to impact the performance
of the assessment method. This study confirms the con-
clusion presented in [26] over a more extensive study
using more sizes of training and validation sets and,
additionally, using a more efficient evaluation algorithm.
Similarly to that evaluation, we see that the use of 3D
inputs (Kinect and BlazePose), compared to 2D inputs
(OpenPose) does not improve the results obtained on
the Keraal dataset.

• More training examples lead to a better assessment. We
recommend collecting data from as many participants
as possible when recording exercises.

• Label quality is essential. We observe significantly
better accuracy on the Kimore dataset, where the la-
bels were obtained by merging the answers to ten
questions given by two physicians, compared to the
Keraal dataset, where only two evaluations are com-
bined. Although this reveals that assessing rehabilitation
movements is a difficult task, we suggest having as
many annotators as possible and monitoring a measure
of their agreement to ensure high label quality.

• Finally, we recommend using the STGCN algorithm
instead of the GMM algorithm in most situations. The
GMM algorithm should still be useful in special cases
when we need a fast (real-time) learning system or when
gathering incorrectly performed exercises is difficult. It
can be trained using only correct demonstrations and
only needs a few incorrect demonstrations to optimize
the threshold value used for classification.
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Enhanced Visual Predictive Control Scheme for Mobile Manipulator

H. Bildstein†, A. Durand-Petiteville‡ and V. Cadenat†

Abstract—This paper proposes a multi-camera visual pre-
dictive control strategy for a mobile manipulator allowing to
position the end-effector camera with respect to a landmark.
Several issues are considered: (i) the visual landmark possible
loss during navigation, (ii) the realization of large displacements
which implies a large prediction horizon and impacts the closed-
loop stability, (iii) the robot’s high redundancy which may lead
to a large search space and potential non-relevant solutions, (iv)
the processing time. To cope with these challenges, the proposed
strategy relies on (i) the use of two complementary cameras,
(ii) the definition of a cost function depending on both the
vision-based task and the manipulability, (iii) the integration of
constraints allowing to prioritize the former against the latter.
The strategy has been simulated and compared using ROS and
Gazebo, showing its efficiency.

I. INTRODUCTION

In this paper, we tackle the problem of controlling a mobile
manipulator using a multi-camera Visual Predictive Control
(VPC) [1] scheme. VPC combines the advantages of Image-
Based Visual Servoing (IBVS) [2], i.e., reactivity and absence
of metric localization, with the ones of Nonlinear Model
Predictive Control (NMPC) [3], i.e., the possibility to take
into account constraints such as joints limits and camera field
of view during the minimization process. For these reasons,
numerous VPC schemes were designed to control robotic
arms [4] [5] [6], quadrotor UAVs [7], mobile robots [8],
or autonomous underwater vehicles [9]. However, concerning
mobile manipulators, NMPC schemes usually express the task
using the end-effector pose [10] or the generalized coordinates
[11] [12] [13]. Cameras are sometimes used to control mobile
manipulators but the task is not defined in the image space [14]
[15]. In such cases, the end-effector pose estimation accuracy
has a significant impact on the control performances [2].

The design of a VPC scheme to control a mobile manipula-
tor brings together the challenges related to mobile robots and
robotic arms. First, the whole system contains many degrees
of freedom, leading to a large search space for the NMPC
optimization problem. We must then rely on an efficient solver
in order to compute an optimal solution in a very short time.
Next, the system is redundant and the end-effector pose can be
obtained with an infinite number of configurations. However,
these configurations are not equally suitable for the task to
perform, and it is necessary to be able to select the most
relevant ones. Then, if the mobile manipulator is equipped with
a single camera to perform both navigation and manipulation
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tasks, it is challenging to keep the landmark in the field of
view while performing an efficient trajectory. Thus, it might be
interesting to consider a second camera to guarantee landmark
visibility. Finally, unlike fixed robotic arms, a camera attached
to a mobile manipulator has to perform a large displacement
to reach the desired pose. This impacts the stability of the
closed-loop system and it might be necessary to use large
prediction horizons. To our knowledge, the works presented
in [16] and [17] are among the few ones tackling some of the
aforementioned challenges. In [16] the nominal VPC scheme
was introduced, while [17] was a first attempt to navigate with
a tucked arm. It relied on a two-step control scheme, which,
despite promising results, suffered from a slow convergence
rate and needed to be carefully set up.

In this paper, we present a VPC scheme taking into account
the aforementioned challenges. First, the robot is equipped
with two cameras, one on the end-effector and one on the
head. Thus, when the end-effector camera cannot perceive
the landmark, the head camera computes the visual features
which are then projected on the end-effector image sphere
to manage the classical perspective projection issue, i.e.,
without projection singularities. Moreover, the positioning task
is defined in the optimization problem using image moments
[18], which facilitates the mapping between the task and the
pose spaces. In addition to the positioning task, we also include
in the optimization problem a measure of manipulability. This
latter must deal with the redundancy of the robotic system
by promoting configurations far from singularities. We then
propose to extend the problem by adding a set of constraints,
such as the classical visibility and joint limits constraints,
similarly to [16]. Finally, we present the positioning constraint
set guaranteeing the end-effector positioning despite the use
of a local server and the presence of the manipulability
measure in the optimization cost function. This method first
includes the prediction-reference equality constraint, which
is a modified version of the terminal constraint [3]. Next,
the velocity constraint on the last predicted step is relaxed
to ensure the problem’s feasibility. Finally, we include a
novel logarithm-based [19] constraint prioritizing the visual
task over the manipulability maximization. Last but not least,
the optimization problem is implemented using a symbolic
representation to reduce the processing time while computing
a solution sufficiently relevant to successfully achieve the task.

The rest of the paper is organized as follows. First, the
different models are introduced before detailing the proposed
VPC strategy and its simulation validation on TIAGo robot.
Finally, the obtained results are thoroughly discussed.
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II. PRELIMINARIES

A. Robotic system description and modeling

The objective is to position a camera mounted on the
end-effector of a mobile manipulator relatively to a specific
landmark. The considered system is the TIAGo robot from
PAL Robotics, which consists of an upper body attached to a
differential mobile base (cf. Fig. 1a). The upper body includes
a 2-degree-of-freedom (DoF) head and a 7-DoF arm, with two
RGB-D cameras fixed on the head and wrist. As a result, the
wrist camera is operated using only 5 DoF (na = 5), while the
head camera only utilizes the yaw joint (nh = 1).

(a) The TIAGo robot (b) The robot model

Fig. 1: The robotic system

First, we introduce four frames denoted as
F0(O0,x0,y0,z0), Fb(0b,xb,yb,zb), Fch(Och ,xch ,ych ,zch),
and Fcee(Ocee ,xcee ,ycee ,zcee), which respectively correspond
to the world, mobile base, head camera, and end-effector
camera frames (cf. Fig. 1b). In the sequel, the generic symbol
c will be used to represent the relations for both cameras, the
subscripts h or ee being indicated only when necessary. The
mobile base pose and its control vector are defined as:

χb =
[
X ,Y,θ

]T
, ub =

[
v,ω
]T (1)

where X , Y and θ are respectively the base coordinates in
F0 and the angle between Fb and F0. v and ω are the linear
and rotational velocities along xb and around zb. The arm
configuration and its control vector are expressed as:

χa =
[
q1,q2,q3,q4,q5

]T
, ua =

[
q̇1, q̇2, q̇3, q̇4, q̇5

]T (2)

where qi is the ith joint angle and q̇i is the ith joint velocity.
The same reasoning holds for the head configuration and its
control vector:

χh = h1, uh = ḣ1 (3)

Thus, the mobile manipulator pose and its control vector are:

χmm =
[
χT

b ,χ
T
a ,χh

]T
, umm =

[
uT

b ,u
T
a ,uh

]T (4)

Now, it remains to express the end effector camera motion.
Denoting by Ja and Jb the jacobian matrices of the arm and the

mobile basis, the end effector camera kinematic screw TC∈RC/R
can be expressed as follows:

TC∈RC/R = J̄b+a ·
[
uT

b uT
a
]T (5)

where J̄b+a = J̄a + J̄b with:

J̄a =
[
06×2 Ja

]
(6)

J̄b =
ceeXb ·




1 0 0 0 0 0 0
04×7

0 1 0 0 0 0 0


 (7)

ceeXb is the action matrix of the homogeneous transformation
matrix ceeHb with:

cee Hb =

( ceeRb
ceetb

0 1

)
, ceeXb =

( ceeRb t̂ cee Rb
0 ceeRb

)
(8)

ceeRb, ceetb and t̂ are respectively the rotation matrix between
both frames, the position vector OceeOb, the skew-symmetric
matrix deduced from ceetb.

B. Spherical projection method and visual features

Now, we focus on the choice of visual features allowing us
to characterize the landmark. As classically done, we extract
N interest points from the image provided by the camera. We
can thus define a first visual feature vector Sip made of the
coordinates (xi,yi) of the N interest points of the landmark1.

Sip =
[
x1,y1, . . .xi,yi, . . .xN ,yN

]T (9)

If 2D points are often used in visual servoing, it has been
shown that they induce a strong DoF coupling, which may be
an issue with complex systems such as a mobile manipulator.
In this context, some works have exhibited an interest in
considering the spherical projection model and using 3D
moments [18]. To consider this approach, it is necessary to
determine the 3D point position (Xi,Yi,Zi) in the camera frame.
As the robot is equipped with RGB-D cameras, Zi is available.
Considering a normalized focal distance, Xi and Yi can be
deduced using the perspective projection model:

[
Xi
Yi

]
=

[
Zi 0
0 Zi

][
xi
yi

]
(10)

The spherical projection consists in the projection of the 3D
points XXX i =

[
Xi,Yi,Zi

]T on the unit sphere centered in Oc:
[
x̃i, ỹi, z̃i

]T
=XXX i/∥XXX i∥ (11)

If O is the observed object and Osp its spherical projection,
3D discrete moments are defined by :

ml, j,k = ∑
Osp

x̃l
i ỹ j

i z̃k
i (12)

From them, we have built the following visual features vector
allowing us to obtain a good DoF decoupling, thus making
easier the tuning of certain parameters of the control law [16]:

S =
[
xg,yg, I1,Nv× zc,zg,αsp

]T (13)

1Generally, it is necessary to consider at least 4 points to control the whole
camera motion.
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where (xg,yg,zg) are the landmark gravity center coordinates,
I1 is a suitable combination of 3D moments, Nv the normal
vector to the target plane and αsp the orientation of the object
projection around zc. More details can be found in [16] and
[18]. Using this projection method and the proposed visual
features allows: (i) avoiding the inherent singularity around
Zc = 0 of the classical perspective projection and (ii) obtaining
a nice decoupling DoF behavior [18], which will ease the
tuning of the control law.

C. The re-projection model: the multi-camera solution

As previously mentioned, our robot is equipped with two
cameras fixed on the end-effector and on the head. The
task consists in positioning the first one with respect to a
landmark. However, using only the visual features provided
by this latter camera may lead to an undesired behavior:
the arm will be stretched towards the landmark during the
navigation, inducing vibrations and perturbations. To avoid
this issue and allow motions with a tucked arm, we propose to
project the visual information of the head camera in the end-
effector camera frame. This re-projection is done using the
homogeneous transformation matrix ceeHch which depends on
χa and χh. Thus, when the end-effector camera cannot perceive
the landmark, the head camera computes the visual features
which are then projected on the end-effector image sphere to
manage the classical perspective projection issue, i.e., without
projection singularities. The control law will then be fed using
the visual features either directly provided by the wrist camera
as mentioned above or recomputed from the data issued by the
head vision system thanks to the re-projection model.

III. THE MULTI-CAMERA VPC STRATEGY

Now, we focus on our VPC strategy. We first state the con-
sidered optimal control problem before detailing the required
different elements and constraints.

A. The VPC control problem

As mentioned before, VPC is the result of coupling NMPC
with IBVS. It thus shares characteristics from these two
particular control techniques. As NMPC, it consists in finding
an optimal control sequence U∗(·) that minimizes a cost
function JNp over a Np steps prediction horizon under a set of
user-defined constraints C(U(·)). The obtained optimal control
sequence is a Nc-dimensional vector where Nc is called the
control horizon. It means that the Nc first predictions of the
Np long prediction horizon are computed using independent
control inputs, while all the remaining ones are obtained using
a unique control input equal to the Nth

c element of U(·). Now,
let us focus on JNp . It is made of two terms. The first one Fvs,
similarly to IBVS, explicitly depends on the visual features
S and is expressed as the weighted quadratic error between
the predicted visual features vector Ŝ and the desired ones
S∗. The weighting is done through a diagonal positive definite
matrix denoted by QS which allows to prioritize specific DoF
against others. This matrix can be easily tuned thanks to the
nice decoupling properties of the considered visual features

vector S. The second term, Fw, is intended to improve the
manipulability of the arm and of the entire mobile manipulator.
It is defined by weighting two dedicated indices w′a and w′b+a
through a gain αw > 0. These indices, which tend to zero when
the robot comes closer to singularities and joint limits, will be
defined in the next section. Finally, the balance between Fw and
Fvs is performed through a dedicated gain denoted by Kw > 0.
This leads to the following optimal control problem:

U∗(·) = min
U(·)

(
JNp(S(k),U(·))

)
(14)

with

JNp(S(k),U(·)) =
k+Np

∑
p=k+1

F(p) (15)

and

F(p) = Fvs(p)+KwFw(p) (16)

Fvs(p) =
[
Ŝ(p)−S∗

]T
QS
[
Ŝ(p)−S∗

]
(17)

Fw = αw/ŵa(p)+(1−αw)/ŵb+a(p) (18)

subject to

Ŝ(k) = S(k) (19a)
χ̂a(k) = χa(k) (19b)

Ŝ(p+1) = f (Ŝ(p),U(p)) (19c)
χ̂a(p+1) = g(χ̂a(p),U(p)) (19d)
C(U∗(·))≤ 0 (19e)

where U∗(·) = [u∗mm(k), . . . ,u
∗
mm(k+Nc− 1)] is the computed

optimal control and k represents instant tk = kTs, Ts being the
prediction sampling period. f , g and C(U∗(·)) respectively de-
note the prediction models and the inequality set of constraints
(see next section). Once the problem is solved, only u∗mm(k) is
applied to the robot, and the process is repeated. The previous
optimization results are used to warm-start the solver.

B. The prediction models

Two prediction models f and g are needed. The first one,
f , is obtained with the global and exact method used in [16].
It consists of first computing the homogeneous transformation
matrix bHc between Fb and Fc thanks to the forward kine-
matic model. Then, the exact integration of the mobile base
kinematic model is used to determine matrix bk Hbk+1 which
connects two successive mobile robot poses. The prediction
model for the points in camera frames is given by [16]:

XXX i(k+1) = ck+1Hbk+1
bk+1Hbk

bk HckXXX i(k) = H(k)XXX i(k) (20)

where the bar indicates homogeneous coordinates. The second
prediction model, g, corresponds to the integration of the
robotic arm kinematic model.
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C. The manipulability indices

1) Manipulator manipulability: To address the aforemen-
tioned issues of singularities and joint limits, a specific metric
called w′a [20] is proposed. This metric combines the envelope
of a joint limits penalty function P with the classical manip-
ulability index wa, as shown by the following equation:

w′a = Pw2
a (21)

where:

P = 1− exp(−k
5

∏
i=0

(qi−qimax)(qimin−qi)

qimax−qimin
) (22a)

wa = det(Jred
a (χa) Jred

a (χa)
T ) (22b)

qimax and qimin define the minimal and maximal joint limits
and k is a positive constant. Jred

a is the jacobian Ja of the arm
reduced to take into account only translation velocities. This
reduction is needed because only 5 joints are controlled. Thus,
w′a tends to 0 when the robot comes closer to singularities or
joint limits. This term has thus to be maximized.

2) Mobile manipulator manipulability: We now define a
metric taking into account the mobile base, which affects
the manipulability of the entire robot. From the previous
reasoning, we propose the following measure:

w′b+a = Pw2
b+a = P det(J̄red

b+a(χa) J̄red
b+a(χa)

T )2 (23)

where P is given by (22a), wb+a being deduced from the
entire system jacobian J̄red

b+a. As w′a, this term tends to 0 when
singularities and joint limits are close.

D. The visibility constraint

In the context of visual servoing, it is crucial to ensure that
the target remains within the camera’s field of view at all times.
In the proposed framework, the visibility constraint is always
set on the head image, allowing the arm to keep full freedom of
movement. To achieve this, the following constraint is applied
to the head image to guarantee that the visual cues do not
exceed the image’s limits:

[
Sch

ip(p)−Su

Sl−Sch
ip(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (24)

where Sl and Su are respectively the lower and upper image
boundaries of the head camera.

E. The joint limits constraints

Next, it is also essential that the arm joints never exceed
their lower and upper boundaries χal and χau defined by the
elements qimax and qimin which leads to the constraints:

[
χa(p)−χau
χal−χa(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (25)

F. The positioning constraint set

The positioning constraint set is necessary for three reasons.
First, it guarantees the closed-loop stability of the NMPC
scheme. Second, it forces the realization of the positioning
task to avoid a compromise with manipulability maximization.
Third, it prevents the robot from being stuck in a local
minimum that might appear when relying on local, and thus
sub-optimal, solvers. In this section, we first present the three
constraints comprised in this set, and we next detail their use.

1) The prediction-reference equality constraint: Inspired by
the terminal constraint method [3], we propose a prediction-
reference equality constraint. It imposes that given predicted
visual features are equal to the reference ones. This is ex-
pressed in the following form:

∥Ŝ(k+ pTC)−S∗∥= 0 (26)

where the pTC is the constrained prediction index.
2) The prediction-prediction decrease constraint: We now

propose a second constraint imposing the transformation be-
tween two predicted poses to decrease. To do so, we first define
HpTC as the transformation matrix between the pose at the
predicted instant k + pTC − 1 and the one at k + pTC. Next,
we rely on the logarithmic map log6 that allows transferring
an element H of the Lie group SE(3) to the corresponding
element ν of its Lie algebra se(3) [19]:

ν = log6(H) (27)

In this work, H = HpTC is used in its homogeneous trans-
formation matrix form and ν in its 6 dimensional motion
vector form. Actually, ν corresponds to the velocity, linear and
rotational, that should be applied during 1 second to obtain
the transformation described by H. Thus, the constraint can
be written as:

∥log6(HpTC)∥< minlog−δmin (28)

where HpTC = H(k + pTC − 1), and minlog represents the
smallest ∥log6(HpTC)∥ value observed up to the current instant.
δmin is introduced to force a minimum decrease, inspired by
[21]. It must be large enough to speed up the convergence but
small enough to let the solver focus on the tasks.

3) The velocity constraints: To provide the necessary large
prediction horizon, the velocity constraints of the last inputs
can be relaxed [8]. This approach leads to the following set
of constraints for the mobile manipulator velocities:
[

umm(p)−uu|t
ul|t −umm(p)

]
≤ 0, ∀p ∈ Jk, k+Nc−Nr−1K

[
umm(p)−uu|r
ul|r−umm(p)

]
≤ 0, ∀p ∈ Jk+Nc−Nr, k+Nc−1K

(29)

Nr is the number of prediction steps with relaxed bound-
aries, ul|t and uu|t are respectively the lower and upper tight
boundaries corresponding to the ’true’ limits of the actuator,
and ul|r and uu|r are respectively the lower and upper relaxed
boundaries.
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4) Using the constraints: At the beginning of the servoing,
pTC is set up to Np. On the one hand, constraint (26) forces
the last predicted features to be equal to the desired ones,
guaranteeing that the task is feasible. It should be noted that
this constraint can be respected thanks to constraint (29). On
the other hand, constraint (28) imposes the transformation
between the last two predicted poses to decrease, prioritizing
the visual task and preventing the robot from being stuck in a
local minimum.

pTC is maintained to its current value until the logarithm
becomes smaller than a threshold δlog, meaning the poses
predicted at instants k+ pTC−1 and k+ pTC are close enough
to be considered equal. At this moment, the current constraint
does not have an impact on the optimization anymore, and
the constraint configuration must be updated by applying
pTC = pTC−1. This process is repeated until pTC = 1 so that
the command applied to the robot actually makes it reach the
desired pose.

IV. RESULTS

This section presents simulation results (cf. video) to eval-
uate the efficiency of the proposed approach. It is divided into
three parts. In the first one, the presented VPC scheme is run
and analyzed. Next, the scheme is tested with two different
decrease constraints: one is based on the command, as in
[17], and the other on the proposed logarithmic constraint to
highlight its relevance. The last part analyses the influence of
the manipulability measure.

All algorithms are implemented using the C++ language
and the optimization problem is solved with the SLSQP
solver from the NLopt package. All gradients are symbolically
computed with the CasADi software [22] offline, and only
evaluated online. Matrices bHc and bk Hbk+1 are obtained with
Pinocchio [23], a rigid body dynamics library. All tests are
performed on an Intel Core i7-10850H and the VPC runs at
a frequency of 5Hz. The solver timeout is set to 0.15s, Np
and Nc are fixed to 10 steps with a sampling time Ts = 0.4s.
The target is a rectangle centered in (3,0,1.08625). The
camera and the mobile base have to travel about 2m to reach
the target. The arm is initially tucked. The bounds on the
mobile base linear and angular velocities are respectively
equal to ±0.1 m/s and ±0.3 rad/s. The minimal and maximal
joint limits are given by: χau = [2.68,1.02,1.50,2.29,2.07],
χal = [0.07,−1.50,−3.46,−0.32,−2.07], χhu = 1.24 and χhl =
−1.24. Matrix QS(p) is the identity matrix, while Nr = 1. Time
units of the plots are the control loop iterations.

A. Proposed scheme results

In this section, the approach is tested with the initial robot
pose (0,0,0). Additional results for other initial configurations
are available in the supplementary video.

1) Visual task realization: Fig. 2b and 2c show that the
visual task is correctly performed. Indeed, the controller
successfully drives the camera to bring the interest points to
their desired values (indicated by the green crosses), which is
realized by vanishing the error between the image moments

(a) Points trajectory - Head
camera

(b) Points trajectory -
End-effector camera

(c) S−S∗ evolution (d) S−S∗ without CasADi

Fig. 2: Task realization results

and their desired values. However, Fig. 2a shows that the
visibility constraint may be sometimes violated, as the visual
features may leave the head camera field of view. This problem
is due to the optimization process which may terminate before
satisfying all constraints because of the incorporated time-out.
To deal with this issue, this constraint has been set up in a
conservative way to avoid the loss of visual features. Finally,
Figure 2d provides the results obtained without the use of
the symbolic gradient computation with CasADi. This figure
shows that an accurate positioning cannot be achieved.

2) Stability: Figure 3a displays the error between the pTC
th

predicted image moments and their desired values, where a
small error implies that the terminal constraint is satisfied.
This figure clearly illustrates that the proposed scheme enables
the satisfaction of the constraint despite the initial irrelevant
arm configuration regarding the visual task and the large
distance between the initial and desired poses. Red vertical
lines represent the shifts realized to accelerate the convergence
and are more detailed in section IV-B. Figure 3b presents
again the obtained results without CasADi, and illustrates the
difficulty to satisfy the terminal constraint when the arm is
tucked. Indeed, it requires many iterations of the solver to
calculate a solution respecting all the constraints, which cannot
be done in a reasonable time (< 200ms) without CasADi.

3) Joints and commands evolution: Finally, Fig. 4 shows
the velocities and joint angles evolution. The values of the
former remain within the given boundaries despite the use of
a relaxed constraint. Concerning the joint angles, they stay
away from their limits thanks to the manipulability measure.

B. Visual task convergence: Logarithmic vs command de-
crease constraint

To ensure the visual task convergence over the manipula-
bility maximization, the positioning constraints set is needed.
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(a) Evolution of last Ŝm− Ŝ∗m with CasADi

(b) Evolution of last Ŝm− Ŝ∗m without CasADi

Fig. 3: Evolution last Ŝm− Ŝ∗m

(a) Velocities evolution (b) Joint values evolution

Fig. 4: Joints and commands evolution

In this section, we compare the logarithm-based method pre-
sented in this paper with the command-based one presented
in [17]. To do so, we focus on the evolution of pTC which
quantifies the convergence rate (see Fig. 5). Indeed, the faster
the value of pTC is equal to zero, the faster the visual
task will be completed. For both methods, the prediction-
reference equality constraint is initially applied to the Nth

p
prediction, which remains unchanged for a long time due to
the input relaxation. Next, the prediction-reference equality
is progressively shifted to the previous prediction until it is
positioned on the first prediction, i.e., pTC = 0. However,
the prediction-prediction decrease constraint being different,
logarithm-based for Fig. 5a and command-based for Fig. 5b,
we observe two different behaviors. In Fig. 5a, the switches
are started earlier than in Fig. 5b, and the servoing is shorter.

This highlights the efficiency of the logarithm-based constraint
over the command-based one.
Remark: As can be seen in Fig. 3a, the prediction-reference
equality constraint value is not exactly equal to zero. The
chosen value to trigger the switch of the prediction-reference
equality constraint has an impact on the shifting process. A
smaller value smooths the transitions but increases the con-
vergence time, while a larger one speeds up the convergence
time but leads to rough changes in the optimization problem
that might lead to the non-respect of the constraints.

(a) With logarithmic decrease constraint

(b) With command decrease constraint

Fig. 5: pTC evolution
Figure 6 can be directly confronted to figure 2c. It shows

that the visual task realization is much slower using the
command decrease function.

Fig. 6: S−S∗ evolution with command decrease constraint

C. Manipulability measure analysis

This last section studies the influence of the manipulability
measure choice. Four cases are considered:
• C1: Without manipulability, i.e. Kw = 0
• C2: With w′a only, i.e. αw = 1
• C3: With w′b+a only, i.e. αw = 0
• C4: With w′a and w′b+a, with αw = 0.2
Figures 7a, 7b and 7c respectively presents the wa, wb+a,

and P evolution obtained for each case. These figures clearly
show that the C2 and C3 cases are indeed the scenarios where
w′a and w′b+a are respectively maximized, as expected. They
also demonstrate that, in the C4 case, the trade-off between
both manipulabilities is reached, again as expected. It can also
be noted that the evolution of w′b+a in C3 and C4 leads to
similar results in terms of maximization. However, Fig. 7c
shows that P drops for the C3 case. It can be shown that this
is due to the joint q4 which is coming close to its limit, thus
inducing convergence issues that can be observed in the video.
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The same behavior for P can be seen for the C1 case except
it occurs lately. These two results highlight the importance of
keeping the term w′a in Fw. Thus choosing Kw = 0 or αw = 0
does not appear to be the most relevant choice. Now, regarding
C2 and C4 cases, it is more difficult to draw a conclusion.
Indeed, performances are similar in the studied simulation
scenario and a more thorough analysis should be conducted.

(a) wa evolution

(b) wb+a evolution

(c) P evolution

Fig. 7: Manipulability measures evolution

V. CONCLUSION

This work proposes a multi-camera VPC strategy to control
a mobile manipulator. It benefits from two complementary
vision systems to perform a task consisting in positioning the
end-effector camera with respect to a given landmark. The
proposed approach allows to deal with several challenges: (i)
the large displacements which imply a large prediction horizon
and question the stability, (ii) the large number of DoFs which
induces a large search space when optimizing, and a high
redundancy leading to possible non-suitable configurations and
undesired behaviors, (iii) the processing time. It relies on a
cost function depending on both the visual features and the
manipulability coupled with several constraints. Among them,
an original positioning constraint set allows prioritizing the
vision-based task against the manipulability while avoiding
local minima and guaranteeing closed-loop stability despite
a large prediction horizon has been introduced. In addition,
to deal with the processing time, we have also implemented
the optimization problem using a symbolic representation.
The strategy has been simulated using ROS and Gazebo and
compared to our previous work, thus demonstrating its interest
and efficiency. In the future, we plan to extend this new
framework to handle the presence of obstacles.
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Motion Planning for Multi-legged Robots using Levenberg-Marquardt
Optimization with Bézier Parametrization

David Valouch Jan Faigl

Abstract— This paper presents a novel formulation of motion
planning for multi-legged walking robots. In the proposed
method, a single-step motion is formulated as a nonlinear
equation problem (NLE): including kinematic, stability, and
collision constraints. For the given start and goal configurations,
the robot’s path is parametrized as Bézier curve in the config-
uration space. The resulting NLE is solved using Levenberg-
Marquardt optimization implemented using a sparse matrix
solver. We propose handling the trigonometric kinematic con-
straints with the polynomial path parametrization. A relaxation
of the constraint is used while guaranteeing a desired tolerance
along the planned path. Although the proposed method does
not explicitly optimize any criterion, it produces high-quality
paths. The method is deployed in transforming a sequence of
discrete configurations produced by a step sequence planner
into a valid path for a multi-legged walking robot in challenging
planning scenarios where a regular locomotion gait cannot be
used because of sparse footholds.

I. INTRODUCTION

Motion planning for multi-legged robots [1], [2] can be
considered challenging because of many controllable degrees
of freedom. In addition to collision constraints, multi-legged
robots are subject to kinematic and stability constraints [3],
[4]. Moreover, the constraints change as the robot takes steps
resulting in a multimodal constrained planning problem [5],
[6]. Although popular approaches to motion planning are
based on a random sampling of the configuration space or
control space [7]–[9], optimization-based approaches have
also been successfully deployed [2], [10], [11] that are
reminiscent of the early motion planning using potential
functions [12].

We focus on motion planning for multi-legged walking
robots, such as the SCARAB II hexapod robot [13], depicted
in Fig. 2a. In particular, we investigate scenarios where a
correct sequence of steps is necessary for traversing chal-
lenging structured terrain with limited footholds as depicted
in Fig. 3. In our previous work [14], [15], we address
finding the sequence of steps to cross a gap with limited
footholds. The sequence of steps is represented by discrete
configurations that subsequently need to be connected with
continuous motions that satisfy the required constraints.
Since single-step motions do not require solving maze-like
obstacle avoidance, we opt for a local optimization technique
as motion planning.

The authors are with the Department of Computer Science, Fac-
ulty of Electrical Engineering, Czech Technical University in Prague,
Czechia.{valoudav, faiglj}@fel.cvut.cz

The presented work has been supported by the Czech Science Foundation
(GAČR) under the research project No. 21-33041J.
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Fig. 1. Visualization of the planned motion of a legged robot.

The former work [14] is based on the Levenberg-
Marquardt method to find valid configurations validating the
feasibility of individual steps. In this work-in-progress report,
we present an extension of the method to determine a valid
path connecting two configurations while satisfying the mo-
tion constraints. Although we focused solely on constraint
satisfaction, the developed motion planner yields relatively
high-quality, smooth paths. Our results support a similar
observation by [8] that a well-formulated simple method can
produce near-optimal solutions without explicitly optimizing
any criterion.

The rest of the paper is organized as follows. The studied
problem is formulated in the following section. The proposed
method is described in Section III. The validation results are
reported in Section IV. The paper is concluded in Section V.

II. PROBLEM STATEMENT

Let C be the configuration space of the multi-legged robot.
Specifically for a robot with only revolute joints, C can be
defined as

C = SE(3)× SO(2)CDOF , (1a)

SE(3) ≡ R6 , SO(2) ≡ R , (1b)

where CDOF is the number of controllable degrees of
freedom. The six-legged walking robot SCARAB II has three
revolute joints on each leg. Hence, with the pose of the base
link, it has 24 degrees of freedom (DOF) in total, and its
configuration is isomorphic with R24.

Now assume we have obtained a sequence of discrete
configurations

q1, q2, . . . , qk ∈ C (2)
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as a result of step-sequence planning, such as [4], [6], [14],
[15]. In our case, the sequence consists of configurations
in which the robot’s leg switches between swinging and
supporting state. Thus, the sequence represents the steps of
the walking robot.

Then, for every pair of two consecutive configurations
qi, qi+1 = qstart, qend, we aim to find a path π connecting
them that can be defined as

π : [0, 1]→ C , (3a)
π(0) = qstart , π(1) = qend . (3b)

The motion is subject to holonomic constraints that can
be expressed as

f(π(t)) = 0 : ∀t ∈ [0, 1] , (4a)
g(π(t)) ≤ 0 : ∀t ∈ [0, 1] , (4b)

g, f : C → R∗ . (4c)

The equality constraint function f represents the kinematic
constraints for the supporting legs that have to stay at the
assigned footholds during the whole motion. The inequality
constraint g enforces stability and collision-freeness. Note
that we do not specifically define the collision-free sub-
set Cfree, as collisions are covered by the inequality con-
straint (4b).

Further, we request the path π to be optimal under some
quality criterion Q : Π → R; here it is expressed using
derivatives of π:

Q(π) =

∞∑

i=1

∫ 1

t=0

wi

∥∥∥π(i)(t)
∥∥∥ dt , (5)

where wi ≥ 0 are arbitrary weights, and π(k) represents the
k-th derivative of π. The rationale behind the criterion is
to minimize the length of the path:

∫ ∥∥π(1)(t)
∥∥ dt, and the

complexity or ‘roughness’ of the path: contributing to the
integral of the higher derivatives.

III. PLANNING METHOD

The proposed motion planning follows the problem for-
mulation (3–5). We present the used parametrization of the
path (3). Then, we formulate the utilized representation of the
constraints (4). Finally, we describe the proposed algorithmic
solution to the problem. Although the method is applied to
a particular SCARAB II robot [13], which determines the
used motion constraints, the method can be adapted to other
planning scenarios with different robots.

A. Bézier Curve Parametrization

The proposed path π representation is based on Bézier
curve [16] already used for robot motion parametriza-
tion [17], [18]. Bézier curve of the degree d is parametrized
by d+ 1 control points P = (p0, p1, p2, . . . .pd). Each point
on the curve is a linear combination of the control points

πd(P, t) =

d∑

i=0

Bd
i (t) pi , (6)

where Bd
i is the i-th Bernstein polynomial of the degree d.

In our case, the control points are vector representations of
the robot’s configurations P = (qstart, q1, . . . , qd−1, qend).

Further, we use the property that for any Bézier curve, an
equivalent Bézier curve of a higher degree can be constructed
as

πd(Pd, t) = πd+1(Pd+1, t) ; ∀t ∈ [0, 1] , (7a)
Pd+1 = (p0, p̃1, . . . , p̃d, pd) , (7b)

p̃i =
i

d+ 1
pi−1 +

(
1− i

d+ 1

)
pi ; ∀i ∈ 1 . . . d . (7c)

Here, it is worth noting that the degree of Bézier curve can
be used to limit the path complexity, an important rationale
behind the proposed planning algorithm.

B. Constraints

The constraints considered for planning the steps of the
SCARAB II walking robot are as follows.

1) The kinematic constraint ensures that the legs in the
support phase remain in their assigned footholds during
the planned step. The constraints function is formulated
using the forward kinematics of the supporting legs
using standard methods [19].

2) Stability constraint ensures the stability of the robot
that we constrain the robot’s center of mass to be above
the support polygon, defined as the convex hull of the
footholds. The constraint is a simple affine inequality
constraint.

3) Collisions are distinguished as self-collisions and col-
lisions with the terrain. For the SCARAB II robot,
the motion ranges of the joints avoid self-collisions.
The collisions with the terrain are modeled using a
signed distance field (SDF) [20]. In particular, using
implementation [21]. A simplified collision model con-
sisting of spherical primitives is used (see Fig. 2b) to
efficiently check robot collisions using the SDF. A
sphere is in a collision if and only if the signed distance
of its center is less than its radius. The collision
constraint is relaxed around the footholds as in [14],
allowing the foot tips to reach the terrain.

(a) The SCARAB II robot (b) Collision model

Fig. 2. The SCARAB II robot used for the evaluation of the proposed
method, and its collision model using sphere primitives.

Note that, in our implementation, the inequality constraint
(4b) is replaced by an equality constraint

g̃(π(t)) = 0 ; ∀t ∈ [0, 1] , (8a)
g̃(q) = min(g(q), 0) . (8b)
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C. Path Constraint

The constraints (4a) and (8a) are used to form a path
constraint

F(π) =

∫ 1

t=0

‖f(π(t))‖2 + ‖g̃(π(t))‖2 dt = 0 . (9)

Computing (9) directly would be computationally intractable.
However, in practice, the constraint functions are “well-
behaved”, with bounded derivatives. Therefore, the integral
is approximated by a Riemann sum with a uniform partition
of the size N :

F(π) ≈
N∑

i=0

‖f(π(ti))‖2 + ‖g̃(π(ti))‖2 , ti =
i

N
. (10)

It is clear that (10) is 0, if and only if ‖f‖ and ‖g̃‖ are both
0 in all sample points, which is exploited in the proposed
planning algorithm.

The function f represents the kinematic constraint and
thus contains trigonometric terms. Therefore, a curve repre-
sented by a polynomial spline, such as Bézier curve, cannot
fully satisfy it. Hence, we allow a tolerance ‖f‖ ≤ ε for
a small ε > 0 to ensure compatibility with Bézier curve
parametrization. It is achieved by introducing slack vectors ξi
such that

f̃(π(ti), ξi) = f(π(ti))− ξi = 0 , (11a)
‖ξi‖ ≤ ε . (11b)

The inequality (11b) is included in g̃ in the same way as the
inequality constraint (4b) is included in (8b).

Now, we can formulate the constraint for the Bézier
parametrized path with the slack ε and sampling N as

F̃ε,N (P, ξ) =




f̃(π(P, t1), ξ1)
...

f̃(π(P, tN ), ξN )
g̃ε(π(P, t1), ξ1)

...
g̃ε(π(P, tN ), ξN )




= 0 . (12)

D. Levenberg-Marquardt Method

Levenberg-Marquardt (LM) method, also called damped
least squares method [22], is a more numerically stable
version of the Newton-Raphson method for finding roots of
nonlinear equations. It is used to solve nonlinear systems of
equations in the form h(θ) = 0 by iteratively improving an
initial guess for θ by a step ∆θ:

∆θ = (Jh(θ)TJh(θ) + λI)−1Jh(θ)Th(θ) , (13)

where Jh is the Jacobian of h and λ > 0 is the damping
parameter. The process is repeated until the solution error
‖h‖ is reduced below numeric precision, ‖h‖ < εnum. Note
that (13) minimizes the criterion

‖Jh(θ)∆θ − h(θ)‖+
√
λ ‖∆θ‖ . (14)

Furthermore, for λ→ 0, the LM method becomes equivalent
to the Newton-Raphson method using the pseudo-inverse of
the Jacobian.

The choice of the damping parameter λ regulates the
convergence speed and numeric stability of the method.
A dynamic damping strategy [23] is used, which updates
λ at each iteration for better performance. The damping
is reduced and increased by multiplying it by constants
λdrop ∈ (0, 1) and λboost > 1, respectively. The LM algorithm
is described in the SolveLM subroutine of Algorithm 1.

E. Planning Algorithm

The proposed step planning is summarized in Algorithm 1.
It finds a path parametrized by the Bézier control points P
satisfying the constraint F̃ε,N for the given ε and N . Note
that the path quality criterion (5) is tackled indirectly as we
aim for a similar effect as in [8], where a “cost-indifferent”
sampling-based path-planning algorithm produced paths of
competitive quality to cost-aware algorithms. The proposed
planning algorithm works as follows.

Algorithm 1: Plan Step

PlanStep(qstart, qend, ε,N, dmax)
1 P ← (qstart, qend)
2 for d← {2, . . . , dmax} do
3 P ← Pd (7) s.t. πd(Pd, t) = πd−1(P, t) ; ∀t ∈ [0, 1]

4 ξ ← 0

5 P, ξ ← SolveLM(F̃ε,N , P, ξ)

6 if
∥∥∥F̃ε,N (P, ξ)

∥∥∥ ≤ εnum then
7 END SUCCESS – return P

8 END FAILURE

SolveLM(F̃ ,P, ξ)
1 λ← λinit
2 P?, ξ? ← P, ξ
3 for i← {1, . . . ,MaxIt} do
4 ∆P,∆ξ ← (JT

F̃JF̃ + λI)−1 JT
F̃ F̃(P, ξ)

5 if
∥∥∥F̃(P? + ∆P , ξ? + ∆ξ)

∥∥∥ <
∥∥∥F̃(P?, ξ?)

∥∥∥
then

6 λ← λλdrop
7 P?, ξ? ← P + ∆P , ξ + ∆ξ
8 else
9 λ← λλboost

10 if
∥∥∥F̃(P?, ξ?)

∥∥∥ < εnum then
11 BREAK for

12 return P?, ξ?

The algorithm starts with a naive linear interpolation P =
(qstart, qend). We increase the degree d of Bézier curve at each
step as in (7). The current P is then used as an initial guess
for the solution to F̃ε,N (P, ξ) = 0 in the LM method. If
the constraint is satisfied, we find a valid path; otherwise,
we continue with the increased d. By iterative increasing
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d, the procedure ensures we minimize the degree of Bézier
parametrization. Bézier curve of the degree d satisfies

π(i) = 0 ; ∀i ≥ d . (15)

Thus, we eliminate unnecessary terms from the path quality
criterion (5).

Also, note that the LM algorithm only accepts steps that
improve the objective. Even if the final iteration does not
fully satisfy the constraint, we obtain a local optimum for the
current d. The LM method minimizes the constraint function
“efficiently,” without unnecessary changes to the parame-
ters. The pseudo-inverse method used in (13) produces the
smallest step minimizing (14), and the term λ ‖∆θ‖, in the
criterion (14), further penalizes the change in the parameters.
Our intuition is that, in the d-th iteration, Algorithm 1 makes
a minimal necessary change mostly to the d-th derivative π(d)

of the path. Therefore, it is indirectly optimizing (5). The
resulting performance of the proposed method is reported in
the following section.

IV. RESULTS

The proposed planning method has been validated on a
testing scenario with sequences of configurations generated
by our step-sequence planner [14]. A sequence is planned
for a challenging scenario, illustrated in Fig. 3, which is
selected for demonstrating the ability of the planner to plan
the individual steps. The robot is requested to cross a wide
gap in the terrain using only a narrow beam and a single
additional support. The modeled constraints are derived for
the SCARAB II robot [13] depicted in Fig. 2a.

Fig. 3. A gap-crossing evaluation scenario, where only a singular pillar
and a narrow beam can be used to cross the wide gap.

The proposed algorithm has been implemented in C++,
compiled with GNU C++ compiler v9.4.0 with -O3 level
optimization. For computing the collision function, an imple-
mentation of the SDF provided with the GridMap library [21]
is used. The Jacobian of the path constraint is constructed
as a sparse matrix in the compressed column format using
the Eigen 3 linear algebra library [24]. The inversion of the
matrix JTJ + λI in (13) is computed using LLT Cholesky
decomposition provided in Intel® MKL Pardiso sparse solver

[25]. The method has been run on a computer with the Intel®

i7-10700 processor running at 4.8 GHz and 64 GB RAM.

TABLE I
PARAMETERS OF THE PLANNING ALGORITHM.

N 100
dmax 10
MaxIt 100
λinit 1
λdrop 0.1
λboost 1.5
ε 1× 10−3 m

The chosen values of the algorithm parameters are summa-
rized in Table I. The selection of the values of the damping
strategy parameters λinit, λdrop, λboost is based on [23]. Values
of the other parameters were chosen based on our practical
experience.

0 50 100 150 200 250 300 350
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(a) Histogram of the overall planning times; runs marked red failed to
find a path satisfying the given tolerances. The green column represents
runs under 10 s shown in detail in Fig. 4b.
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(b) Detailed histogram of the planning times under 10 s

Fig. 4. Histograms of planning times for ε = 10−3.

The results are summarized in Fig. 4 and Table II. In total,
89 steps have been planned. Most results have been obtained
in less than 50 s, with most results in less than 10 s. The
results found under 10 s are plotted in a separate histogram
depicted in Fig. 4b to show the details of their distribution.
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TABLE II
SUMMARY OF RESULTS

Steps planned 89
Steps succeeded 85
Worst constraint violation 1.73× 10−3 m
Average planning time 24.3 s
Median planning time 6.7 s
Average, t <50 s 6.7 s
Average, 1 s< t < 50 s 11.1 s

The concentration of results near 0 s is caused by the steps
that can be solved within the desired tolerance by a simple
linear interpolation of qstart, qend.

The average achieved planning time is 24.3 s; however,
the median planning time is only 6.7 s, which corresponds
to the average time if outliers above 50 s are excluded. Also,
excluding the ultra-short planning times shorter than 1 s, we
obtain an average planning time 11.1 s for most non-trivial
steps. It can be highlighted that the worst constraint violation
across all configurations on a planned path is 1.73× 10−3 m,
including the failed attempts. That is below the real-world
accuracy of the robot’s mechanical precision and the utilized
localization using only the onboard sensors. We, therefore,
believe that with further optimization, and relaxation of the
tolerances, the method is viable for practical deployments.

An example of the generated motion is visualized in Fig. 1.
Note that the path taken by the robot’s leg is not produced by
any motion primitive. It results from the numeric solver sat-
isfying the collision constraint with a 2 cm collision margin
locally relaxed around the footholds [14]. The motion results
from satisfying the constraints by iteratively increasing the
degree of the polynomial representation and alternating with
a run of the LM solver.

V. CONCLUSION

We present our work-in-progress on optimization-based
motion planning that targets single-step motions for multi-
legged walking robots. The planner produces paths fitted to
the submanifold defined by the kinematic constraint of the
supporting legs up to a defined tolerance while satisfying
stability and collision-freeness criteria. The method has been
validated in a challenging planning scenario to connect a
sequence of discrete preplanned configurations. Even with a
relatively tight tolerance of 1 mm, the method successfully
finished in 85 out of 89 cases. The worst constraint violation
in the remaining four cases remained under 2 mm. Besides,
the motions are planned with the median planning time of
6.7 s. The method produces smooth natural looking motions
without using any motion primitives. Thus, based on the
reported results, the proposed optimization-based planning
is a viable approach to motion planning for multi-legged
walking robots.
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Social APF-RL: Safe Mapless Navigation in Unknown &
Human-Populated Environments

S. Batuhan Vatan 1,2, Kemal Bektaş3 and H. Işıl Bozma1

Abstract— Safe mapless navigation of mobile robots in un-
known and human-populated areas is integral for increasing
their usage in our daily lives. In this paper, we consider
how such a behavior can be exhibited by a mobile robot
and introduce Social APF-RL (Artificial Potential Functions
with Reinforcement Learning). Social APF-RL extends our
previously presented approach APF-RL in which the strengths
of artificial potential functions (APF) with deep reinforcement
learning are combined so that the robot learns how to adjust
the input parameters of the APF controller. With Social APF-
RL, the model is extended to accommodate the presence of
humans and to respect their comfort zones while navigating.
Our experimental results including both simulation and real-
life scenarios demonstrate that differing from the classical
navigation methods or social navigation methods, the robot can
navigate successfully on its own even in complex scenarios with
moving entities while maintaining social distance to humans
encountered. Hence, it has better applicability in real-life
scenarios. For future work, we plan to use the proposed
approach in human following while adhering to social distance
norms.

I. INTRODUCTION

This paper is focused on social navigation. In social
navigation, the goal is to make robots navigate like a human
and not to intrude the personal or intimate space of people
around unless direct interaction with them is intended [1],
[2]. Thus, they navigate while taking human presence into
account. Having such an ability has become important as
mobile robots are increasingly being used in different sectors
such as service or health in which they are required to operate
in human-populated environments such as homes, cafeterias
or hospitals and to share common workspaces with humans.
While dynamic environments are already challenging for mo-
bile robots, human presence further exacerbates the difficulty.
In this case, merely finding one’s way to the goal while
avoiding collisions does not suffice. Rather, the presence
of humans requires novel approaches that also consider the
constraints of human comfort and social rules in addition to
the environment structure [3].

In this paper, we propose Social APF-RL to address this
problem. The robot is assumed to be endowed with a 2-D
laser sensor and relies only on the sensed data. We consider
a robot that can detect the humans in its surroundings and
track them spatially. It is given a goal location and is
assumed to know its relative pose to the target as given

1Intelligent Systems Laboratory, Electrical & Electronics Engineering,
Boğaziçi University, Istanbul, Turkey.

2Systems and Control Engineering, Boğaziçi University
sbvatan@hotmail.com

3 Formerly affiliated with Systems and Control Engineering, Boğaziçi
University

by a third-party localization module. Our proposed method
builds upon the APF-RL (Artificial Potential Functions with
Reinforcement Learning) method originally developed in [4]
that combines the strengths of artificial potential functions
(APF) with deep reinforcement learning (DRL) for safe and
mapless navigation in unknown environments. Its motivation
is that in contrast to previous work in which the parameters
are typically manually tuned, in APF-RL, they are defined
to be functions that are learned through experience. Social
APF-RL extends this approach so that the robot additionally
respects the comfort zones of the humans while navigating.
This is achieved by introducing four major changes to
APF-RL - namely internal representation of humans, DRL
network input, learned parameters and reward function. We
exploit the modeling of all obstacles as ellipses and use this
representation to encode the social constraints regarding the
humans detected. Our key insight is to modify the ellipse
model of any human detected based on his/her detected
velocity and feed this knowledge to the network. For deep
reinforcement learning, we use soft actor-critic algorithm [5]
since it is known both to be stable and to have a state-of-art
performance in a range of continuous control benchmarks.
Our experimental results demonstrate that Social APF-RL
can be directly transferred from simulation to on-robot tasks
in unknown real-world environments without any fine-tuning
or data collection in the real world. While in deployment,
the robot can then automatically determine the inputs to its
APF controller depending on its sensory observations. To
summarize, our key contributions are:
• A social navigation method that combines artificial poten-
tial functions and deep reinforcement learning to robustly
maneuver the robot in unknown, possibly cluttered and
human populated environments while maintaining distance
to humans detected,
• Through simulations and experiments on a mobile robot,
we demonstrate that our approach has high success rates in
reaching the goal locations while respecting human distance
in dynamic environments. A comparative study with related
work shows the proposed approach to have higher success
rates in complex static and dynamic environments.

The outline of this paper is as follows: Firstly, related
literature is summarized in Section II. Following, the pro-
posed Social Apf-RL method will be detailed in Section IV.
The experimental study including both simulation and real
robot results are discussed in Section V. Finally, Section VI
concludes the paper by summarizing the paper along with a
discussion of future work.

979-8-3503-0704-7/23/$31.00 ©2023 IEEE
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II. RELATED LITERATURE

Robots that work in human-populated areas and interact
with people need to have socially compliant navigation.
Proxemics define zones for interpersonal distances for human
comfort [6]. These zones are classified depending on their
proximity to the human: Intimate: (0 - 45 cm); personal: (45
- 120 cm), social: (1.2 - 3.6 m) and public: 3.6 - 7.6 m. While
intimate or personal zones generally imply close interactions
with the robot, typical robotic navigation is associated social
or public zones [3].

Many works in this area mostly rely on Social Force
Model [7]. In the social force model, the movement of
a pedestrian is defined through the sum of attractive and
repulsive forces. Attractive forces are based on the pedes-
trian’s target position and speed, while repulsive forces are
applied by obstacles and other humans around. This approach
has been extended as to better represent person–person,
object–person and robot–person interactions [8], [9]. As they
are prone to get stuck in local minima, behavioral guarantees
hold only simpler environmental settings (i.e. convex world).

Alternatively, deep learning-based approaches have been
developed. These work differ with respect to the learning
method and the inputs their method use. For learning, they
commonly use either reinforcement learning (RL) or inverse
reinforcement learning (IRL). The difference between RL
and IRL methods lies on the design of the reward function.
While the former uses a hand-crafted reward function, the
latter is designed using expert demonstrations. A method
that combines long short term memory (LSTM) with deep
RL is proposed in [10]. An attention mechanism is used
to increase performance of a deep RL approach [11]. The
problem is divided into ego safety and social safety and is
solved through using an end-to-end deep RL method [12].
A hybrid method that addresses both robot freezing and
socially compliant navigation based on RL is presented in
[13]. IRL with different feature sets has been used to achieve
socially compliant navigation [14]. Bayesian IRL is used to
learn socially normative robot navigation behaviors [15]. A
multi-agent collision avoidance algorithm that exhibits so-
cially compliant behaviors is proposed in [16]. An imitation
learning-based method uses a pedestrian trajectory data set
to obtain human-like movement [17].

Related works also differ regarding their inputs. Some
methods require human position and velocities as input
while others only require laser data. The former methods
take advantage of the recent progress in human detection
[16], [10], [11]. Some utilize classical image descriptors like
histogram of gradients (HOG) while more recent work uses
deep learning methods such as YOLO (You Only Look Once)
[18]. YOLO and most of the other methods output only
bounding boxes in image space, but there are also methods
that directly output spatial masks directly [19], [13], [17],
[12].

A third approach is based on combining classical nav-
igation with deep learning in order to obtain the best of
both worlds. In this aspect, our previously presented APF-RL

method combines the strengths of artificial potential func-
tions (APF) with deep reinforcement learning. However, the
resulting navigation behavior is not socially-compliant since
there is no special treatment of humans and the resulting
behavior doesn’t take human comfort and social rules into
account.

III. APF-RL

Consider a differential drive robot with radius ρ, position
function c : R → C and heading function α : R → S1

where C ⊂ R2 defines the free workspace, c =
[
c1 c2

]T
denotes the planar coordinates and S1 = [0, 2π]. Let c(0) ∈
C be its initial location and g∗ ∈ C be the goal. The robot is
endowed with a 2-D laser rangefinder and RGB-D camera
and senses its surroundings continuously using the incoming
data. Its dynamics are defined as:

[
ċ α̇

]T
= J(c)u. Here,

J(c) is the velocity Jacobian matrix and u : R → R2 is
the velocity control input consisting of linear velocity u1
and angular velocity u2. The velocity control u is obtained
from the negative gradient of an artificial potential function
φ : C×R→ [0, 1]. Its formulation is based upon prior work
[20]:φ(c) ≜ σd ◦σ ◦ φ̂(c) where φ̂ is a time-varying function
consisting of three terms:

φ̂(c) ≜ γk(c)

β(c)
(1)

and σ : [0,∞) → [0, 1], σ(x) = x
1+x , and σd : [0, 1] →

[0, 1], σd(x) = x
1
k are used to make φ̂ admissible. The

numerator term encodes the distance to current goal g ∈ C
as measured by γ(c) and weighted by k−parameter. The
goal distance function γ : C → R≥0 is defined as: γ(c) =
(c − g)T (c − g). The denominator term β(c) ≥ 0 encodes
the time-varying set O(t) of obstacles and is defined so
that as the robot approaches an obstacle o ∈ O(t), the
potential φ̂ approaches to infinity - namely β(c) → 0. The
obstacles depend on the environment. In mapless or dynamic
environments, as it is not possible to know them a priori,
they are detected based on the incoming sensory data. Each
detected obstacle (static or dynamic) is represented by an
ellipse. Navigation continues until the robot reaches its goal
( |c − g| < τp) or control input is zero (u = 0). The τp
parameter is the proximity threshold. Thus, the construction
of APF φ is associated with two parameters: k−parameter
and current goal g. The k−parameter designates the weight
of the goal distance γ(c) with respect to the obstacle function
β(c). Thus, it determines the balance between goal attraction
and obstacle avoidance. We also consider intermediate goal
locations g ∈ W that lead to the ultimate goal position.

Deep reinforcement learning is used to learn k-parameter
function k(t) and the goal function g(t). For this, we use soft
actor-critic algorithm (SAC). SAC is a maximum entropy
reinforcement learning framework in which two networks
are trained as policy learning and value function evaluation is
done separately by actor and critic networks respectively. The
former decides which action to take while the latter tells the
actor how good the action was and how it should adjust. Its
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advantages include are: sample efficiency [21], [22], [23]; ro-
bust performance in many continuous control tasks [24] and
lower computational requirements [25]. In this framework,
the learning process is associated with a partially-observable
Markov decision process (POMDP) (S,Ω,A,P, r) where S
is the state space that defines the world including the robot
and Ω denotes the observation space with each observation
ω ∈ Ω consisting of current and previous range data q(t)
and q(t − δt) and the respective goal positions - namely
ω(t) = (q(t), q(t− δt), g(t), g(t− δt)) where δt is the time-
step of processing. The radius of the robot ρ is subtracted
from the laser data, so the trained model can be transferred
to other robots. Each action a ∈ A in the action space
A ⊂ R3 is defined by the 3-tuple a =

[
k gT

]
: i) k ∈ K

defines the k-parameter and K ⊂ R>0 defines range for
the k-parameter function; and ii) g ∈ W corresponds to an
intermediate goal location in the region W ⊂ C that denotes
the admissible region of intermediate goals as defined by
τx × 2τy region. It is set to be in front of the robot to
encourage the learning agent to move forward. P is the state
transition model or dynamics of the system and it is encoded
in the physics simulator or implicit in the real world.

During training, the reward is the only feedback given to
the learning robot. Let r : A × Ω → [Rmin, Rmax] denote
the reward function with the parameters Rmin, Rmax corre-
sponding to the minimum and maximum reward respectively.
It is defined based on the proximity of the robot to the
goal location as well as the obstacles sensed based on the
observation ω(t):

r (a(t);ω(t)) = rg (a(t), ω(t)) + ro (a(t), ω(t)) (2)

The first term rg considers the goal:

rg (a(t), ω(t)) =

{
Rg1 if δ(t) < τp
Rg2δ̇(t) otherwise

(3)

A big reward is given when the robot approaches within
τp-neighborhood of goal and small incremental rewards are
given with each time step for getting closer to the goal as
measured by ˙δ(t) where δ(t) = |c(t)− g(t)|. Incremental
rewards are positive when the robot gets closer to the goal
and negative if it moves away. Thus, the robot is encouraged
to move toward the goal locations. In practice, we set Rg1 =
10 and Rg2 = 2. The second term ro penalizes the robot for
collisions and getting close to obstacles:

ro (a(t), ω(t)) =

{
Ro1 ∃o ∈ O(t) s.t. 0 < β(c, o) < τo
Ro2 if β(c) = 0

Closeness to each obstacle o ∈ O(t) is measured by the
function β(c, o) ≥ 0. A safety zone τo is defined around each
obstacle. Regions around the obstacles are deemed risky as
localization errors or a wrong move may result in collisions.
The collision penalty is large since safe navigation is critical.
Thus, the robot is encouraged to follow a safe path. In
practice, we set Ro1 = −0.1 and Ro2 = −10.

(a) vTh ea = 1.0 µh = 0.4 (b) vTh eb = 0.8; µh = 0.4

Fig. 1: Human ellipse model depending on his/her velocity
vh.

IV. SOCIALLY COMPLIANT ROBOT NAVIGATION

In the Social APF-RL method, four major changes are
introduced to APF-RL. First, the obstacle representations of
humans are modified as to encode movement direction. Re-
call that each obstacle is represented by an ellipse. However,
humans might be uncomfortable if a robot gets very close to
them - differing from non-living obstacles. We propose an
approach in which the ellipse representations of the humans
are expanded depending on their motion. Each ellipse is
defined by its major ea and minor axes eb with corresponding
width a and height b as seen in Fig. 1. Then, the amount of
enlargement is defined by the expansion of the ellipse along
the major and minor axis directions.

a = ao + δa b = bo + δb

where ao and bo refer to the width and length along the
respective axes ea and eb corresponding to the initial ellipse
representation of the human. Suppose the human is detected
at position h and is moving with planar velocity vh -
as obtained from the Kalman filter estimation of human
movement. The expansion is done as to minimize the pos-
sibility of the robot intercepting with the pedestrian’s path.
Hence, rather than a symmetric increase in size, correspond-
ing ellipse representations are enlarged in the direction of
their movements. To make enlargement possible without
increasing the size in the back side, the center is moved
in the enlargement direction by half of the enlargement. The
amount of expansion is defined by the product of human
ellipse expansion parameter µh and the speed of the human
along this direction:

δa = ξaµhv
T
h ea δb = ξbµhv

T
h eb

where

ξa =

{
1 if vTh ea > vTh eb
0.5 otherwise ξb =

{
1 if vTh ea < vTh eb
0.5 otherwise

Two different cases are shown in Fig. 1. In each figure, the
arrows represent the velocity vector.

Secondly, the input to the DRL network is changed as
to incorporate this information. In addition to the inputs
including range data q(t), q(t − δt) and the respective goal
positions, the binary human labeling of the data qh(t) is
newly input. Thus, the observation is as follows ω(t) =
(q(t), q(t − δt), g(t), g(t − δt), qh(t)) where δt is the time-
step of processing. The motivation for using human labels is
to make agent take extra precautions for humans.
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Thirdly, learning (k-parameter function and the waypoint
function g) is expanded to include the µh parameter function.
Each action a ∈ A ⊂ R4 is now defined by the 4-tuple a =[
k gT µh

]
. Here µh ∈ H corresponds human ellipse

enlargement parameter where H ⊂ R defines its range. SAC
is again used as the deep learning method. In this case,
networks have three hidden layers and each of them has 512
neurons. Hidden layer weights of the learned APF-RL model
are used as initial values of this new model to jump-start the
training. Actor learning is achieved via maximizing expected
reward while also maximizing entropy. The selection of
reward function has significant effect on the performance of
the agent since the reward is the only feedback given to it. Let
r′ : A×Ω→ [Rmin, Rmax] denote the reward function with
the parameters Rmin, Rmax corresponding to the minimum
and maximum reward respectively. It is defined based on the
proximity of the robot to the goal location as well as the
obstacles sensed based on the observation ω(t). For each
detected human position hi ∈ R2, a penalty rhi (a(t), ω(t))
for intruding the personal zone of the humans is added in
order to obtain a socially compliant navigation:

r′ (a(t);ω(t)) = r (a(t), ω(t)) + rh (a(t), ω(t))

with r (a(t), ω(t)) defined as in Section III. The definition
of rh is as follows:

rh (a(t), ω(t)) =

Nh∑

i=1

rhi (a(t), ω(t)) where

rhi (a(t), ω(t)) =

{
Rh(Dh − |c(t)− hi(t)|) if |c(t)− hi(t)| < Dh

0 else

Here, Dh denotes human distance threshold for social
penalty and the penalty increases proportionally as the robot
gets closer to the pedestrian. Rh is the multiplier of the
social penalty and it determines its importance against other
rewards. In practice, Rh = 0.6 and Dh = 1.4 (sum of per-
sonal zone distance and robot radius). Training environment
for the social training is shown in Fig. 2a. First two rooms
have only static obstacles because the agent needs to learn
to reach the target and obstacle avoidance first. Then, the
pedestrians are added with increasing numbers to each room.
The training starts at the first room and continues with the
next one when it is learned. When all rooms are learned, a
new room for training is selected at every 10 episodes and
selection is done inversely proportional the respective success
rate of the rooms. Training is continued until convergence
of the average reward r̄′(t) is obtained. It is computed using
last NT = 300 episodes. The evolution of r̄′(t) is shown in
Fig. 2b. Its convergence occurs around 3500 episodes.

V. EXPERIMENTAL RESULTS

Social APF-RL is tested both in simulation and with
a physical robot endowed with a RGB-D camera. Human
detection is done using YOLO [26]. In order to alleviate the
effect of noisy depth measurements, Kalman filtering is used
in 3D position estimation. This also enables the estimation
of human’s velocity. Performance metrics are: success rate

(a) Training scenarios. Increasing static
complexity (top to bottom) and increasing
dynamic complexity (left to right)

(b) Learning curve.

Fig. 2: Social APF-RL training

Fig. 3: Simulation test scenarios. Increasing static complexity
(top to bottom) and increasing dynamic complexity (left to
right)

(safe arrival at the goal), travel distance to the goal and mean
distance to humans. Path lengths are computed considering
only successful runs and are meaningful only with high
success rates. A comparative study is also conducted. The
classical social navigation method social force model [7] is
selected as a baseline. Also, classical APF [20] and APF-
RL [4] are used as the other baselines. Note that the SFM
parameters regarding relative weights of obstacles and human
avoidance need to be initially manually tuned.

A. Simulation Results

Nine test scenarios are designed as shown in Fig. 3.
In each row, the static complexity of the room increases
as the number of obstacles increases and the arrangement
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TABLE I: Comparative simulation results

Methods
Success

Rate (%)
Travel

Dist (m)
Human
Dist (m)

Success
Rate (%)

Travel
Dist (m)

Human
Dist (m)

Success
Rate (%)

Travel
Dist (m)

Human
Dist (m)

S1D1 S2D1 S3D1
APF 90 11.3 4.7 75 13.8 4.5 65 14.9 4.1
APF-RL 100 10.1 4.5 100 12.2 4.3 95 13.5 3.8
SFM 90 11.8 5.3 70 13.1 5.0 60 14.0 4.7
Social
APF-RL 100 11.1 5.2 100 12.9 4.9 95 13.9 4.5

S1D2 S2D2 S3D2
APF 85 12.9 4.2 70 15.2 3.9 60 15.3 3.7
APF-RL 90 10.6 4.0 85 12.4 3.6 80 13.9 3.3
SFM 85 12.3 4.7 65 13.9 4.5 50 14.5 4.1
Social
APF-RL 100 11.9 4.7 90 13.4 4.3 85 14.9 3.9

S1D3 S2D3 S3D3
APF 75 13.7 3.1 60 13.7 3.1 50 15.7 3.0
APF-RL 80 11.4 2.9 75 11.4 2.9 60 14.5 2.8
SFM 75 13.0 3.9 60 13.0 3.9 40 14.9 3.7
Social
APF-RL 90 12.5 3.6 80 12.5 3.6 70 15.6 3.2

of obstacles is more complex. In each column, dynamic
complexity which is represented by the number of moving
people increases. In the third row, humans walk in groups so
it is additionally harder to avoid them. These are completely
new in comparison to those of learning and totally unseen
by the agent. All methods are tested in these rooms with
the same initial and target locations. The evaluation is done
based on these 20 location pairs. The rooms are categorized
based on the static (‘S’) complexity levels and dynamic
(‘D’) complexity levels. As the level increases, so does
the complexity. Average performance results are given in
Table I. It can be seen that the proposed method has
the best success rate in all scenarios. Its travel distance
is usually higher than APF-RL which can be related to
moving away from people around. The mean human distance
of Social APF-RL is higher than both APF and APF-RL,
and it is comparable to SFM. However, SFM has a much
lower success rate, especially in complex environments. It
is observed that SFM struggles at avoiding humans and
obstacles at the same time.

B. Real Robot Results

Real robot experiments are conducted with a mobile robot
SempRob that has been developed within our lab. Human
detection and tracking are done based on the visual data
obtained from a ZED2 camera. First, tests are done in Gazebo
in the small house world [27] with non-convex obstacles
present. A human moves along a pre-defined path with
0.7m/s linear speed as seen in Fig. 4a. SempRob is made
to navigate between random initial and goal positions with
maximum 0.8 m/sec linear speed and π

4 rad/s angular speed.
A run is successful iff the robot is able to reach τp = 0.5
m of the goal. In the comparative statistical results from
20 simulations as given in Table II, all methods except
SFM are observed to have similar success rates. However,
Social APF-RL has the best performance with the lowest
path length while maintaining the largest distance to human.

Following, the proposed algorithm is tested on SempRob
in a real setting. The humans follow different paths like
crossing the robot’s path and approaching from the opposite
direction as seen in Fig. 4b. A sample path resulting from
social APF-RL is shown in Fig. 4c. Here, the green curve
represents the human’s path while the yellow one represents
that of robot. The robot successfully avoids obstacles and the
human and reaches the goal location. Statistical comparative
results are given in Table III. Four different scenarios varying
in the number of obstacles, their relative positioning and
number of humans (one or two) are considered and each
scenario is repeated 15 times. Here, the ratio of travel
distance wrt Euclidean distance btw the initial and goal
positions is computed. Here, SFM again exhibits the worst
performance. It fails to avoid obstacles when there is a human
nearby and the robot either gets stuck or collides with the
obstacles. Classical APF is observed to have lower success
rate and human distance. This is attributed to head-to-head
navigation trajectories in which the robot tends to falter. It
is observed that Social APF-RL has the best performance in
terms of success rate while also maintaining social distance
to humans. Its path length performance is also on par with
the best result by the APF-RL method.

TABLE II: Small House Simulation Results

Method Success
Rate (%)

Travel
Dist. (m)

Human
Dist. (m)

APF 85 8.2166 5.5
APF-RL 85 9.1828 5.3
SFM 50 8.0643 5.1
Social APF-RL 80 8.0551 5.7

VI. CONCLUSION

This paper presents Social APF-RL for robot navigation in
human-populated environments. Our method extends APF-
RL that combines artificial potential functions and deep
reinforcement learning in order to obtain safe and efficient
navigation. However, differing from it, Social APF-RL aims
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(a) Small house world test scene. (b) Real robot experiment scene. (c) Human path (green) vs robot path (yellow).

Fig. 4: Real robot experiment: The robot successfully reaches its goal while also avoiding obstacles and respecting the
comfort zone of the pedestrian.

TABLE III: Comparative real robot results

Method Success
Rate (%)

Travel
Dist. (%)

Human
Dist. (m)

APF 50 149.91 2.3491
APF-RL 93 145.03 2.5614
SFM 77 133.52 2.6080
Social APF-RL 97 125.59 2.7714

to stay away from the personal zones of humans around as
much as possible. This is achieved through introducing four
major changes - including obstacle representation of humans
while taking their velocities into account, associating depth
input to DRL network with ‘human’-‘no human’ labels,
learned parameters and reward function. As static or dynamic
complexity of robot’s current place increases, Social APF-RL
performs considerably better than all previous methods with
regard to reliable navigation to the goal while maintaining
distance to encountered humans along the way. Future work
will focus on social navigation in large-scale environments.
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A new flex-sensor-based umbilical-length management system for
underwater robots

Ornella Tortorici, Cédric Anthierens and Vincent Hugel

Abstract— This work focuses on the automatic control of
the length of a tether that links an underwater vehicle to the
surface, with the objective to prevent the tether from becoming
taut or getting entangled due to too much length being deployed.
The solution proposed here consists of equipping the tether
with a balanced buoy-ballast system that gives the cable a V-
shape in the vicinity of the vehicle. This system offers a passive
compliance by smoothing the movements of the tether and
damping external disturbances. The tether length is adjusted
by an active feeder on the surface, whose control relies on the
reading of a flex sensor embedded in the V-shape portion of
the cable. The experiments conducted on a real ROV in a pool
allowed validating this mechatronic compliant-actuated system,
which can adapt to the movements of the underwater vehicle
while it executes longitudinal and curved trajectories.

I. INTRODUCTION

Underwater exploration is a promising and sensitive field
which takes advantages of the manoeuvrability and reliability
of remotely operated vehicles (ROV) [1], [2]. Missions
like hulls or pontoons inspection for maintenance tasks do
typically require such devices. Those systems are linked
to a control station by a tether that can transmit data and
supply power if required [3], [4]. However, this link may
apply undesired forces on the ROV [5], [6] that imply a
limitation of the ROV mobility, an increase of its power
consumption and disturbances on its trajectory [7]–[10]. All
these constraints are even more important for the small and
less powerful ROV which are widely used in shallow waters.
Furthermore, a passive slack tether increases the risk of
entanglement, drag on the seabed thus early wear [11]–[13].
In order to take advantage of the cables linked to underwater
robots, a variable cable length is required.

One of the main challenges in underwater robotics is
to provide more autonomy to the robots, whereas the ca-
ble length is mostly managed manually. There exist three
main solutions in the literature to manage tethers: tether
customization/instrumentation, use of a surface winch, or use
of an underwater tether management system (TMS) whose
function can be carried out by a second robot.

Tethers are often customized by buoys and ballasts to
change their buoyancy, shape or behaviour [6], [14], [15].
Those systems are passive and their positive impact on
the cable management is limited if they are not associated
with an active control. Less commonly, cables are instru-
mented with external or internal sensors to measure their
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Fig. 1. Buoy-ballast compliant system mounted on neutrally buoyant cable.

behaviour and shape. The measurement is done either on
several specific nodes along the cable by inertial or tension
sensors [6], [16], or continuously all along the cable through
embedded fiber optic solutions [17]–[19]. The first solution
generates irregular shape, whereas the second one can be
very expensive. Surface winches are used to deliver /retrieve
cable, and their control is often manual or simply based on
cable tension [20], [21]. They are commonly placed on the
surface vessel, but they can also be embedded on the ROV
itself [14]. Tether management systems (TMS) are widely
used for deep water systems [1], [22]–[24]. They behave as
an intermediate system between the surface and the ROV that
manages the portion of the cable connected to the ROV. A
second ROV can also play the role of a TMS [2]. However,
this solution adds a potential risk of collision between the
robots.

This paper presents the design of an automatic cable
management system to limit the undesired effects of the
tether on the navigation of the ROV. The contributions of this
work include the design of a mechatronic compliant-actuated
system for a tether that is linked to an underwater robot, the
associated length control management to maintain a semi-
stretched shape of the tether, and experimental validations
with the whole system connected to a compact underwater
vehicle.

The paper is organized as follows. Section II details
the proposed solution, including the mechatronic adaptation
brought to the tether and the control scheme. Section III
presents the experimental setup used for evaluating the cable
management system. Section IV reports and discusses the ex-
perimental results. Finally, Section V draws the conclusions
of the work.
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Fig. 2. Integration of the flex sensor on the tip of the V-shape buoy-ballast
compliant system

II. METHOD

A. Mechatronics

The mechatronics of the system includes customization
of the tether near the ROV vehicle to achieve passive
compliance, and the design of an active feeder on the surface
to automatically control the tether length.

The passive compliance is based on the local deformation
of the cable created by two buoys and a ballast fixed on
the cable, that give it a V-shape as shown in Fig. 1. This V-
shape portion of the cable is symmetrically designed with the
ballast in the middle of the two buoys to have a neutrally
buoyant system. A flex sensor is mounted on the cable at
the ballast place using a fixed bracket and guides along the
cable (Fig.2). The sensor has a negligible bending stiffness.
It is isolated from the water by a thin plastic envelope. The
buoy-ballast system is placed in proximity to the ROV. The
heavier the ballast, the stiffer the system, but the higher the
drag force. The reactivity also depends on the stiffness. The
deformed part of the cable must keep a V shape and not a
droplet shape, so that the flex sensor provides a monotonous
response with the deformation.

The buoy-ballast system is designed to smooth the move-
ments of the tether and to damp external disturbances. Table I
summarizes the specifications and the characteristics of the
system that have been determined by simulation for a Fathom
Slim tether from Blue Robotics that is neutrally buoyant in
freshwater and has a low stiffness. Figure 3 shows the data
acquisition chain of the flex sensor.

buoyancy neutral
desired compliance 1 m
distance between buoys min: 20 cm, max.: 1.2 m
flex sensor model FS-L-0095-103-ST (Spectra Symbol)
flex sensor size 11 cm long, 0.5 mm thick
buoy size 2.9 x 2.9 x 4.7 cm3

buoy foam density 288 kg/m3

ballast mass 76 g

TABLE I
SPECIFICATIONS AND CHARACTERISTICS OF THE BUOY-BALLAST V

SHAPE SYSTEM ADAPTED FOR THE FATHOM SLIM TETHER.

The specifications for the tether feeder are the following,
• it must be able to pay out cable at the same speed as

the ROV movements.
• in case the feeder system becomes inactive, it should

not stop the movements of the ROV
• if the control of the ROV is lost, the feeder must be

capable of trailing the ROV back to the surface vessel
Therefore, the feeder must be able to bear more than the
ROV’s dead weight in water, but less than the maximum
ROV thrust. Here, the ROV is a BlueRov 2 from BlueR-
obotics that has a maximum forward speed of 1.5 m/s and
a maximum forward thrust of 100 N. A strength of 11 N is
necessary to drag it in water at 0.5 m/s. Furthermore, the
feeder must have a smooth behaviour and be controllable at
low speed. To ensure control, the length measurement must
remain accurate and avoid any slippage, even with a wet
tether.

The feeder structure is depicted on Fig. 4. The cable is fed
in and out by transmission between two gears of the same
diameter. One of the two gears is actively driven by a motor
and the other one is passively driven by friction from the
cable. This assembly is composed of machined parts, rapid
prototyping parts (ABS) and off-the-shelf components. An
incremental encoder on the passive gear measures the length
of unwound tether. This part comprises a flange, a toothed
gear and an encoder shaft guided in rotation by a bearing
box. The toothed gear guarantees a good grip on the cable
without the need to tighten it too much between the two
gears. The drive gear is actuated by a DC motor with an
integrated gearbox.

B. Control scheme

Modeling of the flex sensor. Since the resistor of the sensor
is directly linked to its bending, a 3rd order polynomial fit
between the output voltage and the distance between buoys
has been drawn and identified (Fig. 5). A cubic regression
was chosen to take into account a possible inflection point.
The error between the experimental points and the fit is also
plotted. The average error is 3 cm, and the maximum error
is 7 cm. The experimental carried out to determine the fit
showed a very fast response (1.26 s as time constant), a
monotonic behavior and no significant hysteresis or phase
shift.

The estimation of the distance by the flex sensor model
is sent by the ROV to the feeder on the surface, which is
actuated to keep an average distance between buoys. Because
of the drag force, the gap between the buoys increases with
the ROV speed. So the normal distance between buoys is set
relative to the actual ROV speed. During the ROV motion,
the feeder speed is controlled to regulate the desired average
gap between both buoys.

Figure 6 describes the control block diagram of the feeder.
The control of the feeder consists of a length control loop
(proportional controller) that encloses the speed control loop
(proportional-integral controller with anti-windup). The cable
length is computed in the speed control loop so that it is
accessible even when the length control is disabled. The
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Fig. 3. Block diagram of the flex sensor data acquisition

Fig. 4. Overview of the tether feeder, composed of a driving part and an
encoder part.

Fig. 5. Model of the distance between the buoys as a function of the
centered resistance of the flex sensor with experimental data points.

desired speed, whether it comes directly as a controller input
or from the length control loop, is first bounded to avoid
overshooting the motor limits. It outputs a raw PWM signal,
which is then bounded and smoothed by a low pass filter
before it is transmitted to the motor control board.

The feeder can be operated in two ways to release the
cable on request. Either it works sequentially, i.e. the length
controller releases 2 m of cable when the V-system is getting
taut (2 m of cable is reeled back after 10 s period when the V-
system is loosed), or it works continuously and so the speed
control loop releases the cable when the V-system lengthens,
or reels it in when the gap between the buoys is less than
the average.

III. EXPERIMENTS

For the experiments, the feeder is fixed on the edge of an
experimental water tank (16 x 8 m pool with a maximum
depth of 5 m) and is connected to the ROV through the
25 m long umbilical equipped with the V-shape buoy-
ballast system. Figure 7 represents the global implementation
scheme of the system.

The behaviour of the system is tracked by an underwater
motion-tracking system, namely Qualisys, in addition to
internal sensors. These data are used in post-processing to
obtain the configuration of the cable, as well as the position
and orientation of the ROV in the global frame.

In order to compare the behaviour of the system in
different modes of the cable, two trajectories of the ROV
were defined:
• a linear trajectory where the ROV goes forwards and

then backwards
• a curvilinear trajectory.

They illustrate two configurations where the cable control
should play an important role in relation to a high risk of
cable snagging or entanglement. All these trajectories are
associated with a 1.5 m depth control of the ROV. The ROV
is controlled in open-loop to track these trajectories by setting
the thrust level for each degree of freedom. Therefore, the
observed trajectories are expected to be different depending
on the mode of the cable, namely taut, slack or controlled.
The controlled mode of the cable is tuned to keep an average
distance of 0.65 m between the buoys with a tolerance of
±0.05 m.

IV. RESULTS AND DISCUSSION

a) Linear trajectory: The cable control for this trajec-
tory is illustrated on Fig. 8 for the three modes. The feeder
appears to be quite reactive and smooth to wind/unwind
the cable depending on the ROV motion and the distance
between both buoys.

Figure 9 depicts the paths of the ROV projected onto the
horizontal plane measured by the Qualisys system for the
three cable modes. If there were no external disturbances
at all, the path would be rectilinear. The ROV deflects
slightly to the left when the cable is slack. This deviation
is slightly larger in control mode and is observed both
during its forward and backward motion. The deviation
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Fig. 6. Control block diagram of the feeder. The input is either a cable length value or a speed value.

Fig. 7. Global implementation diagram of the system

is significantly greater in passive taut mode, approaching
90deg. Furthermore, the distance covered by the ROV is
significantly shorter with the taut cable.

Figure 10 shows the evolution of the depth control of the
ROV for the three modes. Only the control mode efficiently
helps to regulate the ROV depth. The vertical thrusters work
significantly more when the cable is not controlled than when
it is controlled.

b) Curvilinear trajectory: To achieve a slalom shape, a
forward thrust level of 25% is sent for 15s (between points
1 and 2), then a yaw command of 11.25% is sent in addition
with a forward thrust level of 40% for 6.5s to turn to the
right (between points 2 and 3), followed by a left turn with
the same levels for 6s (between points 3 and 4), and finally
a forward thrust of 25% for 4s (between points 4 and 5).

The compliant system keeps its V-shape and a reasonable
distance between the buoys even when the ROV turns
(Fig. 11). Figure 12 presents the behavior of the compliant
system in the three modes. The feeder is also reactive and
smooth to reel back the cable and manage the desired gap
between both buoys.

For a flawless system without any disturbance, the yaw
angle (Fig. 13) should be constant during the ROV straight
line commands (before point 2 and after point 5). It should

Fig. 8. Distance between buoys (flex sensor), feeder speed and un-
wound length of cable in control mode, passive slack mode and passive
taut mode for forward-backward trajectory. (https://youtu.be/owekUkN UtM
for control mode, https://youtu.be/1RTT23-USDY for passive taut mode,
https://youtu.be/FG5iyNfjzck for passive slack mode.)

also be linear during rotating commands (between points 2
and 3, then 3 and 4). There is a small deviation of about 20°
to the right during the first straight line (2.6 m) command
of the ROV for the passive slack cable. This deviation is
oriented to the left and its absolute value is doubled with
the controlled cable and doubled again with the passive taut
cable. In fact, the cable is fixed on the left side of the back
of the ROV, which induces a slight deviation to the left for
the controlled cable both in straight line and during a right
rotation. This deviation is much larger for the passive taut
cable. The left rotation of the ROV appears to be less affected
in the control mode and in the passive taut mode.

The impact of these deviations is observed on Fig. 14,
which presents the ROV paths, projected onto the horizontal
plane, for the three modes. The distances traveled are quite
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Fig. 9. Actual forward-backward trajectories of the ROV projected in the
horizontal plane with cable control and with slack or taut passive cable.
These paths are superimposed on point 2 for easier comparison.

Fig. 10. ROV depth and vertical depth-control thrust in the three modes.

Fig. 11. Views of the overall system at different points along the curvilinear
trajectory when the cable is controlled. The red arrows indicate the direction
of motion of the ROV. (Video at https://youtu.be/fy-JTc8PvIY)

Fig. 12. Distance between buoys (flex sensor), feeder speed and unwound
length of cable in control mode, passive slack mode and passive taut mode
for the curvilinear trajectory. (Videos at https://youtu.be/LR4BKefRSnM for
passive slack mode and at https://youtu.be/74p5Bzee9kY for passive taut
mode.)

Fig. 13. Comparison of the yaw angle of the ROV (measured with
its embedded compass) along the curvilinear trajectory when the cable is
controlled or not. The angle was initialized to 0o at the beginning of the
trajectories to facilitate their comparison. An increase of the angle represents
a rotation to the right of the ROV.

Fig. 14. Comparison of the actual curvilinear path of the ROV projected
onto the horizontal plane, measured by the Qualisys system, with or
without cable control. These paths are superimposed on point 2 for easier
comparison.
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close for the controlled cable and the passive slack cable.
The turns are slightly different between these two modes.
The path of the ROV with the passive taut cable is totally
distorted. The first rotation to the right (between points 2
and 3) is very confined and the rotation to the left (between
points 3 and 4) is quite irregular (much wider curvature in
the middle than at the beginning and the end).

The experiments also showed that the control of the cable
with passive compliance is effective in keeping the cable
in a semi-stretched configuration, the delivered length being
properly managed, and preventing the creation of cable
loops and reducing the risks of snagging and tangles. The
control mode generates a slight tension in the cable, which
is transmitted to the ROV and results in a minor deviation
in the trajectories of the system. This deviation could be
avoided by fixing the cable closer to the center of gravity of
the ROV. In addition, the passive compliance system appears
to improve the stability of the depth control of the ROV.

V. CONCLUSION

This paper describes a mechatronic solution to automati-
cally and actively manage the cable length of a ROV. The
cable is equipped with a balanced buoy-ballast system, which
creates a V-shape in the cable near the ROV and provides a
passive compliance to it. The buoy-ballast system has been
made for a specific tether, namely the Fathom Slim from
BlueRobotics, but the design methodology can be used to
equip other types of cables with different physical properties.
The experiments show that the feeder is responsive enough
with respect to the command speeds of the ROV, with no
error or drift observed on the controlled cable length. Even
wet, the cable does not slip through the feeder. Longitudi-
nal forward-backward and curvilinear trajectories have been
tested to validate the capability of the entire system to keep
the cable in a semi-stretched configuration.

Future developments will focus on the implementation
of the cable feeder on a surface vehicle (USV) and the
monitoring of the semi-stretched configuration to use the
cable as a means of proprioception for the estimation of the
relative position between the vehicles. The measurement of
the consummed current will help to estimate the cable strain
on the USV side. Synchronized navigation strategies between
the ROV and the USV are also under prospect to have an
optimized displacement of the vehicles in terms of energy
consumption and seabed coverage in shallow waters.
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Multi-Formation Planning and Coordination for Object Transportation

Weijian Zhang, Charlie Street, Masoumeh Mansouri

Abstract— Multi-robot formations have numerous applica-
tions, such as cooperative object transportation in smart ware-
houses. Here, robots must deliver objects in formation while
avoiding intra- and inter-formation collisions. This requires
solutions to multi-robot task assignment, formation generation,
rigid formation maintenance, and route planning. In this paper,
we present a cooperative multi-formation object transportation
system which explicitly handles inter-formation collisions. For
formation generation, we propose a distributed motion planning
approach which combines artificial potential field methods
and leader-follower based control. For formation planning,
we present a heuristic search-based algorithm which uses
convex segmentation techniques, and extend the minimum snap
method to synthesise smooth trajectories while maintaining
the formation. We also propose a variant of the dynamic
window approach to avoid collisions between formations. We
demonstrate the efficacy of our approach in simulation.

I. INTRODUCTION

A common approach for large object transportation in
robotics is to use multiple robots to collaboratively push,
cage, or grasp the objects [1]. This paper addresses coop-
erative transportation problems where multiple formations
carry objects on top of them (see Fig. 1), which we refer
to as multi-formation planning and coordination (MFPC).
Here, the formations are rigid, i.e. the formation remains un-
changed during transportation, which is necessary to balance
heavy loads. To solve MFPC, we must generate and maintain
effective formations until a goal location is reached while
avoiding collisions with other formations and obstacles.

In this paper, we decompose MFPC into several sub-
problems (see Fig. 2). For formation generation, we assign
robots to formations using the Hungarian algorithm [2]. We
then use an artificial potential field (APF) method for naviga-
tion towards each robot’s formation location. APF methods
are a common distributed approach for formation control [3],
but can become trapped in local minima, which prevents
robots from reaching their target positions. To address this,
we combine a wall-following strategy with consensus-based
APF for robust formation generation.

After formation generation, each formation should move
toward its destination while maintaining form and avoid-
ing collisions with other formations and obstacles; this is
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Fig. 1. Object transportation for multiple rigid formations.

the planning component of MFPC. For this, we employ a
consensus-based method [4], where robots follow a virtual
leader in the formation centre, and reach a consensus on
velocity to maintain form [5]. The virtual leader should
maintain the formation by guaranteeing a kinematically
feasible path for each follower. To achieve this, we present a
heuristic-based global path planner which computes optimal
plans under the formation and kinematic constraints. We then
synthesise smooth trajectories from the global path using
an extended minimum snap approach [6]. To avoid inter-
formation collisions, we propose a variant of the dynamic
window approach (DWA) [7]; this is the coordination com-
ponent of MFPC. Finally, we combine first-order consensus
control [8] and pure pursuit control [9] to track robot
trajectories and complete object transportation.

The main contribution of this work is a comprehen-
sive MFPC framework that integrates formation generation,
planning, and coordination techniques. We demonstrate the
performance of our MFPC system and the individual com-
ponents empirically in simulation.

II. RELATED WORK

Formation generation requires a team of robots to or-
ganise into a predefined shape [10]. Centralised approaches
to formation generation can attain high performance, but
scale exponentially in the number of robots, making them
intractable for realistic problems [11].

In [12], an APF-based consensus control method is pre-
sented to formulate coordination and control strategies be-
tween robots without considering avoiding obstacles. An im-
proved APF is proposed in [13] for path planning of a multi-
robot formation which efficiently avoids getting trapped
in local minima caused by obstacles but fails to address
deadlocks among robots reaching their goal positions. An
alternative decentralised approach is proposed in [14], which
requires only the relative positions of robots and obstacles
from each robot. This approach, however, does not guarantee
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solution convergence. A template-based technique is used
in [15] where no experiments are provided regarding the
scalability issue. In our work, we ensure achieving formation
convergence, a deadlock-free and scalable solution by using
the Hungarian algorithm [2] for optimal task assignment and
the first-order consensus method for driving robots to their
goal positions [8].

Formation planning has leveraged the wealth of classical
AI search methods. For instance, in [16], a relaxed A∗

planner is employed to generate an optimal collision-free
global path over a map where obstacles are inflated by
a circle that covers the entire footprint of the formation.
However, such conservative approximations can result in a
loss of precision and, at times, failure to find a solution. In
this paper, we define the obstacle-free space without making
any approximations of the obstacles. Another example
includes constrained optimisation for non-rigid formation
planning [17] in a dynamic environment, an approach
which cannot be applied directly to the type of rigid MFPC
considered in this paper. An alternative approach is to use
sampling-based methods such as rapidly-exploring random
trees [18] or probabilistic roadmaps [19] that consider the
geometric constraints of the formation. However, these ap-
proaches rely on sampling a large number of configurations
to find a path which often suffers from abrupt variations in
direction. To alleviate this problem, we use heuristic search
to reduce the number of sampling configurations and abrupt
changes in direction. Further, we apply a modified minimum
snap method [6] to produce a feasible smooth trajectory.

For rigid object transportation, formations should be
maintained during locomotion. For instance, a leader-
follower strategy combined with APF is used in [20]. The
leader robot determines its navigation path through APF,
and the other robots in the group follow the leader to
maintain the formation using distance-angle (l−φ ) control.
However, dynamic obstacles are not considered. In [21], the
authors demonstrate a hierarchical quadratic programming
approach, such that the a priori unknown obstacles can
be detected and avoided at runtime. However, due to the
lack of a global planner to generate a set of waypoints,
the control may run the risk of falling into local minima.
In [22], an improved A* algorithm is adopted to generate
optimal global paths and a multiple sub-target APF is
proposed for local path planning of the formation. In this
approach, when the formation avoids dynamic obstacles, the
generated trajectory toward the local subgoal may not be
executable for the robot. In our work, we benefit from the
smooth and executable global trajectories generated by the
formation planner. Further, we extend the dynamic window
approach (DWA) [7] by introducing formation prioritization
to achieve collision avoidance between formations while
ensuring that the robot motion constraints are not violated.

III. PRELIMINARIES

We begin by defining our assumptions over the workspace,
robots, and formations.

Workspace. Let W ⊂R2 be a 2D workspace which contains

Fig. 2. The proposed problem decomposition for MFPC.

Fig. 3. Linear, rectangular, and triangular formations consisting of several
robots (in red) and an object (in black). Each robot i is placed with its state
xril relative to the jth formation’s centroid state xctr j .

a set of static obstacles O ⊂W , and let F = W \O denote
the obstacle-free workspace.

Robots. Consider a team of homogeneous rectangular robots
R = {1, ..., |R|}, where |R| is the cardinality of R (see Fig. 3).
Let xi(t) = ⟨xi(t),yi(t),θi(t)⟩ be the state of robot i ∈ R at
time t, where xi(t),yi(t)∈R denote robot i’s position at time
t, and θi(t) ∈ [−π,π) denotes its orientation. We assume all
robots are holonomic, and use a unicycle kinematic model:

ẋi(t) =
d
dt




xi(t)
yi(t)
θi(t)


=




vi(t) · cosθi(t)
vi(t) · sinθi(t)

ωi(t)




i ∈ R, t ∈ [0, t fi ],

(1)

where vi(t) and ωi(t) denote the velocity and angular velocity
applied at time t respectively, and t fi is the finite horizon for
robot i. At each time step, we assume robots can observe the
state of all other robots and obstacles within sensing range
d0 ∈ R≥0.

Formations. In this paper, we consider formations in straight
lines, rectangles, and triangles (see Fig. 3). We write
z j =< xctr j,xr j1, ...xr jk > to denote the configuration of the
jth formation, formed of k robots, where xctr j denotes the
formation’s centroid state, and xr jl is the relative state of the
lth robot with respect to xctr j.

IV. FORMATION GENERATION

In this section, we present a distributed approach for
formation generation which combines APFs with consensus-
based leader-follower control and a wall-following strategy
to avoid local minima and unreachable targets. The first sub-
problem for formation generation is to allocate each robot i to
a formation location gi ∈G, where gi corresponds to a corner
of a formation (see Fig. 3). For this, we use the optimal Hun-
garian algorithm [2] with a Euclidian distance cost function.
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To drive robot i towards gi while avoiding obsta-
cles, we employ a modified APF approach [13]. Let
Fg(li(t)) be the gravitational force towards the goal, where
li(t) =< xi(t),yi(t)> denotes the position of robot i at time
t, and let Fr(li(t)) be the resultant repulsive force from
the obstacles and other robots within robot i’s sensing
range. Under the APF, robot i’s control input is given by
ui(t) = Fg(li(t))+Fr(li(t)).

In cluttered environments, robots may become trapped
in local minima and oscillate around their current location
indefinitely. Local minima may be detected by observing a
robot’s state or the forces applied to a robot. Formally, a
local minima occurs if either of the following hold at time t:

|Fg(li(t))+Fr(li(t))|< ε or |li(t− τ)− li(t)|< ρs, (2)

where ε ∈ R>0 and ρ ∈ [0,1] are small thresholds, and s
is the distance travelled by robot i in the past τ timesteps.
The first inequality holds if the gravitational and repulsive
forces are approximately zero. The second inequality holds
if the robot’s position has changed less than the distance it
has travelled. When a local minima is detected, we remove
the gravitational and repuslive forces and drive the robot
along the wall of the nearest obstacle towards the formation
location. The gravitational and repulsive forces are reapplied
once the inequalities in (2) are violated.

Local minima may also occur due to robot deadlocks.
For example, a robot may be blocked from its formation
location by the repulsive forces of robots who have already
reached theirs. For this, we combine first-order consensus [8]
and leader-follower control [23]. Here, the blocked robot
becomes the leader, and the other robots become followers.
First-order consensus control ensures the robots satisfy the
relative position relationships in the formation and converge
to velocity consistency, thus driving them toward the target
formation. Let ai j = 1 if robot i can communicate with robot
j, and 0 otherwise. Then, let Ni = { j | ai j = 1}, i.e. the robots
that robot i can directly communicate with. Under first-order
consensus control [8], the control input of the leader robot i
is set to be:

ui(t) = Fg(li(t))+Fr(li(t))+ ∑
f∈Ni

wi f (t)(xi f (t)− ri f ), (3)

where ri f is the required relative distance between the leader
i and follower f , and xi f is the state of the follower f
with respect to the leader i. The weight wi f (t) is given
by wi f (t) = 2− e−(xi f (t)−ri f )

2
. Similarly, the control input for

follower f is as follows, where ui(t) is the control input of
the leader:

u f (t) = ui(t)+Fr(l f (t))+ ∑
f ′∈N j

w f f ′(x f f ′(t)− r f f ′). (4)

V. FORMATION PLANNING

In this section, we synthesise a discrete global path T for
the centre of each formation which minimises the distance
from its initial configuration zs to the goal configuration zg.
For this, we incrementally construct a graph G = (V,E) over
the workspace, where each node v ∈V lies inside a convex

polygon P, and edges (v,v′) ∈ E connect nodes. We begin
with a heuristic approach for partitioning the workspace into
convex polygons (Subsection V-A), which we then use for
global path planning (Subsection V-B).

A. Heuristic Workspace Decomposition

The obstacle-free workspace F can be partitioned into a
set of convex polygons P which maintain the formation’s
geometric constraints, defined as:

Anvm ≤ bn,∀n = 1, ...,N,m = 1, ...,M, (5)

where An and bm are the parameters of the separated hy-
perplanes, N is the number of sides of the polygon, and vm
represents the outer vertices of the formation’s convex hull.
In Alg. 1, we show how to generate the next convex polygon
P in a partition, given the existing polygons P= {P1, ...,PK}.
For this, we use IRIS [24], which given an initial seed point
alternately solves two convex optimisations: (1) finding a set
of hyperplanes that separate an ellipse e from the obstacles
O via quadratic optimization, and (2) finding the largest
ellipse within the polygon P via a semi-definite program.
Each convex polygon P has a corresponding ellipse e; we
denote the set of existing ellipses as E= {e1, ...,eK}.

For efficient global planning (see Subsection V-B), poly-
gon construction should be guided towards the goal. There-
fore, in Alg. 1, we introduce a heuristic strategy for sampling
new IRIS seed points. First, we discretise the workspace into
cells, and assign a cost to each cell in a matrix B (lines 2-6).
Cells in obstacles or existing ellipses have cost −∞, and all
other cells have cost:

Cost(c) =
1
K

K

∑
k=1
||c− ek||2− γ(1−ζ )||c−g||2. (6)

Here, γ ∈ R>0 is a weight parameter, ζ ∈ [0,1] is the
proportion of the map covered by obstacles and ellipses, and
g is the cell containing goal configuration zg. Intuitively, (6)
assigns high cost to cells which are further from existing
polygons and closer to the goal. However, the second term
in (6) decays as the explored area increases, which admits
backtracking to explore regions further from the goal. We
select the cell c∗ with maximum cost in B as the new seed
point for IRIS (lines 9-10), pushing the polygons towards the
goal. After running IRIS, we test whether the new polygon
Pnew and ellipse enew should be accepted into the partition
(lines 11-16). Polygon Pnew is rejected if the seed point c∗ is
less than distance α from a previous seed point, or if enew
is less than distance β from an existing ellipse ek ∈ E. If
Pnew is rejected, Alg. 1 must be re-run. Thresholds α and β
decay as the workspace is explored to relax the conditions
for polygon acceptance, as the distance to the nearest cell or
ellipse will decrease as more polygons are added.

B. Global Path Planning

Using Alg. 1, we incrementally construct a graph
G = (V,E) by adding convex polygons to the workspace until
a path exists between zs and zg, where nodes are added for
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Algorithm 1: Heuristic IRIS
Input: Obstacle set O, existing polygons P and

ellipses E, previously selected cells C
Output: Pnew

1 Pnew←∅
2 foreach c ∈W do
3 if c ∈ O or c ∈ E then
4 B{c}←−∞
5 else
6 B{c}← Cost(c)
7

8 while Pnew =∅ do
9 c∗← argmax

c∈W
B

10 {Pnew,enew}← IRIS(c∗)
11 foreach c ∈ C, ek ∈ E do
12 if ∥c∗− c∥< α or ∥enew− ek∥< β then
13 foreach c ∈ enew do
14 B{c}←−∞
15 {α, β}← UpdateThreshold(α, β , B)
16 Pnew←∅
17

18 P← P∪Pnew, E← E∪ enew, C← C∪ c∗

19 return Pnew

each polygon and polygon intersection. We then synthesise
a path T over graph G. In detail, we do the following:

1) Initialise Graph: Graph G is initialised with nodes
at zs and zg. Convex polygons are generated from
each of these points using IRIS [24]. If these polygons
intersect, zs, zg, and an intersection point are connected
as in step 4.

2) Test for Path: If a path exists from zs to zg in G go to
step 5, else go to step 3. If the total area covered by
polygons exceeds a threshold, terminate without a plan.

3) Add New Polygon: Generate a new polygon Pnew
using Alg. 1. Then, add a node znew to G at the
location within Pnew closest to the goal zg. Formally:

znew = argmin
z∈Pnew

(z− zg)
2. (7)

4) Add Intersection Nodes and Edges: Find all existing
polygons Pk ∈ P who intersect with Pnew. Given
the nodes znew and zk computed from Pnew and Pk
respectively using (7), find the configuration zinter
which minimises the perpendicular distance from the
straight line between znew and zk. Formally:

zinter = argmin
z∈Pnew∩Pk

dis(z, line(znew,zk))
2. (8)

Next, add the node zinter and edges (znew,zinter) and
(zinter,zk) to G. By optimising zinter using (8), we
minimise edge length. Following this, return to step 2.

5) Find Shortest Path: Synthesise the shortest path
from zs to zg on graph G using A* search [25].

We demonstrate our global planner in Fig. 4. In Fig. 4(a),
a triangular formation must reach the top right of the map.
Fig. 4(b) shows the convex polygons generated from the
initial and goal configurations. These regions do not intersect,
and so we use Alg. 1 to add a new polygon (see Fig. 4(c)).
The intersections between these three polygons admit a graph
which connects the initial configuration to the goal configu-
ration, and so a global path can be found (see Fig. 4(d)).

VI. TRAJECTORY GENERATION AND FORMATION
CONTROL

The global path T computed in Subsection V-B contains
sharp turns which cannot be executed smoothly by a robot.
To mitigate this, we now present techniques for trajectory
optimisation, trajectory tracking, and local motion planning.

A. Trajectory Optimization

To synthesise continuous collision-free trajectories from
the global path T which respect robot kinematic constraints,
we consider an extended minimum snap approach [6]. Min-
imum snap cannot be applied directly to formations, as the
geometric constraints of the formation are ignored, which
may cause collisions (see Fig. 4(e)). To avoid collisions,
we apply the inequality constraints in (5), and minimise the
deviation from global path T .

In minimum snap, trajectories are represented in S seg-
ments. The rth trajectory segment is represented as an order
q polynomial over the current time t:

pr(t) = [1, t, t2, ..., tq] ·p, t ∈ [0, t f ], (9)

where p is the coefficient matrix of the trajectory polynomial.
Here, pr(t) and ṗr(t) represent the position and orientation
of the formation’s centroid, respectively. The time informa-
tion for each segment is computed assuming a trapezoidal
velocity-time profile.

To adapt minimum snap to formations, we first include the
inequality constraints in (5) during optimisation. This ensures
the formation remains inside a convex polygon generated by
IRIS [24], which guarantees collision avoidance. Second, we
introduce an error term between the optimised trajectory and
the trajectory corresponding to global path T , where T can
be segmented based on the intermediate nodes in the path.
The rth segment of the global path trajectory por , composed
of endpoints ptr−1 and ptr can be represented as:

por = [ptr −
ptr − ptr−1

tr− tr−1
tr,

ptr − ptr−1

tr− tr−1
,0,0, ...,0]. (10)

With this, the quadratic program for our extended minimum
snap approach can be written as:

min
p

S

∑
r=1

∫ tr

tr−1

(p(4)r (t))2 +λ (pr(t)− por(t))
2 dt s.t (5), (11)

where λ is a weighting term. An example trajectory opti-
mised with our approach is shown in Fig. 4(f).
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(a) The initial (bottom left) and goal (top
right) configurations of the formation.

(b) The convex regions corresponding to the
initial and goal configurations.

(c) The optimal seed point (black star) is
found using Alg. 1 and a new convex region
is generated.

(d) The optimal configuration in each con-
vex region and intersection form a graph
from which a global path is found (pink).

(e) An unsafe trajectory synthesised from
the global path using [6].

(f) A safe trajectory synthesised from the
global path using our adapted minimum snap
approach.

Fig. 4. An illustrative example of global path planning and trajectory optimization for a triangular formation.

(a) Formations A and B are on
track to collide at point C.

(b) Formation B treats formation
A as an obstacle and computes its
convex region.

(c) Formation B backs off to pre-
vent a collision and computes the
updated convex region.

(d) Formation A is eventually clear
of B, and B returns to trajectory
tracking.

Fig. 5. An illustrative example of our prioritised DWA for local motion planning and coordination. Solid and dashed lines represent robot trajectories.

B. Consensus-based Trajectory Tracking

To track the global trajectory, we combine pure pursuit
control [9] with a consensus-based approach [4], where the
formation centre is the virtual leader. For each robot, we
use first-order consensus control to maintain the formation.
Similar to (4), the control input for the ith follower of the
jth formation at time t is given by:

ui(t) = u(xctr j)+Fr(li(t))+ ∑
f∈{1,...,k}

wi f (xi f (t)− ri f ), (12)

where xctr j is the state of the virtual leader, u(xctr j) is the
virtual leader’s control input, and there are k robots in the
formation.

C. Local Motion Planning Using DWA

When one formation senses another, it should deviate from
its trajectory to prevent collisions. For this, we employ a
prioritised DWA, where formations with longer trajectories
have higher priority [26]. This is an ad-hoc solution for the
coordination component of MFPC (see Fig. 2). Formation j
begins collision avoidance behaviours upon sensing a higher
priority formation. First, formation j computes the convex
region around its virtual leader given the other formations
and surrounding obstacles. We then sample a set of motion

primitives m using DWA [7], i.e. velocities and angular
velocities, which respect kinematic constraints and keep the
formation within its convex region. The highest value motion
primitive according to a function E is then executed, where
E is defined as in [7]:

E(m) = w1 ·Dir+w2 ·Dis+w3 ·Vel. (13)

Here, Dir is the absolute directional change between the cur-
rent velocity and the velocity in m, Dis is the average distance
between formation j and any higher-priority formations after
executing m, and Vel is the magnitude of the velocity in
m. Formations execute collision avoidance primitives until
higher priority formations are out of range, and then switch
back to trajectory tracking. This ad-hoc coordination ap-
proach does not guarantee collision avoidance, as formations
may be occluded, but collisions are reduced, as shown in
Sec VII. We demonstrate our prioritised DWA in Fig. 5. In
Fig. 5(a), formations A and B are on track to collide, where A
has higher priority. Formation B computes its convex region
(see Fig. 5(b)), and backs off to prevent a collision (see
Fig. 5(c)). This is repeated until formation B is clear of A,
and switches back to trajectory tracking (see Fig. 5(d)).
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Fig. 6. Formation generation performance as the number of robots increase.

VII. EXPERIMENTS

In this section, we demonstrate the efficacy of our ap-
proach in simulation. All experiments are implemented in
MATLAB on an Intel i5 processor at 2.3GHz with 16GB of
RAM. We consider 3 10×10m environments with randomly
generated quadrilateral obstacles which cover 20%, 40%, and
60% of the environment respectively. All robots are 0.3m
squares, where the velocity, angular velocity, acceleration,
and angular acceleration are constrained within ±0.3m/s,
±0.35rad/s, ±0.2m/s2, and ±0.8rad/s2 respectively. Forma-
tions may be linear, triangular, or rectangular (see Fig. 3).

A. Formation Generation Performance

First, we evaluate formation generation performance as
the number of robots increase. For each environment and
number of robots, we generate 30 random problem instances,
i.e. start and goal locations. We evaluate the makespan, i.e.
the time for the last robot to reach its formation location. We
present our results in Fig. 6, which also shows the formation
configuration for each number of robots, e.g. 8(2∗2+1∗4)
represents 8 robots forming 2 straight lines and 1 rectangle.

In Fig. 6, the makespan increases as the environment
becomes more occluded, as robots must take longer routes,
and because robot coordination is harder in tighter spaces.
However, the makespan increases slowly with the number of
robots, demonstrating how our approach effectively coordi-
nates robots towards their formation locations. In all exper-
imental runs, no robots became trapped in local minima.

B. Formation Planning Performance

Next, we evaluate our global formation planner against a
variant which uses IRIS [24] with random seed points. In
each environment, we randomly generate 30 formation start
and goal locations for each of the three formation shapes,
where start and goal locations are at least 5m apart. We
combine the results for all formation shapes and present
them in Fig. 7, where the area threshold in step 2 in
Subsection V-B is set to 80%. Our planner consistently
synthesises paths quicker than the random IRIS planner,
where the gap increases with the number of obstacles. Our
approach also synthesises shorter paths using Alg. 1 and the
optimal configurations within each polygon and intersection.

(a) Computation time results. (b) Path length results.

Fig. 7. Global path planning performance as occupancy increases.

Fig. 8. The average trajectory deviation error of our approach against
minimum snap [6].

We also demonstrate the efficacy of our extended min-
imum snap approach in Section VI-A. Using the global
paths synthesised in the previous experiment, we run our
trajectory optimisation method and the original minimum
snap algorithm in [6]. For each run, we record the average
trajectory deviation error, and present the results in Fig. 8.
Our approach synthesises trajectories which are consistently
easier for robots to track. We also recorded the total colli-
sions in each trajectory: our approach produced collision-
free trajectories across all runs, whereas minimum snap
trajectories intersected with obstacles at least 4.6 times on
average. This is because our approach is guaranteed to satisfy
the formation’s geometric constraints.

C. Formation Coordination Performance

We now evaluate our prioritised DWA for local motion
planning and coordination. We generate 30 random 2-5
formation problems in the 60% occluded environment, and
evaluate the number of inter-formation collisions with and
without our approach. For each problem instance, the initial
and goal formation positions are on either side of a circle
of radius 5m centred on the map. We present our results
in Table I. Our prioritised DWA resolves all conflicts for
2-3 formations, but not for 4-5 formations. This is because
there may not exist feasible collision-free controls for lower
priority robots in narrow regions of the environment. Despite
this, our approach still reduces the total number of collisions.

VIII. CONCLUSION

In this paper, we proposed a framework for MFPC
that outperforms state-of-the-art techniques. For formation
generation, we extended APF approaches to avoid local
minima. For formation planning, we applied a heuristic
sampling strategy to improve path quality and computation
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TABLE I
NUMBER OF INTER-FORMATION COLLISIONS WITH AND WITHOUT OUR

PRIORITISED DWA.

Number of Formations No Prioritised DWA With Prioritised DWA
2 (1∗3+1∗4) 0.62±0.48 0
3 (2∗3+1∗4) 1.56±0.93 0
4 (2∗3+2∗4) 1.94±0.89 0.61±0.44

5 (1∗2+2∗3+2∗4) 2.47±1.16 0.92±0.69

time. Finally, for formation coordination, we introduced
a prioritised DWA to reduce inter-formation collisions.
In future work, we will demonstrate the efficacy of our
framework on real robots, explore coordination methods that
guarantee inter-formation collision avoidance, and capture
the effects of uncertainty on robot execution. Further, we
will consider formations of real nonholonomic robots in
transport environments shared with humans.
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Impact of UAV Propellers on Gas Plume Tracking
Rui Baptista,1 Hugo Magalhães1 and Lino Marques1

Abstract—Unmanned Aerial Vehicles (UAVs) are highly ma-
noeuvrable platforms that are becoming popular to map and
localise the source of chemical substances in the environment.
However, their propellers disturb the environment and may
seriously impact the measurements and the expected results
in such applications. Some works have already addressed this
problem, but only for specific cases and proposing different
solutions about the best way to mitigate this problem. This work
studies the impact of propellers for multiple sensor positions and
3 UAVs of different sizes, in an Odour Source Localisation (OSL)
problem under field conditions and compares the results with a
non-disturbing setup. The experiments show a significant impact
on the measured signals from asymmetrical frames and from the
motion of the agent, with the best results achieved from sensors
acquiring data on intake air regions.

I. INTRODUCTION

When a harmful gas leak occurs, the volatile substances
introduce in the environment are carried by the wind and
dispersed over a potentially vast area, endangering humans and
other living organisms. In these situations it is very important
detecting the dangerous gas and locating its source in a shortest
time in order to mitigate the risks. This operation is usually
carried-out with specialised human teams but it can also be
pursued by mobile robots, equipped with adequate gas sensors
and control algorithms. This approach has the advantages of
moving human operators from dangerous areas and , even-
tually, reducing the requirements for human resources, but
the task is not trivial since the fluctuating and unpredictable
nature of the dispersion phenomena breaks the odour into
small patches making them harder to detect as the distance
to the source increases.

Marques et al. [1] contributed to pioneering work on Mobile
Robot Olfaction (MRO) endowing wheeled platforms with the
ability to sense, distinguish and locate odour sources. Recently,
Unmanned Aerial Vehicles (UAVs), also known as drones,
have been employed for such tasks due to their increased
manoeuvrability. However, choosing the best sensor position
onboard the UAV can be a challenging endeavour due to
the strong airflow caused by the propulsion system to move
the platform. This distortion can corrupt the measured signal
affecting the quality of the observations or reduce the number
of odour encounters by pushing the chemicals away from the
sensor. One of the approaches to determine an optimal sen-
sor position relies on Computational Fluid Dynamics (CFD)
simulations to evaluate the motion of the fluid in the vicinity
of the drone [2]. Other experiments consider dispersion and

1All authors are with the Institute of Systems and Robotics, Department
of Electrical and Computer Engineering, University of Coimbra, 3030-
290 Coimbra, Portugal {rui.baptista, hugo.magalhaes,
lino}@isr.uc.pt

Fig. 1. Testing environment. The image shows the odour source in the left-
top corner, a Hexa-Copter UAV in the middle and an ultrasonic anemometer
in the right-bottom corner.

rotor wake models to calculate the distortion of the gas
plume inducted by the propellers of the UAV [3], [4]. One
limitation of these approaches is that they do not consider the
chemical signal, focusing only on the regions with the least
flow distortion or high number of odour encounters, however,
increasing the number of positive chemical contacts does
not necessarily lead to quality measurements. An alternative
process consists on laboratory experiments with Particle Image
Velocimetry that combine smoke emitters and vision-based
systems to highlight the path of the smoke [5]. A ventilator
generates a strong airflow pushing the smoke plume towards
the UAV frame which is fixed at a vertical pole or hovering
close to the source of emission. By analysing the motion of the
smoke, multiple conclusions can be drawn such as the plume
being pulled by the propellers if the UAV is below the smoke,
or being pushed towards the ground with the UAV above the
plume, reducing the chance of contact with the target gas.
While insightful, the drawback is that, typically, the propulsion
system is programmed to operate at hover speed, with the
propellers equally rotating. In order to move, the drone needs
to change the velocity of the propellers which can originate
complex flow interactions [6] and potentially lead to different
results to the ones taken while stationary.

Independently of the approach, each author proposes a
different sensor position in order to avoid a negative impact on
the measurement process, with positions varying from under
the UAV [7] to the front of the frame [8]. According to
the literature, there are both advantages and disadvantages of
placing the sensors on top or bottom of the drone [9], which
may depend on the application and the type of sensor to be
used. Particulate Matter sensors can make use of the increased
flow below the propellers to capture chemicals towards the
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measurement chamber while Metal oxide gas (MOX) sensors
can be exposed to additional noise in this region due to the
stronger flow that can affect both the heating element and
metal oxide layer corrupting the signal. Hence, evaluating
more than one sensor position may provide broader insights
that can also be used to validate some of the conclusions from
the flow analysis. Here, only a small number of works [5],
[10], [11] compare the performance of different sensor loca-
tions during the same experiments. Furthermore, a single UAV
frame is employed during most of the studies, which is usually
a pocket drone [7]. The smaller frame dimensions require a
less complex infrastructure for the testing scenario, however,
these frames cannot operate in field environments due to
limited autonomy and payload capacity. Larger and heavier
platforms require additional flow displacement to move while
different frame configurations can produce distinct airflow
patterns which require further validation in order to avoid
measurement disturbances [12].

This leads to the first question: How do different UAV
frames perform during similar OSL missions? The second
question rise on the fact of the experiments being performed
within small indoor environments under specific environmen-
tal conditions, with only a limited number of field experi-
ments [13], [14]. How well does the location of the sensor,
deemed as good or optimal within laboratory studies, perform
during OSL missions under real field conditions?

This work aims to tackle these questions by performing
multiple OSL missions under realistic field conditions (Fig-
ure 1) with the goal of evaluating: (1) the impact of different
UAV frames and (2) the impact of different sensor positions
during the search process. The results are compared with a
non-disturbing reference platform operated by a human agent
moving to the positions provided by the searching algorithm.

II. METHODS AND MATERIALS

Consider an aerial mobile agent moving in known locations
pa = (x, y, z) ∈ R3 with the capability to sense for chemical
measurements c(pa, t) at time step t ≥ 0 s. The agent is
characterised by their frame geometry Φ, number of rotors
nr, propeller diameter dp, length between opposing rotors
la, mass ma, maximum payload mpy and flytime tfly. The
location of the chemical sensor related to the agent body is
ps = (xa, ya, za) ∈ R3.

The goal is to evaluate the impact of UAV propellers in
OSL. To achieve this goal, a set of OSL experiments is per-
formed with different drones in similar conditions. The results
are evaluated and compared with experiments accomplished by
a non-intrusive platform guided by a human operator.

A. Odour Source Localisation

A localisation process relies on observed data to pinpoint
the source position. This raises the question of where should
the robot move to in order to collect valuable information.
This mission is usually accomplished by two tasks: (1) plume
searching and (2) plume tracking. Plume searching consists of
finding the active region of the plume, and in this work, a series

Fig. 2. A field experiment with the human operator. On the left, a human
operator guides the Hexa-Copter UAV attached to a vertical pole. On the right,
a controllable odour source emits acetone at 3m from the ground.

of zig-zag motion patterns are adopted in the upflow direction.
After making contact with the plume, the tracking procedure
tries to follow the odour towards the source of emission
and declare its position. Cognitive strategies are reliable ap-
proaches to operate in turbulent environments, where a belief
of the source parameters is estimated from assimilated data and
a movement decision guiding the agent towards informative
locations quantified by a cost function. This work adopts the
same framework as in [15] where the belief is approximated
by a Particle Filter, with a likelihood function modulated by a
Normal distribution and a Gaussian Plume dispersion model.
The decision process quantifies the expected information gain
through an Entropy cost function.

B. Odour Source
The odour plume emerges from a continuous release of

acetone vapour, an organic compound with the formula
(CH3)2CO. The liquid acetone, in a reservoir, is converted to
a gaseous state through a controllable piezoelectric transducer
and an adjustable 120 mm fan pushes the acetone vapour
over a polyvinyl chloride chimney releasing the chemical
at approximately 3 meters from the ground (Figure 2). The
emission rate was set to 784 g/h, approximately 7 times less
when compared with other studies (e.g. Hutchinson et al. [16]
defined a release rate of 5.4 kg/h).

C. Mobile Platforms

TABLE I
CHARACTERISTICS OF MULTI-ROTOR UAVS.

UAV Φ nr dp la ma mpy tfly

Quad450 X 4 279mm 450mm 1.2kg 1.5kg 10min
Quad860 V 4 406mm 860mm 1.8kg 3kg 20min
Hex980 X 6 406mm 980mm 3.5kg 7kg 25min

Three different multi-rotor UAVs based on some of the
most popular platforms from the literature are used for this
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Fig. 3. Tested platforms with the measurement system attached to the top. (a) Quad450 UAV with 450mm of diameter. (b) Quad860 platform measuring
860mm. (c) Hexa-Copter Hex980. (d) Non-disturbing platform.

study, however, smaller UAVs such as nano-copters are not
considered due to their inability to fly outdoors [17]. Table I
summarises the physical characteristics of three UAVs where
the Small quad-copter (Figure 3a), Medium-size quad-copter
(Figure 3b) and Hexa-copter (Figure 3c) are renamed as
Quad450, Quad860 and Hex980, respectively.

The X frame consists on a structure with all rotors located
at the same distance from the center of the frame resulting in
a symmetrical shape. On the V frame, the structure geometry
is asymmetric, meaning that the rotors at the front are not at
the same distance from the centre of the frame as the rotors
from the back.

All platforms are equipped with a Pixhawk autopilot and a
small board computer (SBC). A fourth non-disturbing platform
consisting of a vertical pole is used as reference (Figure 3d).
The measurement system is attached to the top at the same
height as the source and shares the same hardware as the
UAVs, however it is manned by a human operator moving
to the goals generated by the localisation algorithm.

D. Measurement System

Metal oxide gas sensors (MOX) are commonly used to
detect chemicals. It is a small and low-cost solution, composed
of a resistive transducer that decreases its resistance in atmo-
spheres that contain oxidising vapours. This sensor can detect
few parts per million of vapour and has a rise time of about
10 ms and a fall time of 1-2 s [18]. The measurement system
is composed of a total of four MiCS-5524 MOX sensors from
SGX Sensortech Ltd, whose signals are acquired at 100 Hz by
a 12-bit Analog-to-Digital converter. The measurement system
is evaluated in four different ps locations (Figure 4), where
two positions are above the propellers and the remaining two
below the propellers:

1) Top: Sensors are installed 30 cm above the centre of
the frame, and spaced 15 cm apart (Figure 4a). This
position aims to understand the impact of placing the
sensors outside the region of influence of the airflow.

2) Upper middle: Sensors installed above the propellers
(Figure 4b) and fixed at the centre base of the frame

Fig. 4. Measurement system scheme composed of four sensors. (a) Top
scheme. (b) Upper middle scheme. (c) Lower middle scheme. (d) Bottom
scheme.

spaced 30 cm apart. The goal is to analyse the influence
of the airflow intake effect.

3) Lower middle: Sensors installed directly below the pro-
pellers (Figure 4c), 50 cm apart. The air pulled from the
propellers recirculates and mixes with the gas due to the
vortexes generated in this region. This re-circulation can
improve the detection rate by repeatedly pushing the gas
towards the sensors.

4) Bottom: Sensors installed bellow the propellers (Fig-
ure 4d), 30 cm from the centre of the frame and with
horizontal configuration identical to the upper middle
position. It is a region with minimal disturbance due to
the structure of the platform, which also has less airflow
than the lower middle position.

E. Evaluation Metrics

To evaluate the impact of each configuration on the OSL
performance, four metrics are employed:

• Success Rate: A trial is considered a success when the
estimated source position is less than 5 meters of distance
to the true source location. This metric shows the overall
performance of the OSL but does not provide enough
details about its efficiency.

• Detection Rate: The ratio between the number of positive
odour detections and the total sampled data. A low de-
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Fig. 5. Speed and direction characterisation of the wind at the testing
environment.

tection rate may indicate a high measurement disturbance
guiding the agent to less informative locations.

• Accumulated Distance: The total travelled path required
to find the source. It is the overall efficiency metric that
shows the energy required to perform each experiment.

• Distance Rate: The percentage of the accumulated dis-
tance allocated to the search and tracking tasks. Long
distances during the search stage may indicate external
interference’s and a long tracking stage can suggest
significant measurement disturbances.

Additionally, other performance indicators can be directly
observed, such as high-frequency components in the acquired
signal, resulting from very turbulent air mixing near the gas
sensors.

F. Evaluation Methodology

The methodology adopted in this study is divided into two
phases:

1) UAV Platform: To evaluate the impact of the UAV
platform, first, OSL experiments are performed with the non-
disturbing platform (Figure 3d). It acts as a reference for the
remaining experiments since there are no disturbances gener-
ated by the propellers. Second, each UAV platform is coupled
to the same vertical pole with the human operator moving the
structure. The rotors are programmed to rotate at the minimum
required velocity for the platform to hover. Since each platform
has different weights and propeller placements, the required
velocities are also different which enables quantifying the
respective impact on OSL efficiency. During these trials, the
measurement system is placed on the top position (Figure 4a)
restricting the analysis to the impact of the airflow and the
structural characteristics.

2) Sensor Positioning: The least disturbing platform iden-
tified during the previous experiments is consequently used to
evaluate the impact of the sensor positioning. Here, each po-
sition scheme from Figure 4 is performed under fully realistic
conditions with the UAV performing in a fully autonomous
mode detached from the vertical pole, where all the motion
dynamics are taken into account.

Fig. 6. Five OSL experiments. The initial position of the search (circle) starts
opposite the measured wind direction. Also is shown the estimated position
of the odour source (star) and the real position of the source (square).

III. FIELD EXPERIMENTS

The experiments are performed in a natural field region of
approximately 70x50 m2. It is composed of trees and small
hills that produce different dispersion phenomena from the
ones of indoor environments. The wind is monitored with
two WindSonic ultrasonic anemometers from Gill Instruments
installed in the testing area. A wind characterisation over
an extensive time period (Figure 5) showed an unstable
behaviour with variations of 360º under low wind speeds.
The average wind speed is approximately 2.5 m/s in most of
the experiments, flowing mostly from the east direction with
variations of 90º. The testing area is covered by a wireless
network and a Real-time Kinematic base station responsible
for sending position corrections to the mobile platforms. The
searching platforms execute onboard the same OSL algorithm
as in [15], running Robot Operating System framework on
SBC Intel NUC-i5 with 16Gb of RAM. The OSL algorithm
framework uses all observed values between movement goals
in the inference process. As the platforms are equipped with
four chemical sensors, the chemical measurement at each time
step t results from the maximum concentration of the four
sensors. Also, the framework was modified to use the wind
speed and direction as observations allowing a more accurate
convergence and a considerably less number of possible plume
combinations. Due to the random nature of the wind direction,
the platforms are initialised near one of the edges of the
searching space, opposite to the measured direction at the
actual instance. The maximum initial distance from the odour
source is 25 meters. The agent then starts searching for the
plume with a sequence of zig-zaging motion patterns, switch-
ing to the tracking strategy after a positive odour contact.
The linear speed of the platform was set to 0.5 m/s and the
measurement data was collected at a fixed height of 3 meters
over the ground. The work is evaluated over 20 experiments
per platform and sensor scheme.
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Fig. 7. Data sampled of one experiment for each platform and sensor scheme evaluated (Concentration in logarithmic scale). (a) Data of Reference platform.
(b) Data of Quad450 UAV. (c) Data of Quad860 platform. (d) Data of Hex980 UAV. (e) Data of Top scheme positioning. (f) Data of Upper Middle scheme
positioning. (g) Data of Lower Middle scheme positioning. (h) Data of Bottom scheme positioning.

Fig. 8. Statistics of field experiments in human operator mode. Left graphic
show the success rate and detection rate statistic. The right plot shows the
accumulated distance and the percentage allocated to the search and tracking
tasks.

IV. RESULTS

Figure 6 shows five OSL experiments where it is visible
the initial location of the drone, the trajectory and the real
and estimated odour source localisation. Due to the nature of
the wind, the drone is initialised in different positions, opposite
the measured wind direction.

From Figure 7a, the sample data from the reference platform
shows low fluctuations and an increasing mean concentration
as the platform moves closer to the odour source. This platform
achieved a success rate of 80% and a detection rate of
approximately 32%. On average it required approximately 86
meters of travelled distance to declare the source position
and spent 11.5% of the distance searching for the first odour
contact (Figure 8 Ref).

A. UAV Platform

The Quad450 UAV had a success rate of 65% and a detec-
tion rate 26% lower than the reference (Figure 8 Quad450).
The reduction of the detection rate can be explained by the

lower energy efficiency of the platform. The weight of the
platform is close to its maximum payload, requiring a higher
rotor speed to hover which in term pushes the chemicals away
from the sensors. The travelled distance also increased by 24
meters relative to the reference prompted by an inconsistent
mean concentration (Figure 7b). The same Figure suggests the
presence of external interference on measured data since the
concentration magnitude decreased far away from the odour
source, and close to the odour source has values similar to
the reference. Analysing the wind, it was observed a high
wind direction fluctuation, flowing mostly from East to West
with variations of 360º and a wind speed between 1 and 2
m/s. These variations lead to a higher search distance and
caused a negative impact on the estimation process. The highly
dynamic nature of the environment can result in deviations
on the belief map due to the mismatch between predicted
and observed data. The second UAV (Figure 8 Quad860)
beat the reference and the Quad450 in both the detection
rate (39%) and travelled distance (58 meters), although the
success rate is 25% lower than the reference and 10% lower
than the previous UAV platform. These results show that an
increase in the detection rate does not necessarily lead to a
better localisation process again, due to significant deviations
between the instantaneous observed data and the average value
from the dispersion model. The mismatch is noticeable in
Figure 7c where it is seen that odour comes into contact with
the sensors but the overall concentration is lower and the mean
concentration does not increase over time. The results suggest
that this platform has a high impact on the measurement
system which may be explained by the asymmetrical V shape.
This type of frame (Figure 3b) creates an unbalanced flow in
the location of the measuring system since the distance of
each rotor to the centre of the sensors is not equal. Lastly, the
Hex980 had the best success rate of the three drones with a
value of 70% and a 7% increase of the detection rate relative
to the reference. On average it travelled 57 meters to find the
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Fig. 9. The wind velocity and direction of an experiment. The velocity and
direction change rapidly at instants 30 and 310 seconds due to the highly
dynamic nature of the environment.

source with 27% of that value spent trying to find the plume.
Since the performance is similar to the Quad860, the results
(Figure 8 Hex980) indicate a higher measurement quality, that
can be related to the uniform airflow of the 6 rotors around the
sensors. The same quality can also be observed in Figure 7d
where the amplitude of the signal is similar to the reference
i.e., no disturbances from the motion of the propellers are
observed.

The increase of the search distance is related to the wind
condition (Figure 9 at the beginning of the experiments be-
cause the UAV was not placed opposite to the wind direction.
It was observed that, in the first stages, the wind was approxi-
mately 0.3 m/s from South-West but it rapidly increased to 1.2
m/s changing the direction to South-East. Under the studied
conditions, a higher detection and success rate combined with
a lower travelled distance makes the Hex980 the most efficient
platform for OSL. It outperformed the reference on both the
detection rate and travelled distance, however, the success rate
was 10% lower than the same reference.

B. Sensor Positioning

Figure 10 shows the results from the studied position
schemes with the Hex980 UAV in fully autonomous mode.
While four positions were analysed, OSL experiments were
only possible with three configurations, because the measured
signal was highly corrupted by the disturbance induced by the
downflow of the propellers. This will be discussed during the
course of this section.

The top scheme position (Figure 4a) which is the same as
the previous experiments, had a success rate of 46.7% and a
detection rate of 22.5%. Both these values were worst than the
ones performed with the same frame manned by the human
operator, except for the travelled distance which was similar.
Comparing the Figure 7d and 7e, the UAV in fully autonomous
mode reduces the magnitude of the measured concentration,
impacting the overall performance. A huge improvement was

Fig. 10. Statistics of field experiments with Hexacopter. Left graphic show the
success rate and detection rate statistic. The right plot shows the accumulated
distance and the percentage allocated to the search and tracking tasks.

observed in the upper middle scheme (Figure 4b) achieving
the best success rate of 71.7%, excluding the reference. The
high success rate and detection rate indicate an improvement
in the quality of the measured values although it was observed
an unpredictable increase in the travelled distance. From
Figure 7f, the magnitude values are similar to the reference
(Figure 7a) but an unexpected behaviour is observed at the
instant 325s where the sensor’s recovery does not reach the
baseline. This behaviour may justify a higher travelled distance
due to an increase of false detection’s, resulting from changes
in the sensor baseline, which in term increases the mismatch
between the predicted and the observed data. The third position
(Figure 4c) did not allow to perform the same number of trials
as can be seen from Figure 7g, where high-frequency compo-
nents in the acquired signal appeared due to the turbulence
level generated by the motion of the propellers. A possible
explanation is related to the technology of the sensor. The
gas-sensing layer of the MOX sensor is warmed by a platinum
heater responsible for targeting the sensitivity to specific gases.
When subject to the strong airflow produced by the propellers,
the heat dissipation of the platinum heater changes, which
generates an unstable reaction when the chemical contacts
the crystal, corrupting the measured signal. This observation
may also prove the unexpected baseline behaviour in the upper
middle position. The bottom region of the UAV (Figure 4d) is
less vulnerable to heat dissipation. The distance of the sensors
with respect to the frame attenuates the direct impact of the
airflow, maintaining the sensor baseline over time (Figure 7h).
These conditions result in a detection rate of 36%. The success
rate outperforms the top scheme with 63.3% but less 7.8% than
the upper middle position. The travelled distance increased
by more than 48% indicating a slower convergence of the
odour source estimation. In fact, the re-circulation pushes the
gas repeatedly towards the sensors, increasing the detection
rate of the target chemical. This can have a positive factor
on localisation strategies that rely on binary detection’s, since
a higher number of observations improves the convergence
of the belief, hence why a certain number of works refer to
bottom positions as the most advantageous [19]. On the other
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hand, re-circulation increases the fluctuation of the instanta-
neous measurements which for average concentration models
such as the Gaussian Plume leads to a higher discrepancy
between the predicted and the observed data.

To summarise, the overall success and detection rate values
were lower than those of the UAV platform experiments.
This leads to the conclusion that the motion dynamics of the
platform have a negative impact on the measurement process,
reducing the quality of the observations. The upper middle
position outperforms the remaining schemes with a slightly
higher travelled distance than the top position. The results
suggest that placing the sensors above the propellers leads
to higher quality measurements due to a stable airflow from
the intake region, while, below the propellers, the detection
rate is higher due to air re-circulation. The negative point is a
higher noise on the measured signal that can severely disrupt
the detection of the target chemicals.

V. CONCLUSIONS

This work studied the impact of the UAV platforms and
sensor positioning on OSL performance in natural conditions.
The searching mission was guided by a cognitive strategy,
and by a non-disturbing vertical pole carried by a human
operator, which served as a reference. The experiments seem
to indicate that small-size platforms are more vulnerable to
external conditions decreasing the performance of the localisa-
tion, whereas an asymmetric structure poses a negative impact
due to the non-uniform airflow. Overall, it was concluded
that the sensor locations and the motion dynamics impact
negatively in the search. The middle position, above the rotors,
lead to the best results in general and the bottom scheme
showed a high disturbance on the observed data. The position
immediately below the propellers produced the worst results
due to high level of turbulence. It was observed that the airflow
interfered with the correct operation of the sensor due to
temperature dissipation on the heater. For future work, sensors
with temperature compensation are going to be tested under
the propellers in order to evaluate if the quality of the measured
signals can be improved. The goal is to take advantage of the
higher detection rate observed in these regions, which may
be crucial for the success of the search when the number of
detections are scarce.
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Abstract— In this paper, we propose a novel vector-field
based guidance law for an unmanned aircraft (UA) to track
a stationary and a moving target while maintaining a desired
standoff distance under constant vehicle speed conditions in the
absence and presence of wind. The guidance law achieves the
convergence of the path of UA to the desired standoff distance
with its heading angle to the desired heading angle in finite-time.
We analyze the theoretical properties of the proposed guidance
law using Lyapunov theory and evaluate the performance of
the proposed guidance law through simulations and hardware
experiments.

Index Terms— finite-time, guidance vector field, target track-
ing, Lyapunov stability

I. INTRODUCTION

Unmanned Aircraft (UA) have various advantages over
manned aircraft namely safety, cost-effectiveness, precision,
flexibility, accessibility etc. Among the various applications,
safety is one of the most critical aspects as an UA can operate
in dangerous and hazardous environments without risking
human lives. This is mainly useful in military operations,
search and rescue missions, target observation or tracking
and monitoring natural disasters. Given the above, the inves-
tigation of target observation and tracking by UAs has been
very active.

The work done in [1] presents a framework for UA to track
a stationary as well as a moving target with and without wind
by using Lyapunov guidance vector field approach. In [2], the
authors have proposed a non-singular fast terminal sliding
mode guidance law to achieve the objective of tracking a
target by an UA. Tracking a target by multiple UA has an
advantage in terms of accuracy which has been done in [3].
Several other works have been done in recent years to achieve
the same objective [4], [5], [6], [7].

Realistically, in many situations, in addition to tracking,
there is a necessity of doing the same in finite-time or
under some bound which is known beforehand. Designing a

This work was supported in part by project RELIABLE (PTDC/EEI-
AUT/3522/2020), the ARISE Associated Laboratory (LA/P/0112/2020)
and RD Unit SYSTEC-Base (UIDB/00147/2020) and Programmatic
(UIDP/00147/2020) funded by national funds through the FCT/MCTES
(PIDDAC). It is also partially funded by SERB CRG Grant-
CRG/2021/007916. The first author was supported by a Ph.D. Scholarship,
grant 2022.11199.BD from Fundação para a Ciência e a Tecnologia (FCT),
Portugal.

finite-time controller is challenging as compared to designing
an asymptotically stabilizing control because of the lack
of effective analysis tools. Convergence rate also plays an
important role in examining the performance of a controller.
Some works in this direction can be found in [8], [9]
where the objective is to increase the rate of convergence
by increasing coupling strength, optimizing the system gain
or designing a better communication topology. But, all these
methods guarantee asymptotic convergence only. In practical
applications, achieving finite-time convergence is desirable
because the finite-time controllers lead to the improvement
in the behavior of systems such as: high-speed, disturbance
rejection and control accuracy. Finite-time target tracking is
an important problem in the field of UA. This problem is
challenging because of the uncertainty in the target’s motion,
environmental disturbances, and limited sensing capabilities
of the UA. However, the ability to track a target in a finite
time horizon has numerous applications, such as surveillance,
search and rescue, and monitoring of critical infrastructure.
One of the advantages of finite time target tracking by an UA
is its ability to cover large areas quickly and efficiently. An
UA can move faster and cover more ground than a human
on foot or in a vehicle, which makes it an ideal choice
for tracking a target over a wide area. Additionally, an UA
can fly at different altitudes and angles, providing a unique
perspective of the target and the surrounding environment.
This perspective can help in identifying and tracking the
target more accurately, even in challenging conditions such
as low light or bad weather. Another advantage of target
tracking by an UA is its potential to reduce the risk to
human life. In situations such as search and rescue operations
or monitoring of critical infrastructure, sending a human to
track a target can be dangerous and even life-threatening.
By using an UA for tracking, the risk to human life can be
minimized, and the task can be completed more efficiently.
Moreover, an UA can operate in areas that are difficult or
impossible for humans to reach, such as mountainous terrain
or hazardous environments.

Considering the advantages of an UA tracking a target
mentioned above, the main contributions of this paper in-
clude:
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• The development of a vector field based guidance law
for an UA to track a stationary and a moving target in
the presence of wind achieving convergence in finite-
time.

• The convergence analysis of the proposed vector field
guidance law using Lyapunov based tools.

• The illustration of the behavior and efficacy of the de-
veloped guidance law through various simulation results
as well as with some hardware experiments.

The remainder of the paper is outlined as follows: Section
II presents the basic concepts about finite-time criteria.
Section III is devoted to the problem formulation. Section IV
elaborates the main results for UA to achieve target tracking
in finite-time for various scenarios. Simulation results and
hardware implementation are discussed in section V which
verifies the efficacy of the proposed methodology while
section VI concludes this paper along with the scope of work
to be in done in future.

II. BASIC PRELIMINARIES

Let Ξ ⊆ Rn be an open connected set which includes the
origin. Consider a nonlinear system

ẋ = f(x(t)), x(t0) = x0 (1)

where x is a state vector signal of n-dimension and f :
Rn → Rn is a vector function with f(0) = 0 which is
assumed to be sufficiently smooth. The origin is Lyapunov
stable if for any x(t0) ∈ Ξ, the solution x(t;x0) exists ∀ t ≥
0, and for any ϵ > 0 there is a δ > 0 such that for any x0 ∈
Ξ, if ||x0|| ≤ δ then ||x(t, x0)|| ≤ ϵ ∀ t ≥ 0. Further, in
addition to the origin being Lyapunov stable, if the trajectory
converges in finite-time i.e. for any x0 ∈ Ξ there exists 0 ≤
T < +∞ such that x(t, x0) = 0 ∀ t ≥ T then the system’s
origin is finite-time stable in a pre-determined time and the
function

T (x0) = inf{T ≥ 0 : x(t,x0) = 0 ∀ t ≥ T}

is known as settling-time function for (1).
Proposition 1: A positive definite function V (t), which

satisfies

V̇ (t) ≤ −cV α(t), ∀ t ≥ t0; V (t0) ≥ 0 (2)

for any given time t0 ≥ 0, where c is a positive constant
and 0 < α < 1. Then there exists T ≥ t0 such that for
t0 ≤ T, V (t) will satisfy

V 1−α(t) ≤ V 1−α(t0)− c(1− α)(t− t0)

V (t) ≡ 0, ∀ t ≥ T with T = t0 +
V 1−α(t0)

c(1− α)
(3)

Refer to [10] for the proof.

III. PROBLEM FORMULATION

We consider an UA that is equipped with a low-level flight
control system that provides roll, pitch and yaw stability of
the aircraft as well as velocity tracking and altitude-hold
functions. For aircraft guidance, the flight control system

Fig. 1: Tracking geometry with the ground target of interest
at the origin of the target frame.

accepts explicit speed, and turn commands. Using this com-
mand structure, the system model presented to the guidance
layer is a kinematic model given as follows:

ẋ = u1 cosψ

ẏ = u1 sinψ

ψ̇ = u2

(4)

where [x, y]T ∈ R2 is the inertial position of the aircraft and
ψ is the aircraft heading angle. The control signals are u1 and
u2 which denotes the commanded air speed (m/s) and the
turning rate of the aircraft (rad/s) respectively. For the above
kinematic model, the relative position between UA and a
given target located at [xt, yt]T is given by xr = x−xt, yr =
y− yt. We assume the position of the target is continuously
differentiable in time. For convenience, we also define here
the radial distance as

r =
√
x2r + y2r (5)

Let the steady wind components which is assumed to be
constant be given by [wx, wy]

T (m/s). Then, the modified
kinematic model w.r.t. the target and the wind takes the form

ẋr = u1 cosψ + wx − ẋt
ẏr = u1 sinψ + wy − ẏt
ψ̇ = u2

(6)

where [ẋt, ẏt]
T denotes the velocity of the target. For simpli-

fication purpose, let us take [Tx, Ty]
T = [wx − ẋt, wy − ẏt].

The main guidance objectives are as follows:
• To make a UA loiter around a stationary target at a

constant stand-off radius (rd), with and without wind
disturbance.

• Loitering of a UA around a moving target with a
constant velocity in the presence and absence of dis-
turbance.

• To drive the error between the relative position of UA to
the stand-off radius to zero in finite-time while tracking
a stationary and a moving target.

11th European Conference on Mobile Robots – ECMR 2023, September 4–7, 2023, Coimbra, Portugal

375



IV. FINITE-TIME TARGET TRACKING

In this section, we present the results for the tracking of a
stationary and a moving target by an UA. For the kinematic
model defined in (6) and taking (5) into account, we take ẋd
and ẏd as the desired relative velocity of the UA. Thus, we
present a guidance vector field as given below:
For rα ≤ r < rd*:

[
ẋd
ẏd

]
=
λv0
r2

[
P1 +R1

P2 −R2

]
(7)

For r ≥ rd:
[
ẋd
ẏd

]
= −λv0

r2

[
Q1 − S1

Q2 + S2

]
(8)

where

P1 = xr(r
2
d − r2)(2α−1), R1 = yr

√
r2 − (r2d − r2)2(2α−1)

P2 = yr(r
2
d − r2)(2α−1), R2 = xr

√
r2 − (r2d − r2)2(2α−1)

Q1 = xr(r
2 − r2d)(2α−1), S1 = yr

√
r2 − (r2 − r2d)2(2α−1)

Q2 = yr(r
2 − r2d)(2α−1), S2 = xr

√
r2 − (r2 − r2d)2(2α−1)

α ∈ (0, 1), rα denotes the boundary below which (7) is not
defined and λ is known as scaling factor which is evolved
in time according to the following expression

λ2(ẋ2r + ẏ2r)− 2λ(ẋrTx + ẏrTy)+ (T 2
x +T 2

y − v20) = 0 (9)

where v0 is a given nominal speed for the UA. The desired
heading angle of the UA is given by

ψd = tan−1

(
λẏd − Ty
λẋd − Tx

)
(10)

Remark 1: For the case of stationary target with no wind,
the scaling factor takes the constant value unity and the
desired heading angle is given by

ψd = tan−1

(
ẏd
ẋd

)
(11)

The result for an UA to loiter around a target at a stand-off
radius rd, is given below.

Theorem 1: Let ρd(rd) = {(x, y) ∈ R2 : (x − xt)
2 +

(y−yt)2 = r2d} be a given desired circular path of radius rd
centered at the target, and v0 > 0 a given nominal speed for
the UA. Then, the position of the UA converges to ρd(rd)
in finite-time by selecting the control signals

u1 = λv0 (12)

u2 = −sgn(e)|e|η + ψ̇d (13)

where η ∈ (−1, 1), e = ψ − ψd denotes the error between
the actual and the desired heading angle.

*For the expression given in (7), r < rα is not in the domain of the
function defined. In the simulations we choose the optimum value α = 3/4
for which rα = rd/

√
2. However, any value in the range 2/3 ≤ α ≤ 3/4

can be preferred.

Proof: Consider a Lyapunov function V (x, y) = (r2−
r2d)

2, and suppose that (ẋr, ẏr) = (ẋd, ẏd). Then, it follows
that

V̇ = 4(r2 − r2d)(xrẋd + yrẏd) (14)

Then, in case of stationary target with no wind i.e.,
[wx, wy]

T = [0, 0]T and [ẋt, ẏt]
T = [0, 0]T , it follows that

for rα ≤ r < rd and r ≥ rd, putting Eq. (7) and (8)
respectively in (14) we obtain

V̇ = −4λv0(r2 − r2d)2α
= −4λv0V α

(15)

Thus, Eq. (15) satisfies the finite-time criteria given by Eq.
(2) in proposition 1, where c = 4λv0. To end this part of the
proof, we need to show that the proposed desired guidance
vector field can be generated through (12)-(13). To this end,
we set

u1 =
√
ẋ2d + ẏ2d = λv0 (16)

To show the convergence of actual heading angle to the
desired heading angle ψd we take the error e = ψ − ψd

and the Lyapunov function V (e) = (1/2)e2 whose time
derivative is

V̇ = e(u2 − ψ̇d) (17)

Putting Eq. (13) in Eq. (17), we get:

V̇ = e

(
− e

|e| |e|
η

)
= −e2| ±

√
e2|(η−1)

= −2V |
√
2V |η−1 = −2( η+1

2 )V ( η+1
2 ) = −cV α

(18)

where, α =
(
η+1
2

)
, c = 2α, and −1 < η < 1. Since, Eq. (18)

satisfies finite-time criteria given by (2), we can conclude that
ψ converges to ψd in finite-time. Now, let us consider the
case of moving target in the presence of wind. We define a
polar coordinate system (r, θ), centered at the inertial target
position [xt, yt]

T , with r =
√
x2r + y2r and θ = tan−1

(
yr

xr

)
.

Thus, the guidance vector fields defined in (7) and (8) can
be expressed respectively in polar form as

[
ṙ

rθ̇

]
=
−λv0
r

[
−P1/xr
R1/yr

]
+

[
B1

B2

]
(19)

[
ṙ

rθ̇

]
=
−λv0
r

[
Q1/xr
S1/yr

]
+

[
B1

B2

]
(20)

where B1 = Tx cos θ+Ty sin θ and B2 = Ty cos θ−Tx sin θ.
From (19) and (20), it follows that at r = rd, ṙ = Tx cos θ+
Ty sin θ. Note that apart from the stationary target with no
wind case, the vector field will always have a non-zero radial
component. Thus, if we use the vector fields defined in (7)
and (8) in (6), it does not give a constant commanded speed
of v0. Therefore, in order to maintain the UA at the desired
stand-off radius (rd), we make use of the scaling factor λ
and set the desired velocity u1 of the UA such that

[
u1 cosψ
u1 sinψ

]
=

[
λẋd − Tx
λẏd + Ty

]
(21)
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The updated value of λ is obtained by (9) which is used
to calculate the desired heading angle given by (10). Thus,
utilizing the updated scaling factor λ and using the control
function given in (13), the path of UA converges to desired
stand-off radius in finite-time for the case of moving target in
presence of wind. Utilizing the similar approach, results for
the path convergence of UA to the desired stand-off radius in
case of stationary target with wind and moving target without
wind can be obtained.

V. SIMULATION AND EXPERIMENTAL RESULTS

We evaluate the proposed vector field based guidance
through simulations and hardware experiments. Initially, we
will describe the simulation setup and the simulation results
followed by hardware setup and results.

A. Simulation setup

We consider the following simulation setup: initial position
of UA: [600, 700]T , initial heading angle = 0 rad/s, UA
velocity = 30 m/s, Scaling factor, λ = 1 , α = η = 3/4
and stand-off radius (rd) = 300 m, controller turning rate
gain: 10, ωmax = 0.2 rad/s , wind component: [wx, wy]

T =
[2, 3]Tm/s, velocity of the target: [0, 10]Tm/s .

B. Simulation results

Figure 2a shows the convergence of UA path to the
desired stand-off radius of 300 m while loitering around a
stationary target in absence of wind while fig. 2b represents
the corresponding error between the UA position to the
desired stand-off distance, which is converging to zero in
finite-time. Figure 3a represents the trajectory of an UA
loitering around a stationary target with wind while fig. 3b
represents the corresponding error between the UA position
to the desired stand-off distance, which is converging to
zero in finite-time. Figure 4a shows the efficiency of the
derived finite-time steering controller when there is a zero
mean Gaussian noise with standard deviation σ = 0.01 along
with a constant wind for the case of tracking a stationary
target while fig. 4b represents the error between the UA path
and the desired stand-off radius for the same case. Figure
5a shows the trajectories of moving target while an UA
loiters around it at a desired standoff distance in absence of
wind. Figure 5b represents the corresponding error between
the UA position to the desired stand-off distance, which
is converging to zero in finite-time. Figure 6a shows the
trajectories of moving target and an UA loiters around it at
a desired standoff distance in presence of wind while fig. 6b
represents the corresponding error between the UA position
to the desired stand-off distance, which is converging to
zero in finite-time in presence of wind. Figure 7a represents
the tracking of a moving target by an UA in present of
disturbances i.e., wind with a constant velocity and a zero
mean Gaussian noise with σ = 0.01 whereas fig. 7b is the
corresponding error between the UA path and the moving
target for the same case.

Target

UA Path

r
d

(a) Trajectory of an UA tracking a stationary target while maintain-
ing a standoff distance with the target in absence of wind.

60 70 80

-0.1

0

0.1

(b) Error between the position of UA and the desired target stand-
off radius of 300m.

Fig. 2: An UA tracking a stationary target in absence of wind.

Target

UA Path

r
d

(a) Trajectory of an UA tracking a stationary target while maintain-
ing a standoff distance with the target in presence of wind.

60 70 80

-0.1

0

0.1

(b) Error between the position of UA and the desired target stand-
off radius of 300m with wind.

Fig. 3: An UA tracking a stationary target in presence of
wind.
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Target

UA Path

r
d

(a) Trajectory of an UA tracking a stationary target while maintain-
ing a standoff distance with the target in presence of wind and a
Gaussian noise.

60 70 80

-2

0

2

(b) Error between the position of UA and the desired target stand-
off radius of 300m with wind.

Fig. 4: An UA tracking a stationary target in presence of
disturbances (wind and Gaussian noise).

Moving Target

UA Path

(a) Trajectory of an UA tracking a moving target in absence of wind
and maintaining a standoff distance from it.

60 80 100

-1

0

1

(b) Error between the position of UA and the desired target stand-
off radius of 300m without wind.

Fig. 5: An UA tracking a moving target in absence of wind.

Moving Path

UA Path

(a) Position of moving target and UA in presence of wind.

60 80 100
-1

0

1

(b) Error between the position of UA and the moving target to the
desired stand-off radius of 300m with wind.

Fig. 6: An UA tracking a moving target in presence of wind.

Target

UA Path

(a) Trajectory of an UA tracking a moving target while maintaining a
standoff distance with the target in presence of wind and a Gaussian
noise.

60 70 80

-0.6

-0.4

-0.2

0

(b) Error between the position of UA and the desired target stand-
off radius of 300m with wind.

Fig. 7: An UA tracking a moving target in presence of
disturbances (wind and Gaussian noise).
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Fig. 8: Experimental plot of trajectory of an UA tracking a
stationary target.

C. Hardware Implementation

In this experiment, we employ a real-time hardware con-
figuration to evaluate the practical implementation of sta-
tionary and a moving target tracking by an UA with a finite-
time Lyapunov guidance field. We used BitCraze Crazyflie
2.1 nano-copter as UA and Dagu Wild Thumper 4WD as
the target vehicle to achieve our objective. We employed the
Lighthouse System [11], which tracked the location of the
CrazyFlie, equipped with Lighthouse positioning decks, in
a 3.5m × 3.0m × 2.0m arena using four SteamVR Base
stations. In addition, we mounted a Lighthouse positioning
deck-equipped Crazyflie drone on the Dagu rover to enable
the real-time monitoring of its position and movement. The
companion computer, running on Ubuntu 20.04 with Nvidia
RTX 3060 GPU, executed our algorithm and processed the
live locations of the UA and the target through CrazyFlie
as input from the CrazySwarm ROS package’s appropriate
rostopics to compute the real-time next iterative waypoints
of the UAs [12] [13]. Subsequently, the companion com-
puter sent the calculated actions to the CrazyFlie via the
CrazySwarm ROS package. The experimental videos are
given in [14] along with the error and convergence results.

D. Hardware results

Using the above hardware setup, a single vehicle target
stand-off experiment was carried out for two cases i.e.,
stationary and a moving target. The target speed was 2cm/s,
and the UA speed was 5cm/s. Figure 8 shows the trajectory
of the stationary target and the single UA following the target
while maintaining the desired stand-off radius of 0.5m while
fig. 9 shows the same for the moving target (desired stand-off
radius = 0.5m). From the figure, we can see that the vehicle
tracks the target.

VI. CONCLUSION AND FUTURE WORKS

In this paper, the problem of tracking a stationary and a
moving target by an UA in the absence and presence of
disturbance is investigated. The expression for the vector
guidance field is proposed in such a way that an UA is
guided to a stand-off radius in finite-time from the target
and loiter around it in absence and presence of disturbance.
Convergence analysis using Lyapunov theory is carried out.
Moreover, the control function is derived for the heading

Fig. 9: Experimental plot of trajectory of an UA tracking a
moving target.

angle which takes the UA to the desired heading angle in
finite-time.

The proposed guidance law can be further generalized for
any number of vehicle target stand-off distance. Effect of
wind is considered but the effect of communication delay
needs to be analyzed. Further extensions can be done for (i)
tracking a group of targets with varying desired radius (ii)
integrating target velocity estimation and stand-off distance
(iii) Coordinated standoff tracking by multiple UAs.
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Late-Fusion Multimodal Human Detection based on RGB and Thermal
Images for Robotic Perception
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Abstract— This paper addresses the problem of detecting
humans in RGB and Thermal (long-wave IR) images taken by
cameras mounted onboard a mobile robot. Human/Pedestrian
detection is currently one of the most pertinent object detection
problems, mainly due to safety concerns in autonomous vehicles.
The majority of approaches apply deep-learning techniques
based solely on RGB images. However, they have a few
shortcomings, namely that during foggy weather, nighttime,
and low-light scenarios, these images may not contain sufficient
information. To address these issues, this work studies the use
of thermal cameras as a complementary source of information
for human detection in indoor and outdoor environments. The
proposed approach uses YOLOv5 to detect pedestrians in both
thermal and RGB images. Moreover, the different modalities
are combined using early and late fusion techniques. Evaluation
of the proposed approach is carried out in the FLIR Aligned
dataset and in a new in-house dataset. Results indicate that the
use of fusion techniques highlights a promising way to improve
the overall performance in this application domain.

I. INTRODUCTION

The importance of human detection has been established
in the scientific community for a long time now. From
indoor patrolling to autonomous driving, the applications of
detecting humans, pedestrians, and intruders are many [1]–
[5]. Most of the work done in this area has been using either
RGB cameras, LIDAR sensors, or a combination of both [6]–
[10]. However, there are scenarios where both RGB images
and LiDAR point clouds show their limitations, such as when
dealing with varying lighting conditions or shadows in RGB
images, or when the subjects of interest are too far away and
the LiDAR-points that represent the human are too scattered.
As part of multi-modal approaches (see Fig. 1), the use of
Thermal cameras can overcome some limitations found in
RGB cameras and LiDARs.

Thermal sensors represent the environment solely by de-
tecting the thermal (long wave infrared) energy emissions.
Unlike RGB cameras, thermal sensors are more invariant
to lighting conditions and robust to a wide range of light
variations and weather conditions [11]. As such, Thermal
cameras can be used in poor lighting or weather conditions
in which regular RGB cameras may produce poor results,
such as rain and fog. RGB cameras can, in particular, also
show particularly poor performance when the scenarios of

1 Authors are with the Institute of Systems and Robotics, Department of
Electrical and Computer Engineering, University of Coimbra, Portugal.

2 Authors are with the Institute of Mathematics and Computer Science,
University of São Paulo, Brazil

∗ Corresponding Author: elisio.alex.sousa@gmail.com
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Thermal Image
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(RGB)

YOLOv5
(Thermal)

Fig. 1. Proposed illustration of a pipeline encompassing two YOLOv5
models and a late detection fusion stage.

interest include partial or total darkness. In this case, the
use of night vision cameras is arguable, as thermal images
present an advantage against occlusion: to support such an
argument, the set of RGB and Thermal image pairs taken
from the FLIR-Aligned [12] dataset and our in-house dataset,
shown in Fig. 2, highlight some of these limitations.

Additionally, an interesting aspect of thermal cameras
that can also be highlighted is that they do not represent
people’s faces in as much detail as RGB cameras do. This
characteristic can also be important in human-populated
and/or outdoor scenarios since they conserve much more of
the pedestrian’s privacy. However, thermal images do not
come without their downsides. For example, clear glass can
filter out the infrared radiation that thermal sensors detect,
whereas it will not filter radiation in the visible spectrum
(i.e., RGB).

Multi-modal approaches, on the other hand, present an
important way to combine key characteristics/attributes of
both RGB and Thermal cameras to improve the overall
performance in human detection tasks. The work proposed
hereafter (see Fig. 1) aims to use thermal images as a
source of information for human/pedestrian detection, by
using YOLOv5. The obtained model will be combined with a
YOLOv5 model, trained with RGB images, in a multimodal
configuration using a late fusion stage (illustrated in Fig. 1).
Therefore, each modality can complement the shortcomings
of the other one. Moreover, an early fusion strategy will be
studied as well.

The contributions of this study are related to multi-
modality combinations employing early and late fusion
strategies, both having state-of-the-art deep-detectors as a
baseline. More specifically, the contributions are the follow-
ing:
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Fig. 2. Selection of scenarios from the FLIR-Aligned dataset [12] (outdoor) and the in-house dataset (indoor) containing RGB and Thermal image pairs,
where some limitations of RGB cameras are highlighted. The scenarios contain occlusions, lens flare artifacts, and glow artifacts.

• Early fusion: RGB and Thermal images are integrated in
a state-of-the-art deep-detector (YOLOv5). The data loaders
and the first layer of the YOLOv5 model were modified to
train and infer on an RGB-Thermal image.
•Late fusion: For each image of the validation set, a list

of all the detections is compiled, from both modalities, and
a rescoring strategy is applied. This list already removes
duplicates i.e., if both modalities contain bounding boxes
that match the same ground truth, only the thermal detection
is kept.
• Dataset: a new “in-house” dataset for indoor environ-

ments has been built on RGB and Thermal data, using
cameras mounted onboard a mobile robot, encompassing
representative conditions found in the real world.

In terms of structure, Section II provides a brief review
of the use of thermal images for pedestrian detection and
related works. In Section III the proposed approaches and
respective methodologies are presented. Section IV discusses
the results of experiments carried out in the FLIR-Aligned
dataset (outdoor) and in an in-house dataset (indoor). Finally,
Section V concludes the paper with remarks and suggests
future directions.

II. RELATED WORK: A BRIEF OVERVIEW

Investigation into studies related to pedestrian or human
detection in thermal images is a long-standing topic, with
papers dating as far back as 2004 [13]. Back then, i.e., before
the deep-learning wave, the main strategies were based on
background subtraction and/or hand-engineered descriptors
(e.g., HOG) to obtain the contours of pedestrians, aided
by the fact that these kinds of thermal images offer better
contrast between pedestrians and the background [14], [15].

The lack of thermal datasets led some researchers to try to
use RGB detectors for the thermal domain, again trusting that
the contrast offered by thermal images would increase the
detection rate [16]. Furthermore, due to the small number of
publicly available datasets a few years ago, some researchers
attempted synthesizing artificial thermal images [17], [18] or
using thermal information to enhance the RGB input [19].

Meanwhile, as a meritorious attempt to fill in this gap,
more and more researchers collected datasets containing
RGB and Thermal images captured at the same time.
Datasets such as in [20], [21] are good examples of those that
have been made publicly available. In the same direction,
KAIST [22] and FLIR [12] are some of the meaningful

datasets that have been used for benchmarking state-of-the-
art detectors. Nevertheless, notice that both of them encom-
pass outdoor scenarios i.e., more suitable for autonomous
vehicles. Table I shows other datasets used in the literature.
The release of additional datasets coincided with the advance
of deep learning methods, steering current research into using
deep learning detectors such as YOLO [23].

Additionally, there has been an increasing number of
works centered around investigating sensor/data fusion tech-
niques, so that RGB and thermal images can complement
each other, rather than being treated as separate use cases
[24]–[26]. These techniques are classified into early, middle,
and late fusion. Early-fusion techniques include approaches
that combine the different modalities in the model input
domain (i.e., raw data), before feeding them to a model. In
the middle-fusion techniques, specific layers extract features
of each modality, which are combined by different operations
between the layers of the model. Finally, late-fusion methods
are responsible for combining outputs from different models,
specialized in each modality.

For human detection, the most common modalities are
RGB, depth, and multispectral (e.g., thermal) images, and
point cloud. Pei et al. [24] combined RGB with infrared
(IR) images using two-branches deep convolutional neu-
ral networks, that fuse the features of each modality ex-
tracted by specialized convolutional layers. They explored
three fusion operations (i.e., sum, concatenation, and max),
where the sum of feature vectors achieved the best results.
Other primary studies employed different operations, such
as attention-mechanism [27]–[30], residual connections [25],
[26], and feature pyramid [31].

For early fusion methods, techniques range from con-
catenating image channels from different modalities [32],
using one modality to define regions of interest (ROI), or
using channels from one modality to enhance features of
another [33]. The disadvantage of early and middle fusion
lies, respectively, in the ability to relate significant cross-
modality features; and, high computational and memory cost,
and limitations for real-time applications (i.e., especially as
it requires more layers and complexity of networks).

In this sense, late-fusion approaches aggregate the output
of different models to enhance the reliability of detections.
The aggregate operation can be performed by probabilistic
frameworks [34], rule-based [32], or data-driven methods
[35].
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Fig. 3. Early-fusion Model with Channel Concatenation for Human
Detection.

This paper explores data-driven late-fusion for rescoring
detections using RGB and thermal images. The rescoring
process combines the detections of each modality and esti-
mates new confidence values based on spatial and contextual
features. The advantages of this approach are the lightness of
the fusion network, which allows its application in real-time,
and the versatility in combining different modalities. The ex-
perimental results showed the feasibility of the proposal with
performance gains in relation to the baselines evaluated in
the FLIR dataset (outdoor) and an in-house dataset (indoor).

III. DATA-DRIVEN LATE FUSION HUMAN DETECTION
USING RGB AND THERMAL IMAGES

This section describes the data-driven human detection
deep learning approach that combines RGB and thermal
modalities and reevaluates their confidence scores (i.e.,
rescoring). Moreover, it also presents the early-fusion ap-
proach used for comparison in Section IV.

A. Early-Fusion

In contrast with late fusion, which involves combining the
detections of separate RGB and Thermal image models, early
fusion, in this context, involves combining RGB and Thermal
images into a single input image, which is then fed into the
detector. Figure 3 shows a flowchart that illustrates the model
with channel concatenation. The advantage of early fusion
lies in the simplicity of modeling both RGB and Thermal
modalities, which can lead to a better performance of the
detector at the expense of a more computationally expensive
architecture. However, this approach assumes that the cross-
modality interactions are implicitly learned during the model
training.

In this work, the YOLOv5 [42] model was modified to
accept as input a 4-channel image corresponding to the 3
channels of the RGB image and 1 channel of the Thermal
image. To guarantee the correctness of the models, the data
loader was updated to import 4 channel images from the
datasets, and data augmentation strategies were modified
to propagate affine transformations to the thermal channel
and to avoid equalization/brightness/contrast transformations
from the RGB image to be applied to the thermal channel.

B. Late-Fusion

The late-fusion approach combines the detections per-
formed in each modality. Therefore, a modality-specific
YOLOv5 estimates bounding boxes with scores for each

modality. These outputs are combined on a third network,
which also estimates new scores based on the fusion data.
Figure 1 illustrates this process.

The data-driven rescoring approach is based on Asvadi et
al. [35], that proposed a multimodal vehicle detection system
with real-time capabilities, that combined RGB images with
dense depth and reflectance images estimated by a LiDAR
sensor. Moreover, they employed a Multi-Layer Perceptron
(MLP) for estimating new scores based on the detections and
scores of each modality. The input of the rescoring module
is a feature vector with spatial features and detection scores
of bounding boxes that were matched based on their overlap.
However, in this paper, besides the spatial features, we used
contextural features to improve the rescoring model.

1) Rescoring Neural Network Training Method:
As previously stated, one of the late fusion techniques

applied in this work consists of a rescoring method, which
relies on a Multi-Layer Perceptron (MLP). For the training
stage of this model, we used Mean Square Error as the loss
function

L =
1

N

N∑

i=1

(p− t)2,

where N is the number of detections, p is the rescored
confidence and t is the target confidence, defined by the
Intersection over Union (IoU) between the detected bounding
boxes and the ground-truth.

For each detection, the following feature vector is built:
• Spatial features: these features refer to information on

the positions and dimensions of the bounding boxes.

S = (h,w, xc, yc, a, cIoU ) (1)

where (h,w) are the height and width of the bounding box,
(xc, yc) are the geometrical center, a is the area, and cIoU is
the Intersection over Union (IoU) between the thermal and
RGB detections (0 if the detection does not have a match).
• Confidence features: these features represent the con-

fidence that modality-specific models associate with their
detections.

P = (s, tbs, rgbbs) (2)

where s is the confidence score of the detection, and,
(tbs, rgbbs) are the Brier scores of the thermal and RGB
detection, respectively.
• Contextual features: these features correspond to the

semantic and contextual information of the environment,
such as lighting, density of people, and sensors.

C = (tn, rgbn, night, type) (3)

where (tn, rgbn) are, respectively, the number of thermal and
RGB detections; night is a categorical variable that defines
if the image was taken at night (i.e., night = 1) or not (i.e.,
night = 0). And type = 1 if the detection came from the
thermal modality, or type = 0 if RGB.
• Rescoring Feature Vector: the overall rescoring feature

vector is defined as the union of all aforementioned features,
that is:

F = S ∪ P ∪ C (4)
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TABLE I
SUMMARY OF DATASETS FOR OBJECT DETECTION THAT CONTAIN RGB AND THERMAL IMAGES

Dataset Year Sensors Description

OSU-CT [14] 2007 TIR, RGB Thermal and RGB pictures taken in an outdoor urban environment.
KAIST [22] 2015 TIR, RGB Dataset built purposely to increase the amount and quality of datasets available for thermal/RGB image

pairing.
CVC-14 [36] 2016 FIR, RGB Day and night sets of Thermal and RGB sequences.
MODAV [37] 2017 NIR, MIR,

FIR, RGB
A novel multispectral dataset generated for autonomous vehicles which consists of RGB, NIR, MIR, and
FIR images, taken at day and nighttime.

VIPER [38] 2017 LWIR,
RGB

Data from pictures and videos taken in an outdoor train station in Brugge, Belgium.

PST900 [39] 2019 LWIR,
RGB

Data set containing indoor Thermal and RGB images in the context of the DARPA Subterranean Challenge.

FLIR [12] 2020 TIR, RGB The aligned version of the FLIR dataset, which contains synced annotated thermal imagery and non-annotated
RGB imagery for reference.

LLVIP [40] 2021 TIR, RGB This dataset contains 30976 images, or 15488 pairs, most of which were taken at very dark scenes, and all
of the images are strictly aligned in time and space.

UMA-SAR [41] 2021 RGB, TIR Collection of multimodal raw data captured from a manned all-terrain vehicle in the course of two realistic
outdoor SAR exercises for actual emergency responders conducted in Spain in 2018 and 2019.

In-House 2023 RGB, TIR Dataset acquired in-house by a team of students, containing 1282 aligned and manually annotated Thermal
and RGB image pairs.

The feature vector is fed to a MLP, composed of a fully-
connected layer with sigmoid activation function. The layer
has 24 neurons. At the output of the neural network, a
single value between 0 and 1 is generated, which is the new
confidence score for that detection. With this rescoring ap-
proach, applied at the end of the thermal and RGB detection
pipelines, the aim is to confer greater detection flexibility
that allows for the model to be calibrated by considering
context clues from the multi-modal detections.

The model was trained for Ne = 1000 epochs. Thus, for
each epoch, a fitness value was calculated, which follows the
same rules as YOLOv5, i.e., the fitness considers 10% of the
AP@50 value and 90% of the AP@50:95 value, granting a
fitness value between 0 and 1 expressed by

fitness = 0.1(AP50) + 0.9(AP50:95).

If the fitness value did not improve for Np = 75 consecutive
epochs (patience parameter), the learning rate was then re-
duced by 10%, and the epoch with the best results was loaded
so that the training could continue from there. Furthermore,
if the fitness value did not improve for Ntp=500 consecutive
epochs, despite the previous patience mechanism, then the
training would stop and the epoch with the best results
would be the chosen-trained model. The initial learning
rate was lr = 0.035 and the batch size was 256. These
hyperparameters were tuned experimentally.

IV. EXPERIMENTS AND RESULTS

In this section, the datasets used to support the experiments
are described, followed by the performance measures and the
achieved results.

A. Datasets

Two datasets were used to train and evaluate the proposed
models, being: FLIR (outdoor) and a Thermal/RGB dataset

made in-house (indoor). The FLIR dataset contains around
10 000 manually annotated Thermal images and their corre-
sponding RGB images for reference, collected during both
day and nighttime conditions. The version used in this work
comes from [12], where the authors removed the unaligned
visible-thermal pairs and ended up with 5 142 image pairs.
Furthermore, the thermal resolution of the images in this
dataset closely resembles our in-house dataset. The in-house
dataset contains 1 282 thermal and RGB images manually
annotated (757 training and validation, and 525 for testing),
acquired using a mobile robot, driving in human-populated
indoor scenes, containing samples from areas in low lighting
conditions.

B. Evaluation Metrics

To evaluate the proposed approaches, we employed super-
vised detection metrics used in the COCO detection chal-
lenge, being: mAP@50, the mAP (Mean Average Precision)
applied with an IoU threshold of 0.5; mAP@50:95 the
mAP applied at IoU thresholds between 0.5 and 0.95 at a
step of 0.05. And, an additional metric called Log-Average
Miss Rate (LAMR) [43].

C. Results

Table II shows the results of the baseline (i.e., modality-
specific networks), and early and late fusion approaches on
the FLIR and in-house datasets. In the baseline methods, in
which a Yolov5-small was trained for each specific modal-
ity, the thermal modality achieved the best performance,
probably due to the contrast between the humans and the
background. Moreover, the results also demonstrated that
human detection in outdoor environments presents a greater
challenge due to the complexity of the environment, espe-
cially for RGB images alone.

The early-fusion method improved by 18.73% the
mAP@50 on the FLIR dataset compared to the RGB
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TABLE II
RESULTS OF THE FUSION METHODS IN THE TESTING DATASET

Model Dataset Modality mAP@50 (%) mAP@50 : 95 (%) LAMR (%)

Baseline
FLIR thermal 77.236 40.524 43.049

RGB 57.311 23.178 63.738

In-House thermal 83.868 52.864 25.738
RGB 79.674 46.269 34.383

Early
Fusion

FLIR thermal +
RGB 76.041 37.421 44.946

In-House thermal +
RGB 75.11 43.09 41.51

Late
Fusion

FLIR thermal +
RGB 79.355 41.08 43.321

In-House thermal +
RGB 84.216 52.158 27.628

baseline. However, it decreases by 1.19% compared to the
thermal modality. These results support the premise that
thermal data can help improve detection, especially in low-
light environments, present in the FLIR dataset. However,
in the in-house dataset, the thermal data concatenated to the
RGB channels showed no improvement for an early-fusion
approach.

Similarly, the late-fusion improved by 22.04% and 2.12%
the mAP@50 when compared to the RGB and thermal
baselines on the FLIR dataset, respectively. In the in-house
dataset, it improves by 4.54% (RGB) and 0.348% (thermal).
These results show that rescoring can be a good technique to
slightly improve detection results by calibrating the detection
scores. On detectors with already high baseline values, such
as the in-house dataset baseline, the rescoring method does
not seem to produce as many beneficial effects. On the other
hand, the results seem to show a correlation between the
number of samples in the dataset and the performance of
the rescoring algorithm on the metrics, since performances
overall seem to be better on the FLIR dataset than the in-
house dataset.

Additionally, Table III shows the performance that four
bounding box merging techniques have on the late-fusion
method, being:
• Biggest: this case, both bounding boxes are merged such

that the new bounding box covers the entire areas of both
bounding boxes;
•Mean: in this case, the (x, y) center of the new bounding

box is halfway between the RGB and Thermal bounding box
geometrical centers;
•Weighted Mean: same strategy as mean, but instead of

the new center being halfway between RGB and Thermal
centers, it is shifted to be closer to the bounding box with
the biggest area;
•Neural Network: instead of taking predetermined vari-

ations of (x, y), width and height like in the previous
strategies, this one consists of adding four more outputs to
the MLP. These four outputs correspond to the x, y, width
and height variations that the merged bounding box may take,
and the MLP is trained to not only rescore the detection, but
also to get the variations that best merge the two bounding
boxes together.

For both FLIR and in-house dataset, the best results seem
to come from the “Neural Network” strategy. For the FLIR
dataset, throughout all strategies, we see an increase in the

TABLE III
PERFORMANCE OF BOUNDING BOXES MERGING TECHNIQUES

Merging Strategy Metric FLIR In-House

Biggest
AP@50 83.308 85.519

AP@50:95 40.201 44.091
LAMR 29.038 23.99

Mean
AP@50 83.412 86.015

AP@50:95 41.346 46.149
LAMR 28.59 20.798

Weighted Mean
AP@50 83.191 86.067

AP@50:95 40.907 45.891
LAMR 29.749 20.348

Neural Network
AP@50 83.484 86.189

AP@50:95 41.531 50.985
LAMR 28.128 19.610

mAP@50 between 5.732 and 6.248, in comparison with
Non-Maximum Suppresion (NMS) used in the rescoring
algorithm, which provided only an increase of 2.119. For the
in-house dataset, we see an increase ranging between 1.652
and 2.322 in comparison to 0.348. This means that creating
a new bounding box out of the geometric information of
the thermal and RGB bounding boxes provides better results
overall.

V. CONCLUSION AND FUTURE WORK

This work concentrated on the human/people detection
domain, using RGB and/or Thermal (long-wave IR) cameras,
which finds applications in robotics, surveillance, and au-
tonomous driving. This study is focused on the development
and implementation of fusion or combination strategies that
use both modalities to output new detections with calibrated
confidence scores and geometrical properties which increase
the accuracy and robustness of the detections. YOLOv5 has
been used as the baseline for both single and combined
modalities. Besides the FLIR dataset, we have collected
RGB and Thermal images from cameras mounted onboard a
mobile robot in real-world indoor conditions. This ‘in-house’
dataset complemented the experiments.

In terms of sensor/data fusion strategies, in this paper,
we have implemented both early and late fusion approaches
and reported the finding results. Detailed experiments are
described, and the achieved results allow us to conclude that
the combination of RGB and Thermal improves the results in
terms of performance measures in comparison to the single-
modality baselines.

In challenging real-world applications involving robots or
autonomous vehicles, safety is of major concern. Thus, com-
bining more than one sensor would allow more redundant
and complementary solutions, reflecting on the robustness
of the systems. The use of contextual information and
multimodal combination strategies shows great promise in
performance results, but also great flexibility; many more
strategies can be suggested and studied, which can be con-
sidered for future work.
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A. M. López, “Pedestrian detection at day/night time with visible and
fir cameras: A comparison,” Sensors (Basel, Switzerland), 2016.

[37] K. Takumi, K. Watanabe, Q. Ha, A. Tejero-De-Pablos, Y. Ushiku, and
T. Harada, “Multispectral object detection for autonomous vehicles,”
in Proceedings of the on Thematic Workshops of ACM Multimedia
2017, 2017.

[38] K. Van Beeck, K. Van Engeland, J. Vennekens, and T. Goedemé, “Ab-
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